Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity...

55
Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department of Energy Nuclear Energy Enabling Technology Program Erin Barker, Dongsheng Li, Hussein Zbib, Xin Sun Pacific Northwest National Laboratory, Richland, WA 99352 August 2013 NEAMS Milestone Report M3MS-13PN0602051

Transcript of Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity...

Page 1: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity Model and its Implementation into MARMOT

PNNL-22702

Prepared for

U.S. Department of Energy

Nuclear Energy Enabling Technology Program

Erin Barker, Dongsheng Li, Hussein Zbib, Xin Sun

Pacific Northwest National Laboratory, Richland, WA 99352

August 2013

NEAMS Milestone Report M3MS-13PN0602051

Page 2: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Page 3: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its implementation into MARMOT Aug 2013 iii

SUMMARY

  The  influence  of  strain  gradient  on  deformation  behavior  of  nuclear  structural  materials,  such  as  body-­‐centered  cubic   (bcc)   iron  alloys  has  been   investigated.  We  have  developed  and  implemented  a  dislocation  based  strain  gradient  crystal  plasticity  material  model.  A  mesoscale  crystal   plasticity   model   for   inelastic   deformation   of   metallic   material,   bcc   steel,   has   been  developed  and  implemented  numerically.  Continuum  Dislocation  Dynamics  (CDD)  with  a  novel  constitutive   law   based   on   dislocation   density   evolution   mechanisms   was   developed   to  investigate  the  deformation  behaviors  of  single  crystals,  as  well  as  polycrystalline  materials  by  coupling  CDD  and  crystal  plasticity   (CP).  The  dislocation  density  evolution   law  in  this  model   is  mechanism-­‐based,   with   parameters   measured   from   experiments   or   simulated   with   lower-­‐length  scale  models,  not  an  empirical  law  with  parameters  back-­‐fitted  from  the  flow  curves.      

  In  our  current   framework,  geometrically  necessary  dislocations  are   introduced   to   take  into  consideration  of  strain  gradient  for  the  long  range  interactions.  Two  approaches  have  been  proposed  to  incorporate  the  influence  of  strain  gradient  into  the  framework:  the  first  one  with  analytical  solution  in  a  homogenization  method,  i.e.,  viscoplastic  self-­‐consistent  (VPSC)  model,  the  other  one  with  user  material  subroutine  in  finite  element  method  (FEM).    

  The  mesoscale  plasticity  model   is  formulated  to  treat  both  long-­‐range  and  short-­‐range  processes  and   interactions.  Models   for   the  evolution  of  mobile  and   immobile  dislocations,  as  well  as  interstitial  loops,  and  interaction  hardening  laws,  are  formulated  based  on  quantifiable  mechanisms  from  lower  length  scales,  such  as  dislocation  multiplication,  annihilation,  junction  formation/breakage,  and  cross-­‐slip   in  CDD.  Long-­‐range   interactions,  resulting  from  dislocation  structures,  will   be   treated  within   a   dislocation-­‐based   strain   gradient   theory,   compatible  with  dislocation  theory  and  driven  by  densities  represented  as  continuum  fields.  

  Crystal  plasticity  has  been  implemented  into  MARMOT  to  increase  the  capability  of  the  numerical   solution   framework   for   mechanical   deformation   behavior   of   nuclear   structural  materials.  Combined  with  the  lower  length  scale  simulation  capability  in  MOOSE,  development  in  this  capability  will  build  up  a  multi-­‐scale  and  multi-­‐physics  modeling  architecture.  

Page 4: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT iv Aug 2013

CONTENTS

1.   Introduction .................................................................................................................................. 1  2.   Strain Gradient Continuum Dislocation Dynamics ..................................................................... 5  3.   Strain Gradient Field Calcualted from Polycrystalline Viscoplasticity Model ......................... 13  4.   Results and Discussion .............................................................................................................. 15  

4.1   Low Length Scale Models Providing Dislocation Density Evolution Law ..................... 15  4.2   CDD in Predicting Mechanical Properties of Fe Single Crystal ...................................... 20  4.3   Prediction of Deformation Behavior and Texture Evolution using CDD-CP .................. 25  

5.   Implementation of Crystal Plasticity in MARMOT .................................................................. 30  5.1   MARMOT Implementation .............................................................................................. 32  5.2   Plan for Strain Gradient Addition to MARMOT Implementation ................................... 34  

5.2.1   Theoretical Overview of Higher Order Strain Gradient Formulation ................... 38  Acknowledgements ........................................................................................................................... 41  References ......................................................................................................................................... 42  

Page 5: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its implementation into MARMOT Aug 2013 v

LIST OF FIGURES Figure 1. Scheme of multi-scale approach in mechanical flow prediction ......................................... 2  Figure 2. Work flow of multi-scale modeling predicting the plastic flow with long range

interaction taken into consideration by strain gradient plasticity ................................................ 2  Figure 3. Dislocation mobility as a function of the temperature in Fe-Ni system, with

concentration of nickel or chromium was varied from 5% to 20% .......................................... 16  Figure 4. a) Dislocation-defect structure after plastic deformation. b) Stress-strain curves

simulated by DDD for iron single crystal at different defect densities (a:0, b:2×1022, c:5×1022, d: 7×1022, e: 1×1023 , f: 2×1023.) ................................................................................ 17  

Figure 5. Discrete dislocations dynamics results: Evolution of defect density (a) and dislocation density (b) for iron alloy with 5%Ni concentrations at different initial irradiation defect density: (a:0, b:2×1022, c:5×1022, d: 7×1022, e: 1×1023 , f: 2×1023.) , (c) evolution of total dislocation density, cross-slip segments and dislocations junctions. ........................................ 19  

Figure 6. Comparison of experimental stress strain curves and simulated results from SCCE-T, SCCE-D and CDD models for iron single crystal with uniaxial tensile loading direction along (a) [100] (b) [011] and (c) [-348] directions. The constitutive law parameters for SCCE-T and SCCE-D are back-fit to the [100] results. ............................................................ 22  

Figure 7. Comparison of experimental stress strain curves and simulated results from SCCE-T, SCCE-D and CDD models for iron single crystal with uniaxial tensile loading direction along (a) [100] (b) [011] and (c) [-348] directions. The constitutive law parameters for SCCE-T and SCCE-D are back fit to the [-348] results. ........................................................... 23  

Figure 8. (a) 100, (b) 110, and (c) 111 pole figures of simulated bcc iron sample with random texture. ....................................................................................................................................... 25  

Figure 9. Predicted stress strain curve of the random texture iron using CDD-CP model. .............. 26  Figure 10. Predicted (100), (110) and (111) pole figures of random bcc iron alloys under uniaxial

tension at strain of (a) 2% and (b) 10%. .................................................................................... 26  Figure 11. Scheme of data flow in closely coupled CDD and CP (a) without (b) with long

distance interaction considered. ................................................................................................ 27  Figure 12. Strain field of random textured polycrystalline agglomerate after uniaxial tensioned to

a strain of (a) 0.1, (b) 0.2 (c) 0.3 (d) 0.5 (e) 0.8 and (f) 1.0. ..................................................... 28  Figure 13. Strain gradient field of random textured polycrystalline agglomerate after uniaxial

tensioned to a strain of (a) 0.1, (b) 0.2 (c) 0.3 (d) 0.5 (e) 0.8 and (f) 1.0 .................................. 29  Figure 14. Strain field of random textured polycrystalline agglomerate with 2000 grains after

uniaxial tensioned to a strain of (a) 0.1, (b) 0.2 (c) 0.3 (d) 0.5 (e) 0.8 and (f) 1.0 .................... 29  Figure 15. Strain gradient field of random textured polycrystalline agglomerate with 2000 grains

after uniaxial tensioned to a strain of (a) 0.1, (b)0.2 (c) 0.3 (d) 0.5 (e) 0.8 and (f) 1.0 ............. 30  

Page 6: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT vi Aug 2013

LIST OF TABLES

Table 1 . List of parameters used in the continuum dislocation dynamics model ............................ 20  Table 2. Variance of the simulation results from experimental stress strain curve for two CDD

parameters ................................................................................................................................. 24  

Page 7: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its implementation into MARMOT Aug 2013 vii

ACRONYMS

BCC   body-­‐centered  cubic  

CDD   continuum  dislocation  dynamics  

CP   crystal  plasticity  

Cr   chromium  

CRSS   critical  resolved  shear  stress    

DD   dislocation  dynamics  

DDD   discrete  dislocation  dynamics  

DOE   U.S.  Department  of  Energy  

FCC   face-­‐centered  cubic  

Fe   iron  

FS   Frank  sessile  

GND   geometrically  necessary  dislocation  

MD   molecular  dynamics  

MWLSR   moving  weighted  least  squares  regression  

Ni   nickel  

PNNL   Pacific  Northwest  National  Laboratory  

R&D   research  and  development  

SCCE-­‐D   single  crystal  constitutive  equations,  based  on  dislocation  density    

SCCE-­‐T   single  crystal  constitutive  equations,  for  texture  analysis  

SSD     statistically  stored  dislocations  

UMAT   user  defined  material  routine  

VPSC   viscoplastic  self  consistent  

 

Page 8: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department
Page 9: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 1

NUCLEAR ENERGY ADVANCED MODELING AND SIMULATION PROGRAM

Gradient Plasticity Model and its Implementation into

MARMOT

1. INTRODUCTION   Plastic   flow   strength   of   nuclear   structural   materials   depends   on   irradiated  

microstructures  and  other   inherent  properties.   From   the  perspective  of   strain,   it  depends  on  

strains   and   strain   gradients.   In   the   theory   of   dislocation   dynamics,   dislocations   from   plastic  

deformation  may   be   categorized   into:   statistically   stored   dislocations   (SSD)   from   bulk   plastic  

strain  and  geometrically  necessary  dislocation  (GND)  from  strain  gradient.  The  strain  gradient  is  

attributed   to   the   heterogeneity   of   the  microstructure   and   geometric   shape   and   size.   In   the  

early   days   of   the   gradient   plasticity   theory   development,   most   of   the   studies   focused   on  

geometrically   heterogeneous   systems,   such   as   sharp   crack   tip,   thin  wire   torsion,   indentation  

tests  and  so  on.    

  In   this   study,   the   strain   gradient   will   be   focused   on   the   heterogeneity   from   inherent  

microstructure,   such   as   texture,   precipitate,   voids,   and   other   heterogeneous   microstructure  

contribution.  The  strain  gradients  are  inversely  proportional  to  the  length  scale  of  investigated  

system  when   the   difference  of   strain   is   constant.   Consequently,   the   contribution   from   strain  

gradient   becomes   apparent  when   the   investigated   length   scale   is   small   enough   to   reach   the  

range  of  micrometer.  Phenomenological  theories  of  strain  gradient  plasticity  were  proposed  by  

Fleck,   Hutchinson   and   other   front   runners   in   the   past   decades,   as   summarized   in   several  

excellent  reviews  (Evans  and  Hutchinson,  2009;  Fleck  and  Hutchinson,  1997;  Fleck  et  al.,  1994).    

