Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS...

105
Graphs, Vectors, and Matrices Daniel A. Spielman Yale University AMS Josiah Willard Gibbs Lecture January 6, 2016

Transcript of Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS...

Page 1: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Graphs, Vectors, and Matrices Daniel A. Spielman

Yale University

AMS Josiah Willard Gibbs Lecture January 6, 2016

Page 2: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

From Applied to Pure Mathematics

Algebraic and Spectral Graph Theory Sparsification: approximating graphs by graphs with fewer edges The Kadison-Singer problem

Page 3: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

A Social Network Graph

Page 4: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

A Social Network Graph

Page 5: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

A Social Network Graph “vertex”     or  “node”  

“edge”  =    pair of nodes  

Page 6: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

“vertex”     or  “node”  

“edge”  =    pair of nodes  

A Social Network Graph

Page 7: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

A Big Social Network Graph

Page 8: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

A Graph

8  

5  

1  

7  3  2  

9  4   6  

1012

11

G = (V,E)

= vertices, = edges, pairs of vertices V E

Page 9: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

The Graph of a Mesh

Page 10: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Examples of Graphs

8  

5  

1  

7  3  2  

9  4   6  

1012

11

Page 11: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Examples of Graphs

8  

5  

1  

7  3  2  

9  4   6  

1012

11

Page 12: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

How to understand large-scale structure Draw the graph Identify communities and hierarchical structure Use physical metaphors

Edges as resistors or rubber bands

Examine processes Diffusion of gas / Random Walks

Page 13: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

The Laplacian quadratic form of G = (V,E)X

(a,b)2E

(x(a)� x(b))2x : V ! R

Page 14: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

X

(a,b)2E

(x(a)� x(b))2x : V ! R

0

0.5

0.5

1

1

1.5

The Laplacian quadratic form of G = (V,E)

Page 15: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

X

(a,b)2E

(x(a)� x(b))2x : V ! R

0

0.5

0.5

1

1

1.5(0.5)2

(0.5)2

(0.5)2

(0.5)2

(0.5)2

(0.5)2

(0)2

The Laplacian quadratic form of G = (V,E)

Page 16: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

X

(a,b)2E

(x(a)� x(b))2x : V ! R

The Laplacian matrix of G = (V,E)

= x

TLx

Page 17: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Graphs as Resistor Networks

View edges as resistors connecting vertices Apply voltages at some vertices. Measure induced voltages and current flow.

1V

0V

Page 18: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Graphs as Resistor Networks

Induced voltages minimize , subject to constraints.

1V

0V

X

(a,b)2E

(x(a)� x(b))2

Page 19: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

0V

0.5V

0.5V

0.625V 0.375V

Graphs as Resistor Networks

Induced voltages minimize , subject to constraints.

1V

X

(a,b)2E

(x(a)� x(b))2

0V

1V

Page 20: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

1V

0V

0.5V

0.5V

0.625V 0.375V

(0.5)2

(0.5)2(0.

5)2

(0.5)2

(0.375) 2(0.125)2

(0.25)2

(0.125) 2

(0.375)2

Graphs as Resistor Networks

Induced voltages minimize , subject to constraints.

1V

X

(a,b)2E

(x(a)� x(b))2

0V

1V

Page 21: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Graphs as Resistor Networks

Induced voltages minimize , subject to constraints.

X

(a,b)2E

(x(a)� x(b))2

1V

0V

0.5V

0.5V

0.625V 0.375V

(0.5)2

(0.5)2(0.5

)2

(0.5)2

(0.375) 2

(0.125

)2

(0.25)2

(0.125) 2

(0.375)2

1V

0V

1V

Effective conductance = current flow with one volt

Page 22: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Weighted Graphs

Edge assigned a non-negative real weight measuring strength of connection 1/resistance

wa,b 2 R

x

TLx =

X

(a,b)2E

wa,b(x(a)� x(b))2

(a, b)

Page 23: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Want to map with most edges short

Spectral Graph Drawing (Hall ’70)

V ! R

Edges are drawn as curves for visibility.