  In  our  previous  studies  (Li  et  al.,  in  preparation;  Zbib  et  al.,  2012),  we  have  developed  a  

multi-­‐scale  modeling   framework   to   simulate   the  mechanical  deformation  behavior  of  nuclear  

structural  materials  including  bcc  iron  alloys.  The  work  flow  of  this  multi-­‐scale  framework  starts  

Page 10: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 2 Aug 2013

from   molecular   dynamics   (MD),   to   discrete   dislocation   dynamic   (DDD),   to   continuum  

dislocation  dynamics  (CDD),  to  crystal  plasticity  (CP)  model  and  FEM.    

Figure 1. Scheme of multi-scale approach in mechanical flow prediction    

  Scale   bridging   in   this   framework   has   two   types,   tightly-­‐coupled   and   loosely-­‐coupled.   The  

information   pass   from   MD   to   DDD   is   loosely-­‐coupled:   dislocation   mobility   as   a   function   of  

temperature  and  alloy  composition  is  calculated  from  MD  and  passed  in  a  suitable  form  to  DDD  

model.   The   results   gathered   from   the   DDD   simulations   then   lead   to   the   evaluation   of   the  

dislocation   density   and   critical   resolved   shear   stress   in   Fe-­‐Ni-­‐Cr   alloys   as   well   as   irradiation  

damage.   The   dislocation   density   evolution   law   is   passed   into   CDD   for   mechanical   behavior  

prediction.   The   bridging   between   CDD   and   polycrystalline   viscoplasticity   model   is   a   tightly-­‐

coupled  model.  Finally,  the  results  from  CP  are  used  as  a  material  subroutine  in  FEM  model.    

  To  incorporate  the  influence  of  the  strain  gradient  due  to  the  sample  geometry,  length  scale  

effect  and  heterogeneous  microstructure,  gradient  plasticity  has  been  utilized  and  added  to  the  

current  framework.  The  updated  workflow  is  illustrated  in  Figure  2  below:    

Figure 2. Work flow of multi-scale modeling predicting the plastic flow with long range interaction taken into consideration by strain gradient plasticity    

Page 11: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 3

  In   the   early   stage   of   strain   gradient   plasticity   model,   most   models   are  

phenomenological,  treating  the  stress  contributing  the  strain  gradient  as  work  conjugate  higher  

order   stresses   in   the   form   of   couple   stresses   and   double   stresses,   dealing   with   the   strain  

gradient  tensor  in  the  form  of  deformation  curvatures  (Fleck  and  Hutchinson,  1993;  Fleck  and  

Willis,  2009a,  b).  The  experimental  evidences  for  the  scale  effect  due  to  the  strain  gradient  have  

been   observed   in   the   plastic   flow   of   metals   and   ceramics.   For   example,   the   indentation  

hardness  increases  by  a  factor  of  2  as  the  width  of  the  indent  is  decreased  from  about  10  um  to  

1um   (Stelmashenko  et   al.,   1993).   This   is   one  example  of  Hall-­‐Petch  effect,   the   yield   strength  

increases  with   the   decrease   of   grain   size.   To   capture   the   scale   effect,   or   the   grain   boundary  

effect,  we  incorporated  gradient  plasticity.    

  The  gradient  plasticity   theory  used   in  our  model   is  different   from   the   fore-­‐mentioned  

approach   in  two  aspects:  one   is  on  the  contribution  of   the  strain  gradient.   In  our  model,   two  

sources   of   strain   gradients   are   taken   into   considerations:   one   is   from   sample   geometry  

calculated   by   FEM   model,   the   other   one   is   from   texture,   calculated   by   polycrystalline  

viscoplasticity   model.   The   other   difference   is   our   model   is   mechanism-­‐based,   not   a  

phenomenological  one.  GND  from  strain  gradient  is   incorporated  in  the  model  at  the  stage  of  

dislocation  dynamics.      

  Before  the  introduction  of  gradient  plasticity,  the  elastic-­‐plastic  formulations  developed  

since   the  1960s  are   strain   rate   independent   (Asaro  and  Rice,  1977;  Hill,   1966;  Mandel,  1965;  

Simo   and   Taylor,   1985)   with   yield   surface   defined   by   Hill’s   criterion.   Later,   a   viscoplastic  

approach  was  proposed  to  achieve  unique  solutions  to  avoid  the  numerical  multiple  solutions  

from  using  strain  rate  sensitivity  formulations  (Asaro  and  Needleman,  1985;  Hutchinson,  1976;  

Peirce   et   al.,   1982).   The   essence   of   viscoplasticity   theory   is   the   hardening   law,   usually   in   a  

power   law  format,   to   relate   the  shear  stress   in  each  slip  system  to   the  shear  strain   rate.  The  

advantage  of  the  power  law  formulation  is  due  to  the  derivation  of  viscoplastic  potential  with  

the  capability   to  capture  saturation  effect  at  a  high  strain  rate.  Different  versions  of   isotropic  

and   anisotropic   viscoplastic   constitutive   theories   have   been   developed.   Examples   include  

MATMOD   equations   proposed   by   Miller   (Henshall,   1996;   Miller,   1976)   to   describe  

viscoplasticity   function   as   a   combination  of   a   hyperbolic   sine   function   and  a  power   function.  

Page 12: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 4 Aug 2013

Limited   to   small   strain,   back   stress   is   used   for   kinematic   hardening   and   a   drag   stress   for  

isotropic   hardening.   Another   example   is   Robinson’s   formulation,  which   is  more   complicated,  

using  a  back-­‐stress,  a  drag  stress,  a  yield  stress,  and  a  power  function  for  the  viscoplastic  flow  

(Arnold  and  Saleeb,  1994).   There  are  many  other   versions   taking   into   consideration  different  

factors.  With  the  development  of  the  theory  of  slip  systems,  hardening  is  decomposed  into  two  

parts:   latent  hardening  and  self  hardening,  both   in   the  exponential   function   form  to  describe  

interaction  between  different  slip  systems  (Asaro,  1983;  Asaro  and  Needleman,  1985;  Peirce  et  

al.,  1982).  Nevertheless,  most  theories  of  resistance  of  shear  stress  evolution  are  empirical  with  

the  parameters  determined  by  fitting  the  model  to  the  experimental  stress  strain  curves.    

    With   the   advent   of   dislocation   dynamics   and   multi-­‐scale   modeling,   alternative  

constitutive  laws  were  proposed  to  introduce  the  knowledge  generated  from  dislocation  theory  

to  the  continuum  plasticity  framework.  For  example,  Zbib  and  de  la  Rubia  (Zbib  and  Diaz  de  la  

Rubia,  2002),  Devincre  (Devincre  et  al.,  2008),  Groh  et  al.  (Groh  et  al.,  2009),    and  Alankar  et  al.  

(Alankar   et   al.,   2012b)   proposed   multi-­‐scale   approaches   to   establish   a   dislocation-­‐based  

continuum  model   to   incorporate   discrete   and   intermittent   aspects   of   plastic   flows.   In   these  

approaches,   strain   hardening   can   be   predicted   through   the  modeling   of  mean   free   paths   of  

dislocations.    Other  statistical  aspects  from  dislocation  dynamics  simulation,  such  as  dislocation  

densities,  are  used  as  internal  state  variables  to  capture  deformation  behavior  of  single  crystals  

(Arsenlis   and   Parks,   2002;   Ortiz   et   al.,   2000).   Another   front   noteworthy   is   Sandfeld’s   work  

(Hochrainer  et  al.,  2007;  Sandfeld  et  al.,  2011)  to  bridge  statistical  continuum  mechanics  with  

dislocation  dynamics  by  dislocation  density  tensor.  Using  a  statistical  description  of  dislocation  

interactions  in  terms  of  a  Taylor-­‐type  yield  stress  and  a  back  stress,  which  describes  short-­‐range  

repulsion   of   dislocations   of   the   same   sign,   key   features   from   discrete   dislocation   dynamics  

simulations   were   captured.   The   core   of   the   interaction   between   the   discrete   dislocation  

dynamics  and  crystal  plasticity  is  the  evolution  law  of  dislocation  density.    

    Discrete   dislocation   dynamics   (DDD)   is   a   powerful   tool   that   has   been   advanced  

significantly  in  the  past  decade  (Canova  et  al.,  1993;  Ghoniem  and  Sun,  1999;  Zbib  et  al.,  1996,  

1998).   It  has  been  used   to  explain   the  effect  of   irradiation  on  mechanical  properties   through  

large-­‐scale  simulations  of  interaction  of  numerous  numbers  of  dislocations  with  defect  clusters.  

Page 13: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 5

The  work  of  Zbib  and  co-­‐worker  has  shown  that  dislocations  interactions  with  the  elastic  fields  

of  nano-­‐sized  defect  clusters  in  Cu  and  Pd  lead  to  hardening  followed  by  localized  deformation  

and   channel   formation   resulting   from   defect   cluster   annihilation   by   dislocations   (Diaz   de   la  

Rubia  et  al.,  2000;  Ghoniem  et  al.,  2000;  Hiratani  et  al.,  2002a;  Hiratani  et  al.,  2002b;  Khraishi  et  

al.,  2002a;  Li  et  al.,  2010;  Zbib  et  al.,  2000).     In   the  present  work  we   investigate  the  effect  of  

irradiation  hardening  in  Fe-­‐Ni-­‐Cr  systems.    The  goal  is  to  predict  the  stress-­‐strain  curve  and  the  

critical   resolved  shear  stress  as  a   function  of  defect  density,  which   is   then  used   in   the  crystal  

plasticity   model.     However,   in   order   for   this   method   to   work,   a   detailed   knowledge   of   the  

dislocation  mobility  in  an  analytical  form  inside  the  materials  is  required.  To  effectively  predict  

the   mechanical   behavior   of   the   materials   under   irradiation   at   the   continuum   scale,   critical  

information  should  be  determined  and  progressively  passed  from  one  scale  to  another.    