Page 24: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Want to map with most edges short Minimize to fix scale, require

Spectral Graph Drawing (Hall ’70)

V ! R

x

TLx =

X

(a,b)2E

(x(a)� x(b))2

X

a

x(a)2 = 1

Page 25: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Want to map with most edges short Minimize to fix scale, require

Spectral Graph Drawing (Hall ’70)

V ! R

x

TLx =

X

(a,b)2E

(x(a)� x(b))2

X

a

x(a)2 = 1

kxk = 1

Page 26: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Courant-Fischer Theorem

Where is the smallest eigenvalue of and is the corresponding eigenvector.

�1

v1L

v1 = arg minx 6=0

kxk=1

x

T

Lx�1 = minx 6=0

kxk=1

x

T

Lx

Page 27: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

For

�1 = 0 and is a constant vector v1

Where is the smallest eigenvalue of and is the corresponding eigenvector.

�1

v1L

v1 = arg minx 6=0

kxk=1

x

T

Lx�1 = minx 6=0

kxk=1

x

T

Lx

Courant-Fischer Theorem

x

TLx =

X

(a,b)2E

(x(a)� x(b))2

Page 28: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Want to map with most edges short Minimize Such that and

Spectral Graph Drawing (Hall ’70)

V ! R

x

TLx =

X

(a,b)2E

(x(a)� x(b))2

X

a

x(a) = 0kxk = 1

Page 29: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Want to map with most edges short Minimize Such that and

Spectral Graph Drawing (Hall ’70)

V ! R

x

TLx =

X

(a,b)2E

(x(a)� x(b))2

X

a

x(a) = 0

Courant-Fischer Theorem: solution is , the eigenvector of , the second-smallest eigenvalue

v2 �2

kxk = 1

Page 30: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Spectral Graph Drawing (Hall ’70)

X

(a,b)2E

(x(a)� x(b))2 = area under blue curves

Page 31: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Spectral Graph Drawing (Hall ’70)

X

(a,b)2E

(x(a)� x(b))2 = area under blue curves

0 =X

a

x(a)kxk = 1

Page 32: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Space the points evenly

Page 33: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

And, move them to the circle

Page 34: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Finish by putting me back in the center

Page 35: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Want to map with most edges short Such that and

Spectral Graph Drawing (Hall ’70)

X

a

x(a) = 0

V ! R2

X

(a,b)2E

����

✓x(a)y(a)

◆�✓x(b)y(b)

◆����2

X

a

y(a) = 0and

Minimize

kxk = 1

kyk = 1

Page 36: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Want to map with most edges short Such that and

Spectral Graph Drawing (Hall ’70)

V ! R2

X

(a,b)2E

����

✓x(a)y(a)

◆�✓x(b)y(b)

◆����2

Minimize

kxk = 1 1Tx = 0

and kyk = 1 1T y = 0

Page 37: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Want to map with most edges short Such that and

Spectral Graph Drawing (Hall ’70)

V ! R2

X

(a,b)2E

����

✓x(a)y(a)

◆�✓x(b)y(b)

◆����2

and

Minimize

kxk = 1

kyk = 1

1Tx = 0

1T y = 0

and , to prevent x

Ty = 0

x = y

Page 38: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Such that

Spectral Graph Drawing (Hall ’70) X

(a,b)2E

����

✓x(a)y(a)

◆�✓x(b)y(b)

◆����2

Minimize

Courant-Fischer Theorem: solution is , up to rotation

x = v2, y = v3

and

kxk = 1 kyk = 1

1Tx = 0 1T y = 0 x

Ty = 0

Page 39: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Spectral Graph Drawing (Hall ’70)

31 2

4

56 7

8 9

1 2

4

5

6

9

3

8

7

Arbitrary Drawing

Spectral Drawing

Page 40: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Spectral Graph Drawing (Hall ’70)

Original Drawing

Spectral Drawing

Page 41: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Spectral Graph Drawing (Hall ’70)

Original Drawing

Spectral Drawing

Page 42: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Dodecahedron

Best embedded by first three eigenvectors

Page 43: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Spectral drawing of Erdos graph: edge between co-authors of papers

Page 44: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

When there is a “nice” drawing:

Most edges are short Vertices are spread out and don’t clump too much

is close to 0 �2

When is big, say there is no nice picture of the graph

�2 > 10/ |V |1/2

Page 45: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Expanders: when is big �2

Formally: infinite families of graphs of constant degree d and large Examples: random d-regular graphs Ramanujan graphs Have no communities or clusters. Incredibly useful in Computer Science:

Act like random graphs (pseudo-random) Used in many important theorems and algorithms

�2

Page 46: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

-regular graphs with �2, ...,�n ⇡ d

Courant-Fischer: for all

d

x

TLGx ⇡ d

1Tx = 0

kxk = 1

Good Expander Graphs

Page 47: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

-regular graphs with

Courant-Fischer: for all

For , the complete graph on vertices Kn n

�2, ...,�n = n , so for

LKn ⇡ n

dLG

d

x

TLGx ⇡ d

1Tx = 0

kxk = 1

Good Expander Graphs

1Tx = 0

kxk = 1

�2, ...,�n ⇡ d

x

TLKnx = n

Page 48: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

LKn ⇡ n

dLG

Good Expander Graphs

Page 49: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Sparse Approximations of Graphs

A graph is a sparse approximation of if has few edges and

H G

H LH ⇡ LG

few: the number of edges in is H

O(n) O(n log n) n = |V |or , where

LH ⇡✏ LG if for all 1

1 + � xTLHx

xTLGx 1 + �

x

(S-Teng ‘04)

Page 50: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Sparse Approximations of Graphs

A graph is a sparse approximation of if has few edges and

H G

H LH ⇡ LG

few: the number of edges in is H

O(n) O(n log n) n = |V |or , where

LH ⇡✏ LG if for all 1

1 + � xTLHx

xTLGx 1 + �

x

(S-Teng ‘04)

Where M 4 fMx

TMx x

T fMxif for all x

1

1 + ✏LG 4 LH 4 (1 + ✏)LG

Page 51: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Sparse Approximations of Graphs

A graph is a sparse approximation of if has few edges and

H G

H LH ⇡ LG

few: the number of edges in is H

O(n) O(n log n) n = |V |or , where

LH ⇡✏ LG if for all 1

1 + � xTLHx

xTLGx 1 + �

x

(S-Teng ‘04)

Where M 4 fMx

TMx x

T fMxif for all x

1

1 + ✏LG 4 LH 4 (1 + ✏)LG

Page 52: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Sparse Approximations of Graphs

The number of edges in is H

O(n) O(n log n) n = |V |or , where

(S-Teng ‘04)

Where M 4 fMx

TMx x

T fMxif for all x

1

1 + ✏LG 4 LH 4 (1 + ✏)LG

Page 53: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Why we sparsify graphs

To save memory when storing graphs. To speed up algorithms:

flow problems in graphs (Benczur-Karger ‘96)

linear equations in Laplacians (S-Teng ‘04)

Page 54: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Graph Sparsification Theorems

For every , there is a s.t.

G = (V,E,w) H = (V, F, z)

and

(Batson-S-Srivastava ‘09)

|F | (2 + ✏)2n/✏2LG ⇡✏ LH

Page 55: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Graph Sparsification Theorems

For every , there is a s.t.

G = (V,E,w) H = (V, F, z)

and

(Batson-S-Srivastava ‘09)

By careful random sampling, can quickly get

(S-Srivastava ‘08)

|F | O(n log n/✏2)

|F | (2 + ✏)2n/✏2LG ⇡✏ LH

Page 56: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

L1,2 =

✓1 �1�1 1

=

✓1�1

◆�1 �1

x

TLGx =

X

(a,b)2E

(x(a)� x(b))2

LG =X

(a,b)2E

La,b

Laplacian Matrices

Page 57: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

x

TLGx =

X

(a,b)2E

(x(a)� x(b))2

LG =X

(a,b)2E

La,b

=X

(a,b)2E

ua,buTa,b ua,b = �a � �b

Laplacian Matrices

Page 58: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

=� �✓ ◆

x

TLGx =

X

(a,b)2E

(x(a)� x(b))2

LG =X

(a,b)2E

La,b

=X

(a,b)2E

ua,buTa,b

U UT

ua,b

Laplacian Matrices

ua,b = �a � �b

Page 59: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Matrix Sparsification