2. STRAIN GRADIENT CONTINUUM DISLOCATION DYNAMICS

The  strain  gradient  CDD  framework  uses  the  strain  gradient  calculated  from  VPSC  and  FEM  

model   to   feed   back   for   the   GND   and   recalculate   the   flow   stress.   The   principle   of   crystal  

plasticity   was   improved   by   introducing   more   physics-­‐based   mechanisms   to   substitute  

empirically   derived   constitutive   and   hardening   laws.   Based   on   the   traditional   kinematics   of  

crystal   plasticity,   CDD   also   has   three   fundamental   assumptions.   First,   the   total   deformation  

gradient  F   (Peeters  et  al.,  2000;  Schoenfeld  et  al.,  1995)   is  assumed  to  be  the  product  of  two  

terms,  elastic  part  Fe  and  plastic  part  Fp:  

peFFF = ,   (1)  

where,  Fe  is  due  to  the  elastic  distortion  of  the  lattice,  and  the  plastic  part  Fp  is  due  to  the  slip  

by  the  dislocation  motion  in  the  unrotated  intermediate  configuration.  It  evolution  rate,   pF ,  is  

expressed  by  the  kinematic  relation:  

ppp FLF =   (2)  

Page 14: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 6 Aug 2013

In  the  second  assumption,  the  plastic  velocity  gradient  Lp  is  expressed  as  the  sum  of  a  number  

of  crystallographic  slip  rates,  αγ :  

Lp = γαnα ⊗mα

α=1

N

∑   (3)  

where  nα  and  mα  are  the  vectors  representing  slip  direction  and  slip  plane  normal  of  slip  system  

α,  and  N  is  the  number  of  slip  systems.    

    In   the   third   assumption   here,   the   lattice   deformation   is   equal   to   the   elastic  material  

deformation.  The  plastic  velocity  gradient  consists  of  a  symmetric  part,  strain  rate  DP,  and  an  

antisymmetric  part,  total  spin  WP:    

( )∑=

+==N

ijjipij

pij mnmnLsymmD

121)(

α

αααααγ   (4)  

( )∑=

−==N

ijjipij

pij mnmnLsymmW

121)(

α

αααααγ   (5)  

    Here,   the  plastic   strain   rate  DP   determines   the  deformation  behavior   by  updating   the  

stress  strain  curve;  while  the  total  plastic  spin  WP  is  used  to  update  the  orientation  of  crystals,  

texture,  in  polycrystalline  materials.    

    Normally,  the  shear  strain  rate  of  each  slip  system  α,   αγ ,  is  determined  by  a  strain-­‐rate-­‐

dependent  power  law  function  of  the  form:    

( )αα

αα τ

ττ

γγ signm1

00 =

  (6)  

where   0γ   is   reference   strain   rate,   ατ 0   is   the   slip   resistance   of   the   slip   system   α,   ατ   is   the  

resolved   shear   stress   along   slip   system   α,   and   m   is   the   rate   sensitivity   exponent.   The  

parameters   ατ 0  and  m  are  obtained  from  experimental  results  using  curve  fitting.    

    In   SCCE-­‐T,   the   hardening   law   defines   the   evolution   of   critical   resolved   shear   stress  

(CRSS)  of  slip  system  and  is  defined  as  follows  (Asaro,  1983):    

Page 15: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 7

    ∑=β

ααβ

α γτ h0   (7)  

where,   αβh   is   the   hardening   coefficient   matrix   with   self-­‐hardening   and   latent   hardening  

components.    

    In  contrast,   in   the  CDD  model  discussed  below,  another   form  of  power   law   is  used  by  

utilizing   the   results   from  DDD.  Our   constitutive   law   for   the   shear   strain   rate   is   based  on   the  

Orowan  relation  (Orowan,  1940):    

ααα ργ gMbv=   (8)  

where  αρM   is  the  mobile  dislocation  density  of  slip  system  α,  b  is  the  Burgers  vector,  and   α

gv is  

the  average  dislocation  glide  velocity  in  slip  system  α.    

In   previously   developed   models,   the   dislocation   glide   velocity   αgv ,   is   expressed   in   a  

power  law  of  resolved  shear  stress   ατ  similar  with  shear  strain  rate  of  slip  system  α,   ατ 0 :    

( )αα

αα τ

ττ signvv

m

g

1

00=   (9)  

    Here  the  expression  of  dislocation  glide  velocity  is  improved  to  a  general  law  using  Kock-­‐

type  activation  enthalpy:  

v!α = v!l!exp − ∆!!!"

1− τα !τ!α

τ!α

! !sign τα

0                                                                                                                                                                    

when     τα > τ!α

when   τα ≤ τ!α                (10)  

where  lg  is  the  distance  between  the  barriers.  For  a  kink  height,  lg  is  close  to  Burgers  vector.  VD  

is   the  Debye   frequency,   and  k   is   the  Boltzmann  constant.  T   is   temperature,  ∆F!   is   Kock-­‐type  

activation   enthalpy,  τ!α   is   the   Peierls   lattice   resistance   of   the   slip   system   α,   and   p   and   q   are  

strain   rate   parameters.   In   this   new   proposed   law,   all   parameters   have   physical   meaning  

calculated   from   lower-­‐length   scale   models.   The   slip   resistance   of   slip   system   α,   ατ 0 ,   is   a  

summation   of   reference   resistance   τ0   from   lattice   friction   stress   for   moving   dislocations;  

Page 16: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 8 Aug 2013

resistance  due  to  dislocation-­‐defect  interaction  τdα,  mainly  from  irradiation;  and  resistance  from  

dislocation  hardening   ατ dh :    

ααα ττττ dhd ++= 00   (11)    

    According   to   the   Baily-­‐Hirsch   model   (Ohashi,   1994),   the   resistance   from   dislocation  

hardening   is   slip   resistance   of   statistically   stored   dislocations   on   other   slip   systems   against  

moving  ones  on  one  specific  slip  system  α.  It  is  a  function  of  interaction  matrix  of  slip  systems  

mαΩ :  

m

m

mdh b ρµατ αα ∑ Ω=

  (12)  

    Here,  b  is  Burgers  vector,  µ  is  shear  modulus,  α  is  a  numerical  factor  on  the  order  of  0.1,  

and  ρm  is  the  density  of  statistically  stored  dislocations  accumulated  on  the  slip  system  m.    

    The  evolution  rate  of  statistically  stored  dislocation  density  is  related  to  the  mean  free  

path  of  moving  dislocations  on  slip  system  α,  Lα  (Ohashi  et  al.,  2007):  

ααα γρ bLc / =   (13)  

where   αγ  is  the  shear  strain  rate  of  slip  system  α,  and  c  is  a  numerical  constant  of  order  1.  Lα  is  

a  function  of  dislocation  density.    

    Assuming   defects   are   distributed   randomly   for   all   slip   systems,   a   modified   dispersed  

barrier   hardening  model   is   used   to   express   irradiation   resistance   ατ d   from   dislocation-­‐defect  

interaction:  

( )ndd dd ρµβτ α =   (14)  

where   ρd   is   the   defect   density   and   d   is   the   defect   size.   In   a   traditional   dispersed   barrier  

hardening  model,  n=0.5.  In  our  proposed  model,  n  is  calculated  directly  from  discrete  DD.        

    In   the   previously   proposed  DD-­‐based   crystal   plasticity  models,   the   dislocation   density  

evolution  laws  are  either  ignored  or  used  a  fitted  curve  to  represent  the  evolution  (as  proposed  

by  Kocks  (Kocks,  1976)):  

Page 17: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 9

ααβ

βα γρρ

ρ ⎟⎟⎟

⎜⎜⎜

⎛−=

∑b

a

n

kkb

1   (15)  

where   ka   and   kb   are   material   parameters   for   dislocation   generation   and   annihilation,  

respectively.  This  formulation  was  utilized  by  Wagoner  et  al.  (Lee  et  al.,  2010a)  and  Zbib  et  al.  

(Zbib  and  de   la  Rubia,  2002)  on  flow  simulation  of  single  crystals.  Simulation  results  from  this  

model  will  be  compared  with  the  mechanism-­‐based  CDD.  

    The   evolution   rate   of   the   dislocation   density   is   based   on   mechanisms   that   can   be  

quantified   from   the   discrete   DD.   Generally,   the   statistical   stored   dislocations   can   be   divided  

into  two  types,  mobile  and  immobile:      

ααα ρρρ IMS +=     (16)  

    In   CDD,   the   evolution   of   mobile   dislocation   density   is   composed   of   six   terms   with  

different  physical   contribution.   The   first  mechanism   is   from   the  multiplication   and   growth  of  

resident  dislocations   and   the  production  of   new  dislocations   from  Frank-­‐Reed   sources   in   slip  

system  α:  

α

ααα ραρlvg

MM 11 =     (17)  

where   α1   is   the   dislocation   multiplication   coefficient,   αρM   is   the   mobile   dislocation   density  

distributed  on  slip  system  α,  and   αl  is  the  mean  free  path  of  dislocations  on  slip  system  α.  

    The  second  mechanism  captures  the  mutual  annihilation  of   two  mobile  edge  or  screw  

dislocations  with  opposite  signs  in  slip  system  α:  

( ) gMcM vR 222 2 αα ραρ −=     (18)

 

where   α2   is   the   dislocation   annihilation   coefficient   and   Rc   is   the   capture   radius   for   the  

dislocation  annihilation  event.    

    The   third  mechanism  describes   the   transition  of  mobile   type   to   immobile   type  due   to  

the  interaction  between  dislocations:    

Page 18: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 10 Aug 2013

lvg

MMαα ραρ 33 −=     (19)  

where  α3  is  the  immobilization  parameter.  

    Conversely,   the   fourth  mechanism   is   about   the  mobilization   of   immobile   dislocations  

due  to  the  breakup  of  junctions,  dipoles,  pinning  parts,  etc.,  at  a  critical  stress  condition:  

lv g

I

r

M

αα

α

α ρτ

ταρ

⎟⎟

⎜⎜

⎛= *44     (20)  

where  α4  is  the  mobilization  parameter.    

  The   fifth   mechanism   considers   cross-­‐slip,   the   phenomena   where   screw   dislocation  

segments  on  one  slip  plane  move  to  another  glide  plane  during  plastic  deformation.  Extensive  

reviews  of  cross-­‐slip  in  experiments  and  simulations  have  been  given  by  Jackson  (Jackson,  1985)  

and   Püschl   (Püschl,   2002).   Cross-­‐slip   has   been  observed   in   experimental  work   and   simulated  

using  molecular  dynamics,  dislocation  dynamics,  and  other  low-­‐length  scale  models  (Alankar  et  

al.,  2012a;  Bitzek  et  al.,  2008;  Püschl,  2002).  In  large-­‐length  scale,  cross-­‐slip  was  incorporated  in  

a   continuum   model   in   an   empirical   way,   either   assuming   a   recombination   distance   or   a  

dissociation  energy  (Püschl,  2002).  There  is  a  disconnection  in  the  modeling  influence  of  cross-­‐

slip  on  deformation  behavior  across  different  length  scales.  In  most  continuum  texture  models,  

cross-­‐slip  has  been   ignored.   In  our  model,  evolution  of  mobile  dislocation  due   to  cross-­‐slip   is  

defined  as  below:  

lv

P gN

MM

α

β

βαβα ραρ ∑=

=1

55     (21)  

where  α5   is   the   cross-­‐slip   parameter,  N   is   the   number   of   cross-­‐slip   planes   available   for   each  

Burgers  vector,  e.g.   in   fcc  N=2,  and   in  bcc  N=12.     αβP   is   the  cross-­‐slip  probability  matrix;   the  

components  of   this  matrix  are  either  0,   -­‐1  or  +1;   0=αβP  means  no  cross-­‐slip  of  dislocations  

from  system   β  to  system  α ,   1+=αβP   indicates  cross-­‐slip  of  dislocation  from   β  to    α ,  and  

1−=αβP  means  that  the  system  α lost  dislocations  to  system   β  by  cross-­‐slip.     In  this  setup,  

Page 19: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 11

cross-­‐slip  is  treated  as  a  stochastic  process  and,  therefore,  we  use  a  Monte-­‐Carlo  type  analysis  

similar  to  that  used  in  the  discrete  dislocation  dynamics  for  cross-­‐slip  (Rhee  et  al.,  1999;  Zbib  et  

al.,   1998).   We   emphasize   the   introduction   of   this   stochastic   term   that   makes   it   possible   to  

predict   the  anisotropic  behavior  of   single  crystals   for  different   loading  directions  as   shown   in  

the   next   section.   More   details   regarding   the   implementation   of   cross-­‐slip   in   the   continuum  

dislocation  theory  are  given  in  Li  et  al  (Li  et  al.,  in  preparation).  

  The   sixth  mechanism   is   similar   to   the   second  one,   also   annihilation,   but   between  mobile  

and  immobile  type  dislocations:  

αααα ρραρ gMIcM vR66 −=     (22)  

  Combining  all  of  the  preceding  considerations,  the  evolution  rate  of  mobile  dislocations  is:    

ρMα =α1ρM

α vgα

l− 2α2Rc ρM

α( )2vg −α3ρM

α vgl+α4

τ α

τ *

"

#$$

%

&''

r

ρIα vg

α

l+α5 pαβρM

β

β

N

∑vgα

l−α6RcρI

αρMα vg

α

 (23)  

    The   aforementioned  mechanisms   of  mobile   dislocations   evolution,   including   Eq.   (19),  

(20),   and   (22),   also   involve   the   immobile   dislocations.   Based   on   these,   the   evolution   rate   of  

immobile  dislocation  density  is:    

ρIα =α3ρM

α vgα

l−α4

τ α

τ *

"

#$$

%

&''

r

ρIvgα

l−α6RcρI

αρMα vg

α

      (24)  

The  predicted  mobile  and   immobile  dislocation  density  are  used   to  calculate   the   total  

dislocation   density   using   Eq.   (16),   which   in   turn   predicts   the   resistance   from   dislocation  

hardening  according  to  Eq.  (12).    

    The   evolution   rate   of   statistically   stored   dislocation   density   along   slip   system   α   is  

treated   as   the   summation  of   the   two  dislocation  density   evolution   rate   above,   similar   to   Eq.  

(16):  

   ααα ρρρ MIS +=                                     (25)  

Page 20: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 12 Aug 2013

    In   our   current   framework,   another   kind   of   dislocation,   geometrically   necessary  

dislocation,   is   introduced   to   taken   into   consideration   of   strain   gradient   for   the   long   distance  

interaction.  The  evolution  rate  of  total  dislocation,   ρ ,  is  composed  of  two  parts,  evolution  rate  

of  GND,   Gρ  and  the  evolution  rate  of  SSD,     Sρ :  

  GSGS ρρρρρ α +=+= ∑                               (26)  

  In   traditional   strain  gradient   theory,   the  magnitude  of   the  plastic   strain  gradient   is  of   the  

order   of   the   average   shear   strain   in   the   crystal   divided   by   the   local   length   scale   λ   of   the  

deformation   field.   The   strain   gradient   is   γ/λ,   where   γ   is   macroscopic   plastic   shear   strain.   In  

approximate  terms,    

    λγ

ρbG4

=                                         (27)  

And  the  flow  stress,  or  macroscpic  shear  yield  stress  is  approximately    

    SGCGb ρρτ +=                                   (28)  

where  G  is  the  shear  modulus,  b  is  the  magnitude  of  the  Burger’s  vector,  and  C  is  the  constant  

taken  to  be  0.3  by  Ashby  (1970).    

    In  our  framework,  this  geometrically  necessary  dislocation  is  calculated  out  by:    

   ( ) ( )2,

2,

ααα ρρρ screwGedgeGG +=                         (29)  

where  )(

)(

, ~1

n

n

edgeG b ξγ

ρα

∂∂

−=  and  

)(

)(

, ~1

n

n

screwG b ζγ

ρα

∂∂

=  

Here    ξ  and  ζ  denote,  respectively,  directions  parallel  and  perpendicular  to  the  slip  direction  on  

the  slip  plane.  

 

 

Page 21: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 13

3. STRAIN GRADIENT FIELD CALCUALTED FROM POLYCRYSTALLINE VISCOPLASTICITY MODEL

     

    To   simulate   the   deformation   behavior   of   polycrystalline   materials,   we   used   a  

viscoplasticity   self-­‐consistent  model   (Lebensohn   and   Tomé,   1994).     As  mentioned  previously,  

fully  plastic  deformation  is  assumed,  and  it  is  further  asserted  that  the  deformation  takes  place  

through   shear   and   is   independent   of   the   hydrostatic   stress.     This   allows   a   five   dimensional  

vector   space   to  be  used   to   in   the   formulation  of   inelastic  deformation   in   terms  of   conjugate  

deviatoric   stress   and   strain   rate   tensors.       Interchanging   two   components   of   the   stress   and  

strain   convention   adopted   by   Lequeu   et   al.   (Lequeu   et   al.,   1987),   the   stress   and   strain   rate  

vectors  from  second  order  tensor  are  given  by  

{ }T

33 11 33 22 22 1123 13 12

( ) ( )' 2 , , , ,22 3

σ −σ + σ −σ σ −σ⎧ ⎫σ = σ σ σ⎨ ⎬

⎩ ⎭               (25)  

{ }T

33 11 33 22 22 1123 13 12

( ) ( )2 , , , ,22 3

ε −ε + ε −ε ε −ε⎧ ⎫ε = ε ε ε⎨ ⎬

⎩ ⎭

& & & & & && & & &                   (26)  

    The  scalar  product  of  these  two  vectors  gives  the  stress  power,  i.  e.,    

ijijkk εσεσ '' =                                       (27)  

where   it   is   understood   that   the   sum   on   subscript   k   is   over   the   range   1,2,...,5.     Inelastic  

deformation  occurs  only  when  a  slip  and/or  twin  system  is  active.    Both  slip  and  twin  systems  

are  characterized  by  two  vectors:  the  slip  systems  unit  normal  vector  n  and  the  unit  vector  b  in  

the  slip  direction.    Again,  twinning  is  treated  in  this  formulation  as  pseudo-­‐slip,  with  the  same  

formulation  of  the  kinematics  as  crystalline  slip.    

    Each   grain   of   the   polycrystal   has   the   kinematic   relation   provided   by   CDD.   The   VPSC  

model   couples   the   strain-­‐rate   and   the   stress   in   each   grain   with   the   average   strain   rate   and  

stress   of   the   polycrystal   (Lebensohn   and   Tomé,   1993).     Each   grain   is   regarded   as   an  

inhomogeneity  embedded  in  the  homogeneous  equivalent  medium  (HEM)  having  a  viscoplastic  

compliance   (tg)M  and  a  reference  strain  rate   0E& ,  whose  behavior  is  identical  to  the  average  of  

the   polycrystal   with   a   viscoplastic   compliance   c(tg)M and   a   reference   strain   rate   0&ε .     This  

Page 22: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 14 Aug 2013

inhomogeneity  has  a  local  stress  field  when  a  uniform  stress  is  applied  to  the  HEM.    Using  the  

Eshelby  formalism,  the  inhomogeneity  is  replaced  by  an  ‘equivalent  inclusion’  having  the  same  

moduli  as  the  polycrystal,  subjected  to  a  fictitious  transformation  strain  rate   *&ε .      

    The  overall   viscoplastic   compliance  moduli   of   the   grain,   (sec)M ,   can  be   calculated   in   a  

self-­‐consistent   iterative  way,  as   the  HEM   is  assumed   to  describe   the  average  behavior  of   the  

aggregate.    This  forces  the  weighted  average  of  stress  and  strain  rate  over  the  grains  to  coincide  

with  corresponding  macroscopic  values.  

    Texture   evolution   is   simulated   by   enforcing   the   polycrystal   deformation   through  

successive   incremental   steps.     These   are   obtained   by   imposing   a  macroscopic   strain   rate   E&  

during  the  time  interval   tΔ ,  with  a  guess  value  at  each  step  used  for  the  strain  rate   &ε  in  each  grain.    The   first  deformation  step  uses  a  Full  Constraints  guess.    The  stress   is   then  calculated  

with   each   following   step   using   the   values   from   previous   steps   as   the   starting   guesses.     The  

macroscopic   secant  modulus   (sec)M   is   estimated  using   the  Voigt   average,   (sec) 1 c(sec) 1− −=M M  

for  the  first  step,  with  the  following  steps  using  preceding  values  to  derive  the  next  estimate.    

This  modulus  is  then  used  to  calculate  the  Eshelby  tensor,  S,  the  interaction  tensor,  M%,  and  the  

accommodation  tensor,   cB .    The  average   c(sec) cM B   is  used  as  an  improved  guess  for   (sec)M ,  

with   repeated   iterations   until   the   average   coincides   with   the   input   tensor,   under   a   certain  

tolerance.    This  value  is  then  used  to  calculate  the  macroscopic  stress  

    (sec) 1' −=M E&Σ                                   (28)  

    Each  grain  is  then  allowed  to  reorient  due  to  slip  and  twinning,  following  a  convergence  

criterion.    The  lattice  rotation  rate  for  each  grain  is  given  by  

   1 s s s s s

ij ij ijkl klmn mn i j j is

1S (b n b n )2

−ω =Ω +Π ε − − γ∑%&& & &                   (29)  

where   Ω   is   the   anti-­‐symmetric   component   of   the   macroscopic   distortion   rate,   Π   is   the  

reorientation  of   the  associated  ellipsoid,  and  S   is   the  antisymmetric  component  of   the  plastic  

distortion  rate  (plastic  spin);    Π  is  proportional  to  the  difference  between  the  strain  rate  of  the  

grain  and  that  of  the  polycrystal.    Tiem  et  al.  (Tiem,  1986)  showed  that  for  the  elastic  inclusion  

case,  Π  increases  with  ellipsoid  distortion.    The  modeling  of  the  grain  orientation  will  then  use  

Page 23: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 15

the  Volume  Transfer  Scheme  as  described  by  Lebensohn  and  Tome   (Lebensohn,  1991;  Tome,  

1991)   for   twinned   volume   fractions.     The   polycrystal   is   represented   as   a   discrete   set   of  

orientations.     These   orientations   are   fixed,   but   their   representative   volume   fractions   evolve  

during   deformation.     The   Euler   space   is   partitioned   regularly   in   equiaxed   cells   or   bins   of   10  

degrees  on  dimension  of  Euler  angle.  The  orientations  coincide  with  the  centers  of  the  cells.    A  

certain   volume   fraction   of   the  material   is   assigned   to   each   cell,   corresponding   to   the   initial  

texture.    The   reorientation  of   lattice  orientation   that  drives   texture  evolution  during   inelastic  

deformation  is  visualized  as  displacements  in  Euler  space  of  the  represented  points.    If  the  cell  

as   a   whole   displaces   rigidly   and   partially   overlaps   neighbors,   then   the   volume   fraction   of  

material   in  the  overlap  is  subtracted  and  transferred  to  the  neighbors.    This   is  repeated  every  

iteration,  providing  gradual  texture  evolution.      