� �=

� �✓ ◆M

� �=

� �✓ ◆fM

1

(1 + ✏)M 4 fM 4 (1 + ✏)M

U UT

Page 60: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

� �=

� �✓ ◆M

� �=

� �✓ ◆fM

1

(1 + ✏)M 4 fM 4 (1 + ✏)M

subset  of  vectors,  scaled  up  

Matrix Sparsification

U UT

Page 61: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

� �=

� �✓ ◆M

� �=

� �✓ ◆fM

1

(1 + ✏)M 4 fM 4 (1 + ✏)M

subset  of  vectors,  scaled  up  

Matrix Sparsification

U UT

Page 62: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

� �=

� �✓ ◆M

1

(1 + ✏)M 4 fM 4 (1 + ✏)M

� �=

� �✓ ◆fM

most si = 0

Matrix Sparsification

U UT =X

i

uiuTi

=X

i

siuiuTi

Page 63: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Simplification of Matrix Sparsification

1

(1 + ✏)M 4 fM 4 (1 + ✏)M

1

(1 + ✏)I 4 M�1/2fMM�1/2 4 (1 + ✏)I

is equivalent to

Page 64: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

1

(1 + ✏)I 4 M�1/2fMM�1/2 4 (1 + ✏)I

Set

We need X

i

sivivTi ⇡✏ I

Simplification of Matrix Sparsification

X

i

vivTi = Ivi = M�1/2ui

Page 65: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

1

(1 + ✏)I 4 M�1/2fMM�1/2 4 (1 + ✏)I

“Decomposition of the identity”

“Parseval frame” “Isotropic Position”

X

i

(vTi t)2 = ktk2

Set vi = M�1/2ui

Simplification of Matrix Sparsification

X

i

vivTi = I

Page 66: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Matrix Sparsification by Sampling

For with X

i

vivTi = Iv1, ..., vm 2 Rn

si =

(1/pi with probability pi0 with probability 1� pi

(Rudelson ‘99, Ahlswede-Winter ‘02, Tropp ’11)

E"X

i

sivivTi

#=

X

i

vivTi

Choose with probability If choose , set

visi = 1/pivi

pi ⇠ kvik2

Page 67: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Matrix Sparsification by Sampling

For with X

i

vivTi = Iv1, ..., vm 2 Rn

si =

(1/pi with probability pi0 with probability 1� pi

(Rudelson ‘99, Ahlswede-Winter ‘02, Tropp ’11)

E"X

i

sivivTi

#=

X

i

vivTi

Choose with probability If choose , set

visi = 1/pivi

pi ⇠ kvik2

(effective conductance)

Page 68: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Matrix Sparsification by Sampling

For with X

i

vivTi = Iv1, ..., vm 2 Rn

si =

(1/pi with probability pi0 with probability 1� pi

(Rudelson ‘99, Ahlswede-Winter ‘02, Tropp ’11)

E"X

i

sivivTi

#=

X

i

vivTi

Choose with probability If choose , set

visi = 1/pivi

pi = C(log n) kvik2 /✏2

Page 69: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Matrix Sparsification by Sampling

For with X

i

vivTi = Iv1, ..., vm 2 Rn

(Rudelson ‘99, Ahlswede-Winter ‘02, Tropp ’11)

Choose with probability If choose , set

visi = 1/pivi

pi = C(log n) kvik2 /✏2

X

i

sivivTi ⇡✏ I

With high probability, choose vectors

and

O(n log n/✏2)

Page 70: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Optimal (?) Matrix Sparsification

For with X

i

vivTi = Iv1, ..., vm 2 Rn

Can choose vectors and nonzero values for the so that

X

i

sivivTi ⇡✏ I

(Batson-S-Srivastava ‘09)

si(2 + ✏)2n/✏2

Page 71: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Optimal (?) Matrix Sparsification

For with X

i

vivTi = Iv1, ..., vm 2 Rn

Can choose vectors and nonzero values for the so that

X

i

sivivTi ⇡✏ I

(Batson-S-Srivastava ‘09)

si

si

(2 + ✏)2n/✏2

Page 72: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Optimal (?) Matrix Sparsification