4. RESULTS AND DISCUSSION

4.1 Low Length Scale Models Providing Dislocation Density Evolution Law

While   this   work   focus   on   continuum   dislocation   dynamics,   some   example   of   molecular  

dynamics   and   discrete   dislocation   dynamics   simulation   results   is   presented   here   to  

demonstrate  the  flow  of  the  information  from  microscale  to  mesocale.    

In  the  dislocation  dynamics  framework,  the  mobility  of  a  screw  dislocation  is  considered  to  

be  a  small  constant  fraction  of  the  mobility  of  the  edge  dislocation  therefore,  if  the  mobility  of  

either  an  edge  or  a  screw  dislocation  is  known,  the  mobility  of  the  other  type  can  be  calculated  

in  terms  of  this  mobility  (Gilbert  et  al.,  2011;  Marian  and  Caro,  2006).    Therefore,  if  the  mobility  

of  the  edge  dislocation  is  known,  the  mobility  of  the  screw  can  be  also  found.    Results  for  the  

dislocation  mobility  in  iron  alloys  have  been  reported  elsewhere  in  (Lim  et  al.,  2011;  Mastorakos  

et  al.,  2010;  Mastorakos  et  al.,  2011a;  Mastorakos  et  al.,  2011b).  The  Embedded  Atom  Method  

(EAM)  (Daw  and  Baskes,  1983)  and  potentials  developed  in  (Bonny  et  al.,  2009;  Mendelev  et  al.,  

2003;   Stukowski   et   al.,   2009)   for   the   pure   iron,   Fe-­‐Cr   and   Fe-­‐Ni   respectively   were   used.     In  

Page 24: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 16 Aug 2013

particular,  the  dislocation  mobility  in  a  series  of  Fe-­‐Ni-­‐Cr  systems  at  different  temperatures  has  

been  simulated  using  molecular  dynamics.    

Figure 3. Dislocation mobility as a function of the temperature in Fe-Ni system, with concentration of nickel or chromium was varied from 5% to 20%

  Representative   results   for   the   edge   dislocation   mobility,   in   Fe-­‐Ni   alloy   with   nickel  

composition   at   0%,   10%,   15%   and   20%,   are   shown   in   Figure   3.     The   results   from   these  

simulations   lead   to   power   law   relationship   for   the   dislocation   mobility   of   the   form  

00 TTmaM −+=   where  M   is   the   mobility,   T   the   absolute   temperature,   a0,   and  m   are  

numerical  parameters.  a0  varies  between  3771  to  5135,  and  m  between  321  to  367.    The  results  

reveal  that  edge  dislocation  mobility   is  higher   in  the  Fe-­‐Ni  systems  compared  to  the α-­‐Fe  and  

increases  as  the  Ni  concentration  increases.  On  the  other  hand,  the  dislocation  mobility  inside  

the  Fe-­‐Cr  is  comparable  to  that  of  pure  iron  although  it  still  is  about  5%  higher.  The  higher  edge  

mobility   of   the   alloys   compared   to   the   pure   Fe   is   backed   by   experimental   observations   that  

show  a  higher  density  of  screw  dislocations  in  alloys  because  the  edge  dislocations  are  very  fast  

and  disappear  at  the  surface  of  the  specimen  (Guyot  and  Dorn,  1967;  Nadgorny,  1988).  This  is  

also  backed  by  other  simulations  of  screw  dislocations  mobility  showing  that  it  is  lower  than  the  

edge  mobility  (Gilbert  et  al.,  2011;  Marian  and  Caro,  2006)

Page 25: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 17

a)                                                                                                                                            b)                              

Figure 4. a) Dislocation-defect structure after plastic deformation. b) Stress-strain curves simulated by

DDD for iron single crystal at different defect densities (a:0, b:2×1022, c:5×1022, d: 7×1022, e: 1×1023 , f:

2×1023.)

Dislocation   mobilities   of   iron   alloys   calculated   from   molecular   dynamics   are   used   in  

conjunction  with   the  dislocation  dynamics   simulations   to   predict   the   evolution  of   dislocation  

density  as  a  function  of  alloy  and  defect  density.    The  DD  simulation  unit  cell,  shown  in  Figure  

4(a),   is   a   4.5×4.5×5.97 µm3   cube   cell   that   contains   an   initial   density   of   Frank-­‐Read   sources  

distributed   randomly  on   the  primary   (Hiratani  et  al.)   slip  planes.     In   the   simulations,  periodic  

boundary  conditions  were  imposed.    The  cell  is  loaded  in  tension  with  a  constant  strain  rate  of  

100/s.     The   effect   of   irradiation   is   accounted   for   by   mapping   into   the   DD   box   a   spatial  

distribution  of  FS   loops  with  density  ranging   from  1020   /m3  to  1024  /m3.    The   loops  are  1  to  3  

nanometers  in  radius,  and  the  radius  is  randomly  generated  to  fall  within  the  specified  interval.    

The   model   also   generates   Frank-­‐Read   sources,   represented   as   finite   dislocation   segments  

pinned  at  ends,  lying  on  (Hiratani  et  al.)  glide  planes,  and  Burgers  vectors  of  the  type  <111>.  

Dislocation   density   evolution   and   the  mobile-­‐dislocation-­‐related   CRSS   are   predicted   from  

discrete   DD.     The   dislocation   structure   shown   in   Figure   4a   is   composed  mainly   of   extended  

dislocations   of   screw   character,   resulting   from   the   fact   that   the   mobility   of   the   screw  

dislocation  is  three  orders  of  magnitude  less  than  the  edge.      As  the  dislocations  sweep  through  

Page 26: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 18 Aug 2013

the   cloud  of   the   FS   loops,   some  of   the   loops   get   annihilated,   depending  on   their   interaction  

energy  with  the  sweeping  dislocations  as  discussed  before  by  various  authors  (Ghoniem  et  al.,  

2000;  Hiratani  et  al.,  2004;  Khraishi  et  al.,  2002a).      

This  results  in  the  formation  of  defect-­‐free  channels,  and  subsequently  causes  a  drop  in  the  

flow   stress   as   deduced   from   the   stress-­‐strain   curves.     Figure   4(b)   demonstrates   the   initial  

deformation   behavior   of   pure   iron   with   different   defect   densities.     In   all   cases,   the   stress  

initially   increases   linearly  until   it   is  high  enough  for  dislocations  to  overcome   internal  barriers  

and   the   pinning   effect   of   the   defects,   which   arises   only   from   dislocation-­‐FS   loops   elastic  

interactions.       As   the   dislocations   propagate   and   interact   with   the   defects,   their   interaction  

energy  with  the  defect  at  a  critical  distance  can  cause  defect  absorption  within  the  dislocation  

core,  which,   in  turn,   leads  to  a  drop  in  stress  (Khraishi  et  al.,  2002b)  and  a  decrease  in  defect  

density.        

(a)

Page 27: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 19

(b)

(c)

Figure 5. Discrete dislocations dynamics results: Evolution of defect density (a) and dislocation density

(b) for iron alloy with 5%Ni concentrations at different initial irradiation defect density: (a:0, b:2×1022,

c:5×1022, d: 7×1022, e: 1×1023 , f: 2×1023.) , (c) evolution of total dislocation density, cross-slip segments

and dislocations junctions.

Page 28: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 20 Aug 2013

Figure   5(a)   shows   typical   DD   results   for   the   evolution   of   the   defect   density   with  

deformation.   In  all   cases,   the  defect  density   remains  unchanged  during   the  elastic   loading  as  

expected.     As   the   stress   becomes   high   enough   to   cause   the   dislocations   to   move,   the  

dislocations  interact  with  the  defects  and  some  of  them  get  annihilated,  causing  a  decrease  in  

the   defect   density.   In   the   meantime,   the   dislocation   densities   in   Fe-­‐Ni   alloys   with   different  

initial  defect  density  generally  increase  with  deformation,  as  shown  in  Figure  5(b).  Dislocations  

are  further  categorized  and  recorded  during  the  deformation  process.  Figure  5(c)  provides  the  

detailed   information   of   evolution   of   cross   slip   and   junction.   This   information  will   be   used   in  

calculating  the  dislocation  density  evolution  parameters α1-6.

4.2 CDD in Predicting Mechanical Properties of Fe Single Crystal     With   the  predicted  dislocation  density   evolution   from  DDD,   CDD   is   used   in   predicting  

the   flow   behaviors   of   Fe   single   crystals.     The   advantage   of   this   framework   is   the   physical  

meaning   of   all   the   parameters   in   the   mesoscale   model.   With   consideration   of   cross-­‐slip,  

anisotropic   Peierls   stress   for   different   slip   systems,   CDD   can   predict   the   strength   and  

deformation  behavior  of  single  crystals  with  higher  fidelity.  The  parameters  for  pure  α-­‐Fe  used  

are   listed   in   Table   1,   partially   built   upon   Lee’s   previous  works   (Lee   et   al.,   2010b;   Lim   et   al.,  

2011).  

 

Table 1 . List of parameters used in the continuum dislocation dynamics model Symbol   Denotation   Value  Μ   Shear  modulus   80GPa  Ν   Poisson’s  ratio   0.3  C11   Anisotropic  elasticity  constant   242  GPa  C12   Anisotropic  elasticity  constant   150  GPa  C44   Anisotropic  elasticity  constant   112  GPa  γ0   Reference  strain  rate   4×10-­‐5  m/s  M   Strain  rate  sensitivity   0.012  Α   Baily-­‐Hirsch  hardening  coefficient   0.4  B   Magnitude  of  Burger  vector   2.54×10-­‐10m  τ0   Peierls  stress  (internal  friction)     11.0MPa  Β   Irradiation  hardening  coefficient   0  α1   Mobile  dislocation  multiplication  coefficient   0.02  

Page 29: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 21

α2   Mobile-­‐mobile  dislocation  annihilation  coefficient   1.0  Rc   Critical  radius  for  annihilation  in  units  of  Burger  vector   15  α3   Immobilization  parameter,  mobile  to  immobile   0.002  α4   Mobilization  parameter,  mobile  to  immobile     0.002  α5   Cross-­‐slip  coefficient   0.018  α6   Mobile-­‐immobile  annihilation  coefficient   1.0  

 

One   point   should   be   emphasized   here:   the   parameters   are   either   experimentally  

measured   (such  as  μ   and  C11)  or   calculated   from   the  discrete  DD   (e.g.,   the  parameters   in   the  

mechanisms   of   dislocation   density   evolution   law,   α1,   α2,   etc.).   Along   with   the   advantages  

already  mentioned,  there  are  four  other  salient  points  in  the  proposed  framework.  The  first  is  

the  application  of  cross-­‐slip,  the  second  is  the  anisotropic  Peierls  stress,  the  third  is  the  updated  

strain   rate   sensitivity   law   with   information   of   dislocation   density,   and   the   fourth   is   the  

capability  to  predict  irradiation  hardening  by  introducing  hardening  due  to  interaction  between  

dislocation  and  defects.    

We   compared   the   CDD   prediction   results   with   the   experimental   results  measured   by  

Keh   et   al.   (Keh,   1965)   and   simulation   results   from   SCCE-­‐T   and   SCCE-­‐D.   The   CDD   parameters  

used   in   Table   2   are   from   predicted   results   using   DDD   and   lower-­‐length   scale   models.   The  

parameters  used  in  SCCE-­‐T  and  SCCE-­‐D  are  from  back-­‐fitting  the  mechanical  testing  results.  12  

(1  1  0)[1  1  1]  and  12  (1  1  2)[1  1  1]  slip  systems  in  body  center  cubic  (BCC)  crystal  systems  were  

considered  for  crystallographic  slip.  In  the  initial  state,  mobile  and  immobile  defect  density  are  

considered  the  same,  and  are  distributed  uniformly  along  24  slip  systems.    

Using  uniaxial  tension  stress  strain  curve  of  Fe  single  crystals  along  [100]  direction  as  a  

benchmark  in  SCCE-­‐T  and  SCCE-­‐D,  the  simulated  flow  curves  along  [100],  [011]  and  [-­‐348]  are  

shown  in  Figure  6.  The  process  of  back-­‐fitting  constitutive  parameters  in  SCCE-­‐T  and  SCCE-­‐D  are  

detailed   in   previous  works   (Lee   et   al.,   2010a).  Using   the  parameters   fit   from   [100]   direction,  

SCCE-­‐D   and   SCCE-­‐T   both   agree   with   experimental   data   along   [100],   even   better   than   the  

prediction  results   from  CDD.  However,  using  the  same  parameters  to  simulate  the  flow  curve  

along   [011]   direction,   SCCE-­‐D   underestimates   and   SCCE-­‐T   overestimates   the   stress.   When  

applied  on  [-­‐348]  direction,  SCCE-­‐D  overestimates  more  than  50%  of  the  experimental  results  

Page 30: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 22 Aug 2013

while  SCCE-­‐D  overestimated  more  than  100%  of  the  experimental  data.  Predicted  results  using  

CDD  agree  well  with  experimental  data  along  all  three  directions.    

       

(a)                                                                                                                                                  (b)  

               (c)  

Figure 6. Comparison of experimental stress strain curves and simulated results from SCCE-T, SCCE-D

and CDD models for iron single crystal with uniaxial tensile loading direction along (a) [100] (b) [011]

and (c) [-348] directions. The constitutive law parameters for SCCE-T and SCCE-D are back-fit to the

[100] results.

 

   On   the   other   hand,   if   the   constitutive   parameters   are   back-­‐fitted   using   the  

experimental  data  along  [-­‐348]  direction,  SCCE-­‐T  and  SCCE-­‐D  only  work  in  the  benchmark  case,  

[-­‐348]  shown  here   in  Fig.  7(c).  But  they  will  not  work   in  the  other  directions,  as  shown  in  Fig.  

Page 31: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 23

7(a)   and   (b).   The   large   deviation   demonstrates   the   limitations   of   empirical   constitutive  

equations  without  scientific  mechanisms  in  background  support.      

 

(a)                                                                                                                                                          (b)  

            (c)  

Figure 7. Comparison of experimental stress strain curves and simulated results from SCCE-T, SCCE-D and CDD models for iron single crystal with uniaxial tensile loading direction along (a) [100] (b) [011] and (c) [-348] directions. The constitutive law parameters for SCCE-T and SCCE-D are back fit to the [-348] results.  

Experimental  data  of  single  crystal   iron  demonstrated  large  behavior  differences  when  

uniaxially   stretched  along  different  directions.   The  yield   stresses  are   similar   for  all  directions,  

around   35   to   40   MPa.   Contrasting   to   the   large   strain   hardening   with   the   stress   increased  

dramatically   to   over   90MPa   along   [100]   direction,   there   is   little   strain   hardening   when  

stretched   along   [-­‐348]   direction.   This   is   due   to   the   number   of   slip   systems   activated.   Fig.   8  

Page 32: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 24 Aug 2013

shows   the   evolution   of  mobile   dislocation   density   (Fig.   8a)   and   total   dislocation   density   (Fig.  

8b).  With  the  increase  of  strain,  the  dislocation  density  along  (-­‐211)[111]   increases  with  small  

vibration  due  to  annihilation  and  transfer  to  immobile  type.  Dislocation  densities  along  all  the  

other   directions   keep   almost   constant   to   the   end.     Combined   with   the   information   from  

immobile   dislocation,   the   total   dislocation   density   increased   smoothly  with   strain,   compared  

with  the  evolution  of  mobile  dislocation  density  along  (-­‐211)[111].    

Some  parameters  used  in  CDD  may  be  measured  directly  from  experiments;  some  from  

DDD  and  MD  simulations.  Parameters  like  cross  slip  coefficient  is  a  parameter  hard  to  measure  

from   experiment,   while   difficult   to   simulate   directly   since   it   is   sensitive   to   the   dislocation  

microstructure.  It  is  the  same  to  Peierls  stress  anisotropic  factor.  A  parameter  sensitivity  study  

has  been  carried  out  to  conduct  the  comparison  of  the  variance  with  different  CDD  parameters.  

Experimental  stress  strain  curve  of  iron  single  crystal  is  used  to  verify  the  choice  of  parameters.  

The  table  below  shows  a  part  of  the  parameter  fit  results  we  obtained  for  the  variance:    

 

Table 2. Variance of the simulation results from experimental stress strain curve for two CDD parameters

parameters  

Peierls  stress  anisotropic  factor=1   1.5   2   2.5   3.5   4   4.5  

cross  slip  coefficient=0   0.514   0.6211   0.6153   0.6056   0.6056   0.6056   0.6056  

0.004   0.5094   0.5353   0.4708   0.4641   0.4637   0.4626   0.4655  0.008   0.4407   0.3864   0.3239   0.3189   0.3177   0.3229   0.3199  0.012   0.2976   0.2138   0.1749   0.1861   0.1739   0.1725   0.1779  0.016   0.1284   0.0562   0.064   0.0523   0.0434   0.0472   0.049  0.02   0.0525   0.0334   0.0433   0.0448   0.0436   0.0397   0.0343  

 

For  a  robust  simulation,  cross  lip  coefficient  of  0.02  and  Peierls  stress  anisotropic  factor  

of  1  are  the  best  from  the  simulated  results  demonstrated  in  Table  2.  

 

Page 33: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 25

4.3 Prediction of Deformation Behavior and Texture Evolution using CDD-CP

  Constitutive   law   based   on   dislocation   density   evolution   predicted   from   continuum  

dislocation   dynamics   is   introduced   into   the   viscoplasticity   model   to   solve   the   boundary  

condition   loading   stress   and   strain.   This   is   in   turn   passed   into   the   continuum   dislocation  

dynamics   model   to   solve   the   evolution   of   mobile   and   immobile   dislocation   density   in   each  

crystal  and  the  corresponding  slip  resistance  for  each  slip  system.    

  CDD-­‐CP   is   applied   in   a   polycrystalline   iron   alloy   with   bcc   crystal   structure   and   random  

texture,  composed  of  100  crystals.  (100),  (110)  and  (111)  pole  figures  of  the  selected  system  is  

demonstrated  in  Fig.  8.  The  maximum  texture  intensity  in  them  is  lower  than  1.3  times  random.    

             

Figure 8. (a) 100, (b) 110, and (c) 111 pole figures of simulated bcc iron sample with random texture.

 

  Under  uniaxial  tension,  the  predicted  stress  strain  curve  up  to  a  strain  of  10%  is  presented  

below,  with  features  of  strain  hardening  and  saturation  hardening  captured.    

  The   stress   flow   in   Fig.   9   demonstrated   yielding   around   a   strain   of   0.02.   After   that,   strain  

hardening  started  to  saturate.    Texture  evolution  during  uniaxial  tension  is  shown  in  Fig.  10:    

Page 34: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 26 Aug 2013

 

Figure 9. Predicted stress strain curve of the random texture iron using CDD-CP model.  

             

(a)  

       

(b)  

Figure 10. Predicted (100), (110) and (111) pole figures of random bcc iron alloys under uniaxial tension

at strain of (a) 2% and (b) 10%.

0

10

20

30

40

50

60

70

0 0.02 0.04 0.06 0.08 0.1

true

stre

ss (M

Pa)

true plastic strain

stress strain curve of polycrystalline iron alloy predicted

TDMD

Page 35: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 27

 

  In   the   (100)  pole   figure,   a   texture   component  with   (001)  aligned  along  machine  direction  

(tensile  here)  appeared  at  a  strain  of  2%  and  strengthened  at  10%.    

  A   simulated   microstructure   with   single   crystal   grid   was   generated   with   random   texture.  

Each   grid   represented   a   single   crystal   with   different   orientation.   The   heterogeneous  

microstructure  introduce  different  strain  field,  with  a  strain  gradient  field.  Below  is  a  work  flow  

for  the  closely  coupled  crystal  plasticity  model  and  CDD.  In  the  gradient  plasticity  CDD  informed  

CP,   the   feed   from   CP   has   strain   gradient   added  while   the   return   from   CDD   to   CP   has  more  

information  on  the  GND,  SSD  and  updated  constitutive  law.    