For with X

i

vivTi = Iv1, ..., vm 2 Rn

Can choose vectors and nonzero values for the so that

X

i

sivivTi ⇡✏ I

(Batson-S-Srivastava ‘09)

si

si ⇠ 1/ kvik2

(2 + ✏)2n/✏2

Page 73: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

The Kadison-Singer Problem ‘59

Equivalent to: Anderson’s Paving Conjectures (‘79, ‘81) Bourgain-Tzafriri Conjecture (‘91) Feichtinger Conjecture (‘05) Many others

Implied by:

Weaver’s KS2 conjecture (‘04)

Page 74: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

v1

�v1�v2

�v3

�v4

v4

v3

v2

for  every  unit  vector    

Weaver’s Conjecture: Isotropic vectors X

i

vivTi = I

X

i

(vTi t)2 = 1

t

t

Page 75: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Partition into approximately ½-Isotropic Sets S1 S2

Page 76: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

S1 S2

1/4 P

i2Sj(vTi t)

2 3/4

Partition into approximately ½-Isotropic Sets

Page 77: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

1/4 eigs(P

i2SjvivTi ) 3/4

S1 S2

1/4 P

i2Sj(vTi t)

2 3/4

Partition into approximately ½-Isotropic Sets

Page 78: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

1/4 eigs(P

i2SjvivTi ) 3/4

S1 S2

eigs(P

i2SjvivTi ) 3/4

X

i2S1

vivTi = I �

X

i2S2

vivTibecause  

()

1/4 P

i2Sj(vTi t)

2 3/4

Partition into approximately ½-Isotropic Sets

Page 79: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

S1

S2

Big vectors make this difficult

Page 80: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

S1 S2

Big vectors make this difficult

Page 81: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Weaver’s Conjecture KS2

There exist positive constants and so that if all and then exists a partition into S1 and S2 with

↵ ✏

PvivTi = I

eigs(P

i2SjvivTi ) 1� ✏

kvik2 ↵

Page 82: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

For all if all and then exists a partition into S1 and S2 with

↵ > 0

Theorem (Marcus-S-Srivastava ‘15)

eigs(P

i2SjvivTi ) 1

2 + 3↵

PvivTi = Ikvik2 ↵

Page 83: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

We want

eigs

0

BB@

X

i2S1

vivTi 0

0X

i2S2

vivTi

1

CCA 12 + 3↵

Page 84: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

We want

roots

0

BB@poly

0

BB@

X

i2S1

vivTi 0

0

X

i2S2

vivTi

1

CCA

1

CCA 12 + 3↵

Page 85: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Consider expected polynomial of a random partition.

We want

roots

0

BB@poly

0

BB@

X

i2S1

vivTi 0

0

X

i2S2

vivTi

1

CCA

1

CCA 12 + 3↵

Page 86: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Proof Outline

1.  Prove expected characteristic polynomial has real roots

2.  Prove its largest root is at most

3.  Prove is an interlacing family, so exists a partition whose polynomial

has largest root at most

1/2 + 3↵

1/2 + 3↵

Page 87: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Interlacing

Polynomial

interlaces

if

q(x) =Qd�1

i=1 (x� �i)

p(x) =Qd

i=1(x� ↵i)

↵1 �1 ↵2 · · ·↵d�1 �d�1 ↵d

Example: q(x) =d

dx

p(x)

Page 88: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

p1(x)

Common Interlacing

and have a common interlacing if can partition the line into intervals so that each contains one root from each polynomial

p2(x)

�1

�2

�3

)  )  )  )  (   (   (  (  �d�1

Page 89: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

�1

�2

�3

)  )  )  )  (   (   (  (  

max-root (pi) max-root (Ei [ pi ])

Largest root of average  

Common Interlacing

�d�1

If p1 and p2 have a common interlacing,

for some i.