 

(a)  

 

(b)  

Figure 11. Scheme of data flow in closely coupled CDD and CP (a) without (b) with long distance interaction considered.  

 

The  simulation  results  for  the  strain  of  a  random  microstructure  are  illustrated  in  the  figure  

below.  There  are  10×10  single  crystals,  the  strain  of  each  grain,  or  grid,  is  represented  by  a  color  

grain  when  the  sample  is  uniaxial  tensioned  to  a  different  effective  strain  in  Fig.  12.    

CDD CP

Constitutive  law,  dislocation  density

Stress,  strain,  boundary  condition

Page 36: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 28 Aug 2013

 

(a)                                                                                                                            (b)                                                                                            (c)  

(d)                                                                                                                          (e)                                                                                                      (f)                                                                                            

Figure 12. Strain field of random textured polycrystalline agglomerate after uniaxial tensioned to a strain of (a) 0.1, (b) 0.2 (c) 0.3 (d) 0.5 (e) 0.8 and (f) 1.0.  

Correspondingly,  the  strain  gradient  calculated  from  the  above  strain  field  is  illustrated  in  the  

figure  below.    

(a)                                                                                                                        (b)                                                                                                    (c)  

Page 37: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 29

(d)                                                                                                                (e)                                                                                                                      (f)                                                                                                        

Figure 13. Strain gradient field of random textured polycrystalline agglomerate after uniaxial tensioned to a strain of (a) 0.1, (b) 0.2 (c) 0.3 (d) 0.5 (e) 0.8 and (f) 1.0    

When  a   large   system  with  2000  crystals,   a  grid  of  40×50,   is  used,   the  distribution  of   strain   is  

more  uniform,  as  shown  in  figure  below.    

(a)                                                                                                                      (b)                                                                                                                (c)  

(d)                                                                                                              (e)                                                                                                                    (f)                        

Figure 14. Strain field of random textured polycrystalline agglomerate with 2000 grains after uniaxial tensioned to a strain of (a) 0.1, (b) 0.2 (c) 0.3 (d) 0.5 (e) 0.8 and (f) 1.0  

 

The  responding  strain  field  calculated  is  illustrated  below:    

Page 38: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 30 Aug 2013

(a)                                                                                                                    (b)                                                                                                  (c)  

(d)                                                                                                                            (e)                                                                                                                  (f)                                                                                                        

Figure 15. Strain gradient field of random textured polycrystalline agglomerate with 2000 grains after uniaxial tensioned to a strain of (a) 0.1, (b)0.2 (c) 0.3 (d) 0.5 (e) 0.8 and (f) 1.0

 

Further  comparison  with  experimental  data  is  necessary  for  validation.    

5. IMPLEMENTATION OF CRYSTAL PLASTICITY IN MARMOT

  A   simplified   version   of   the   CDD   model   was   also   implemented   as   a   material   calls  

within   MARMOT,   a   multi-­‐physics,   finite   element   simulation   tool   focused   on   the   mesoscale.    

MARMOT  is  implemented  using  the  MOOSE  framework  from  INL  (Tonks,  2012).  

As  discussed  in  Section  2,  our  constitutive  law  for  the  shear  strain  rate  is  based  on  the  

Orowan  relation  (Orowan,  1940):  

ααα ργ gMbv=   (30)  

Page 39: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 31

where  αρM   is  the  mobile  dislocation  density  of  slip  system  α,  b  is  the  Burgers  vector,  and   α

gv is  

the  average  dislocation  glide  velocity  in  slip  system  α.    

  As   in   previously   developed   models,   for   our   simplified   CDD   model   the   dislocation   glide  

velocity   αgv ,   is  expressed   in  a  power   law  of  resolved  shear  stress   ατ   similar  with  shear  strain  

rate  of  slip  system  α,   ατ 0 :    

( )αα

αα τ

ττ signvv

m

g

1

00=   (31)  

  It   should   be   noted,   this   is   a   deviation   from   our   CDD  model   implementation   in   the   VPSC  

framework.      The  dislocation  glide  velocity  expression  shown  in  Eq.  (10)  will  be  implemented  in  

future  work.    As  shown  in  Eq.  (11),  the  slip  resistance  of  slip  system  α,   ατ 0 ,   is  a  summation  of  

reference   resistance   τ0   from   lattice   friction   stress   for  moving   dislocations;   resistance   due   to  

dislocation-­‐defect   interaction   τdα,   mainly   from   irradiation;   and   resistance   from   dislocation  

hardening   ατ dh :    

ααα ττττ dhd ++= 00   (32)    

  The  dislocation  hardening  term,   ατ dh  ,  is  the  resistance  of  statistically  stored  dislocations  on  

each  slip  system  from  moving  dislocation  on  the  system  n.    

m

m

mdh b ρµατ αα ∑ Ω=

  (33)  

where   mαΩ   is   the   interaction   matrix   of   the   slip   systems   and   ρm   is   the   summation   of   the  

mobile   and   immobile   dislocation   densities.   For   this   initial   simplified   implementation,   the  

dislocation  density  term  excludes  the  strain  gradient  influence.  

  For   the  VPSC   implementation,  defects  are  assumed  to  be  distributed  randomly   for  all   slip  

systems   and   a   modified   dispersed   barrier   hardening   model   (Eq.   14)   is   used   to   express  

irradiation   resistance   ατ d   from   dislocation-­‐defect   interaction.     For   this   simplified  

Page 40: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 32 Aug 2013

implementation,   the  defect  density  and  defect   size  are  held   constant  and  available  as  model  

inputs.    Therefore   ατ d  ,  becomes  constant  for  a  given  simulation.  

  The   statistically   stored   dislocations   required   by   the   dislocation   hardening   term   can   be  

generally   divided   into   two   types,  mobile   and   immobile,   as   shown   in   Eq.   (16).     The   evolution  

equations   for   both   types   of   dislocations   are   shown   in   Eq.   (23)   and   (24),   respectively.     See  

Section  2  for  further  discussion  of  the  evolution  equations.    

5.1 MARMOT Implementation

  The   CDD   implementation   in   MARMOT   begins   from   the   strong   form   of   the   governing  

equations  on  the  domain  Ω  and  boundary  Γ = ΓliΓgi  as  follows:    

  ∇⋅σ + b = 0 in Ω                                 (34)    

  u = g in Γg   (35)    

  σ ⋅n = l in Γl   (36)    

where  σ is  the  Cauchy  stress  tensor,   u  is  the  displacement  vector,   b  is  the  body  force,   n  is  

the  unit  normal  to  the  boundary,   g  is  the  prescribed  displacement  on  the  boundary,  and   l  is  

the  prescribed  traction  on  the  boundary.    The  weak  form  of  the  residual  becomes:    

  ℜ = σ ,∇φm( )− l,φm − b,φm( ) = 0                       (37)    

where   ⋅( )   and   ⋅   represent   volume   and   boundary   integrals,   respectively.     The   Jacobian  

required   by   Newton’s   method   for   solving   the   residual   equation   can   be   expressed   as   the  

following,  when  ignoring  the  boundary  terms:    

 ℑ =

∂σ∂∇u

,∇φm$

%&

'

()                                 (38)  

Page 41: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 33

  The  stress  is  a  nonlinear  function  of  the  strain  during  plastic  deformation.    This  function  is  

defined  by  crystal  plasticity  theory  (see  section  2,  Eq.  1-­‐5)  and  our  simplified  CDD  constitutive  

model  as  described  in  the  previous  section.  

  There  are  a  series  of  material  base  classes  available  through  MARMOT.    The  CDD  model  was  

implemented  using  the  FiniteStrainMaterial  base  class  that  is  part  of  TensorMechanicsMaterial  

implemented  in  ELK,  another  component  of  MOOSE.    All  material  base  classes  provide  methods  

for   initializing   state   properties,   calculating   incremental   strain   updates,   and   calculating   the  

current   stress.     The   CDD   implementation   utilizes   the   existing   strain   update   method   while  

overriding  the  initialization  and  stress  calculation  methods.  

  The   method   computeStrain   follows   the   algorithm   outlined   by   Rashid   (Rashid,   1993)   for  

calculating   the   incremental  deformation  gradient.     The  method  computeQpStress   is   left  pure  

virtual   for   any   material   that   inherits   to   override   with   the   desired   constitutive   relationship.    

Finally,   the   method   initQpStatefulProperties   can   be   overridden   and   expanded   to   initialize  

additional  state  variables  as  needed.  

  The   computeQpStress   implementation   used   here   follows   the   patterns   seen   elsewhere   in  

MARMOT.      

ε e = εne +Δε

Dp = εnp

solveStressResidual(σ n,Δε,Cijkl,Dn+1p ,σ n+1)

εn+1p = RDn+1

p RT

σ n+1 = Rσ n+1RT

  (39)  

where  the  elastic  strain,  𝜀!,  and  plastic  strain,  𝜀!,  are  first  updated.    Then  the  stress  residual  is  

solved.    This  method  updates  values  of   the  plastic   strain   rate,  𝐷!!!! ,   and  stress,  𝜎!!!.  Before  

exiting,   rotations   are   applied.     The  bulk  of   the   constitutive  model   is   implemented  within   the  

method  solveStressResidual.      

  solveStressResidual  integrates  the  CDD  constitutive  model  in  an  incremental  manner  using  a  

Newton   Raphson   implementation.     Given   the   complexity   of   the   constitutive   model   this   is  

Page 42: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 34 Aug 2013

implemented   in  two   levels.    An   internal   loop  solves  the  stress  residual  while  an  external   loop  

updates  and  solves  the  slip  resistance  residual.  

5.2 Plan for Strain Gradient Addition to MARMOT Implementation  

  The   incorporation   of   a   strain   gradient   term   to   the   CDD   model   will   enable   this   crystal  

plasticity  model   to  more  accurately  capture  the  effects  of   long-­‐range  dislocation   interactions.    

While   the   evolution   equations   for   immobile   dislocations   presented   above   account   for   short-­‐

range  interactions  among  dislocations,  these  evolution  equations  do  not  at  present  include  the  

effects  of  long-­‐range  interactions.    Long-­‐range  forces  also  act  to  impede  dislocation  motion.    In  

the  vein  of   the  work  of  Fleck  and  Hutchinson  (Fleck  and  Hutchinson,  1997;  Fleck  et  al.,  1994;  

Fleck  and  Willis,  2009a),  and  following  the  work  of  Zbib  and  Aifantis   (Zbib  and  Aifantis,  1992,  

2003),   we   introduce   the   use   of   a   strain   gradient   term   to   capture   long-­‐range   geometrically  

necessary  dislocations  (GNDs).        