Page 90: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

�1

�2

�3

)  )  )  )  (   (   (  (  

If p1 and p2 have a common interlacing,

for some i.

max-root (pi) max-root (Ei [ pi ])

Largest root of average  

Common Interlacing

�d�1

Page 91: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Without a common interlacing

(x+ 1)(x+ 2) (x� 1)(x� 2)

Page 92: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

(x+ 1)(x+ 2) (x� 1)(x� 2)

x

2 + 4

Without a common interlacing

Page 93: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

(x+ 4)(x� 1)(x� 8)

(x+ 3)(x� 9)(x� 10.3)

Without a common interlacing

Page 94: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

(x+ 4)(x� 1)(x� 8)

(x+ 3)(x� 9)(x� 10.3)

(x+ 3.2)(x� 6.8)(x� 7)

Without a common interlacing

Page 95: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

�1

�2

�3

)  )  )  )  (   (   (  (  

Largest root of average  

�d�1

max-root (pi) max-root (Ei [ pi ])

Common Interlacing

If p1 and p2 have a common interlacing,

for some i.

Page 96: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

p1(x) and have a common interlacing iff p2(x)

�p1(x) + (1� �)p2(x) is real rooted for all 0 � 1

�1

�2

�3

�d�1

)  )  )  )  (   (   (  (  

Common Interlacing

Page 97: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Ei [ p2,i ]Ei [ p1,i ]

p2,2p2,1p1,1 p1,2

is an interlacing family {p�}�2{1,2}n

if its members can be placed on the leaves of a tree so that when every node is labeled with the average of leaves below, siblings have common interlacings

Interlacing Family of Polynomials

Ei,j [ pi,j ]

Page 98: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Ei [ p2,i ]Ei [ p1,i ]

p2,2p2,1p1,1 p1,2

have  a  common    interlacing  

is an interlacing family {p�}�2{1,2}n

if its members can be placed on the leaves of a tree so that when every node is labeled with the average of leaves below, siblings have common interlacings

Interlacing Family of Polynomials

Ei,j [ pi,j ]

Page 99: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Ei [ p2,i ]Ei [ p1,i ]

p2,2p2,1p1,1 p1,2

Ei,j [ pi,j ]

have  a  common    interlacing  

is an interlacing family {p�}�2{1,2}n

if its members can be placed on the leaves of a tree so that when every node is labeled with the average of leaves below, siblings have common interlacings

Interlacing Family of Polynomials

Page 100: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

p2,2p2,1p1,1 p1,2

Theorem: There is a so that �

Interlacing Family of Polynomials

max-root(p�) max-root(E�p�)

Ei [ p2,i ]Ei [ p1,i ]

Ei,j [ pi,j ]

Page 101: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

p2,2p2,1p1,1 p1,2

Theorem: There is a so that �

Interlacing Family of Polynomials

have  a  common    interlacing  

Ei [ p2,i ]Ei [ p1,i ]

Ei,j [ pi,j ]

max-root(p�) max-root(E�p�)

Page 102: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Theorem: There is a so that �

p2,2p2,1p1,1 p1,2

Interlacing Family of Polynomials

have  a  common    interlacing  

Ei [ p2,i ]Ei [ p1,i ]

Ei,j [ pi,j ]

max-root(p�) max-root(E�p�)

Page 103: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Our family is interlacing

Form other polynomials in the tree by fixing the choices of where some vectors go

ES1,S2

2

664 poly

0

BB@

X

i2S1

vivTi 0

0

X

i2S2

vivTi

1

CCA

3

775

Page 104: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

Summary

1.  Prove expected characteristic polynomial has real roots

2.  Prove its largest root is at most

3.  Prove is an interlacing family, so exists a partition whose polynomial

has largest root at most

1/2 + 3↵

1/2 + 3↵

Page 105: Graphs, Vectors, and Matrices Daniel A. Spielman Yale University › homes › spielman › TALKS › Gibbs16.pdf · 2016-01-18 · Graphs, Vectors, and Matrices Daniel A. Spielman

To learn more about Laplacians, see

My web page on Laplacian linear equations, sparsification, etc.

My class notes from “Spectral Graph Theory” and “Graphs and Networks”

Papers in Annals of Mathematics and survey from ICM. Available on arXiv and my web page

To learn more about Kadison-Singer