  Long-­‐range   forces   resulting   from   GNDs   are   an   important   source   of   hardening.     In   the  

formulation  used  here,   the  gradient  of   the  plastic  strain  with  respect  to  both  the  normal  and  

tangential   in-­‐plane   directions   is   calculated,   representing   edge   and   screw  GNDs,   respectively.    

The   plastic   strain   values   are   equivalent   to   the   slip   in   each   crystallographic   slip   system.    

Multiplied  by  a  length  scale  term,  these  strain  gradient  values  are  used  to  update  the  mean  free  

dislocation  glide  path  term:  

ρIα =

Δγα

bLα, where Lα = c*

ωαβ ρIβ + ρGND

β( )β

∑   (40)  

where,   𝐿!   is   the   updated   mean   free   path   term.     The   mean   free   path   term   is   used   in   the  

evolution  of  immobile  dislocation  equations.    Inclusion  of  the  strain  gradient  term  allows  for  a  

more  accurate  hardening  model.      

  Numerically  the  strain  gradient  term  is  acquired  as  the  derivative  of  strain  values  collected  

at  the  integration  points  of  several  elements.     It   is  critically   important  that  the  strain  gradient  

term  depend  on   strain   values   from  more   than  a   single  element.    Methods   that   calculate   the  

Page 43: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 35

strain  gradient  within  a  single  element  through  a  second  derivative  of  the  shape  functions,  such  

as   work   by   Busso   et.al.   (Busso   et   al.,   2000),   fail   to   capture   the   long-­‐range   nature   of   GND  

interactions.    While  these  methods  are  computationally  compact,  these  formulations  limit  the  

range  of  GND  interactions.    The  potential  for  the  introduction  of  numerical  artifacts  also  exists  

within  these  single  element  methods.    Furthermore  these  methods,  which  calculate  the  strain  

gradient  within  a  single  element,  produce  a  mesh-­‐dependent  strain  gradient  value.      

  Employed  here  is  a  formulation  that  links  the  strain  gradient  term  to  strain  values  across  a  

cumulative  volume  of  elements.    The  use  of  multiple  elements   in  the  calculation  of  the  strain  

gradient  term  enables  a  mesh-­‐independent  strain  gradient:    the  long-­‐range  effects  captured  in  

this  manner  are  not  bound  by  the  size  of  elements.      

  Concerns   about   the   continuity   of   the   strain   are   an   issue   with   which   the   strain   gradient  

calculation  must  deal.    Previous  work  in  the  field  has  made  use  of  meshless  methods  or  higher  

order   (C1)   formulations   to   reach   across   element   boundaries.     As   discussed   below   in   greater  

detail,  care  is  taken  to  address  continuity  when  using  strain  values  from  multiple  elements.  

  Original   efforts   to   implement   a   strain   gradient   term   into   the   CDD   model   focused   on  

leveraging   previous   work   within   the   context   of   an   ABAQUS   UMAT   at   Washington   State  

University   (WSU).     Unfortunately   direct   porting   of   the   strain   gradient   calculation   from   the  

UMAT   was   not   possible:   the   absence   of   key   utility   functions   in   MOOSE   and   the   heavy  

computational   effort   required   by   the   WSU   UMAT   method   forced   the   exploration   of   C1  

formulations.     Thermodynamic   consistency  and   straightforward   integration  with  existing  CDD  

formulations   were   of   primary   consideration   in   selecting   and   deriving   an   appropriate   C1  

formulation.     For   developmental   ease,   the   isotropic   hardening   small   strain   C1   formulation   is  

presented  below.  

  The  previous  implementation  utilized  a  moving  weighted  least  squares  regression  method.    

Through   the   use   of   a   computationally   expensive   ABAQUS   utility   function,   strain   values   from  

across   multiple   elements   are   used   to   calculate   the   strain   gradient.     Integration   points   from  

multiple   elements   are   selected  within   a   radius   of   capture,   and   the   strain   values   from   these  

selected  integration  points  are  numerically  collected  with  the  utility  function.    These  collected  

Page 44: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 36 Aug 2013

strain   values   are   fitted   to   a   second   order   polynomial   curve   using   a  Moving  Weighted   Least  

Squares  Regression  (MWLSR);  the  moving  description  refers  to  the  use  of  the  radius  of  capture  

to  select  integration  points.    For  each  integration  point  in  the  model  a  new  selection  process  is  

performed   by   sweeping   a   sphere,   defined   by   the   radius   of   capture,   around   the   integration  

point.    

  Following   the  work  of  Abu  Al-­‐Rub  et  al.   (Abu  Al-­‐Rub  et  al.,   2007),   a  weighting   function   is  

used   to   assign  more   importance   to   the   fit   of   strain   values   from   integration   points   near   the  

center  of  the  sphere.    As  a  result  of  this  method  strain  values  within  the  same  central  element  

are  weighted  more  heavily  by  the  MWLSR  method  than  strain  values  from  outer  elements.    The  

reasoning  of  the  use  of  the  weighting  function  is  threefold:  1)  the  weighting  function  provides  a  

more  stable  numerical  solution,  2)  the  weighting  function  in  some  way  mimics  the  1 𝑟  behavior  

of  long-­‐range  dislocation  interactions,  and  3)  the  weighting  function  provides  a  limited  ability  to  

address   continuity   issues.     As   noted   by   de   Borst   et   al.   (De   Borst   and   Pamin,   1996),   only   the  

discretization   of   the   gradient   term   requires   C1-­‐continuous   shape   functions.     In   the   vein   of  

meshless   methods,   the   weighting   function   is   an   attempt   to   provide   continuity   in   the   strain  

gradient  calculation  despite  the  use  of  strain  values  from  several  C0  elements.  

  The  derivative  of  the  second-­‐order  MWLSR  produced  curve,  with  respect  to  the  normal  and  

tangent   directions,   is   taken   as   the   strain   gradient   for   each   of   the   slip   systems   in   the   crystal.    

Using  this  method  two  strain  gradient  terms  are  calculated  for  each  slip  system,  increasing  the  

computational  effort  required.    

  This  procedure,  used  to  calculate  the  strain  gradient  in  ABAQUS,  is  extremely  computational  

expensive.    The  obvious  main  source  of  computational  load  is  the  MWLSR,  which  is  completed  

twelve   times   for   every   integration   point   in   the  mesh  of   an   FCC   crystal   system.     Contributing  

factors  also  include  the  calculation  of  selected  integration  points  via  the  radius  of  capture  and  

the  use  of  the  utility  function  to  call  the  strain  values  at  all  of  the  selected  integration  points.    

The  error  introduced  by  the  MWLSR  process  should  also  not  be  disregarded;  this  error  is  carried  

forward  into  the  crystal  hardening.        

Page 45: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 37

  Although  the  strain  gradient  term  would  be  the  most  useful   in  polycrystalline  simulations,  

the  computational  effort  required  by  this  implementation  severely  limits  the  number  of  crystals  

that  can  be  included  in  an  ABAQUS  simulation.      

  In  light  of  these  complications  with  the  strain  gradient  calculation  method  used  in  ABAQUS,  

we  elected  to  explore  the  option  of  a  higher  order  C1  formulation.    The  decision  to  move  to  the  

C1  formulation  was  affirmed  by  the  absence  of  a  MOOSE  utility  function  to  numerically  collect  

strain   values   from   several   integration   points.   The   higher   order   C1   formulation   proposed   for  

implementation   into   the   CDD   model   in   Marmot   is   more   strongly   rooted   in   thermodynamic  

principles.    Following  the  strain  gradient  reformulation  done  by  Abu  Al-­‐Rub,  this  C1  formulation  

is   admissible   under   the   Clausius-­‐Duhem   Inequality   when   non-­‐local   quantities   are   properly  

considered.      

  Since  the  C1  formulation  is  continuous  in  both  displacement  and  strain,  this  formulation  has  

the   potential   to   be  more   accurate   than  MWLSR  method   currently   employed   in   the   ABAQUS  

UMAT  at  WSU.    Since  the  strain  is  continuous  across  neighboring  elements,  it  is  not  necessary  

to   use   a   weighting   function   to   force   continuity   for   the   strain   gradient   calculation.     The   C1  

method  could  also  eliminate  the  error  resulting  from  the  curve-­‐fitting,  if  the  additional  degrees  

of  freedom  (moments)  are  adequately  treated.  

  In  the  literature  comparisons  (Huang  et  al.,  2004)  of  C0  and  higher  order  formulations  have  

noted   that   the   primary   difference   between   these   two   categories   of   formulations   is   seen   at  

interfaces.    Based  on  perturbation  work  performed  by   (Shu  et  al.,  2001),   the  effect  of  higher  

order   formulations   is   evident  only   in   a   thin   layer  near  boundaries.    While  many  groups  have  

often   neglected   this   thin   boundary   layer,   capture   of   this   boundary   layer   could   prove   to   be  

useful  in  future  multi-­‐scale  modeling  efforts.    We  would  argue  that  use  of  the  more  complex  C1  

formulation  is  a  responsible  choice  for  enabling  future  model  development.  

  Finally,   and   critically,   the   C1   formulation  would   not   require   the   use   of   a   computationally  

intensive  utility  function  to  call  strain  values  from  multiple  elements.    Rather  the  C1  formulation  

would   make   use   of   the   additional   degrees   of   freedom   available   in   the   third-­‐order   Hermite  

element  to  calculate  the  strain  gradient.  

Page 46: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 38 Aug 2013

  The  challenges  associated  with  a  C1  formulation  should  not  be  overlooked.    As  discussed  by    

Zhang   et   al.   (Zhang   et   al.,   2013)   in   a   phase   field   application,   a   C1   formulation   significantly  

increases   the   stiffness   matrix   bandwidth.     This   increased   bandwidth   results   in   a   longer  

simulation  wall  clock  time.    At  present,  only  a  limited  number  of  hermite  elements  are  available  

in   the   libMesh   library;   therefore,   only   simple   geometries   can   be   studied  with   a   higher   order  

formulation  for  now.    Proper  treatment  of  the  higher  order  terms  introduced  in  a  C1-­‐continuous  

yield   condition   is   not   trivial.     Any   development   work   considering   a   C1   formulation   should  

carefully  weight  the  potential  increased  accuracy  against  the  certain  increase  in  computational  

expense.  

5.2.1 Theoretical Overview of Higher Order Strain Gradient Formulation

  A  brief  overview  of   the  theory  behind  the  proposed  C1   formulation  to  calculate  the  strain  

gradient   is   presented   here.     Several   excellent   reviews   of   the   current   field   of   strain   gradient  

work   are   available   in   the   literature   (Abu   Al-­‐Rub   et   al.,   2009;   Evers   et   al.,   2004;   Fleck   and  

Hutchinson,   1997;   Huang   et   al.,   2004;   Roters   et   al.,   2010);   however,   we   only   discuss   key  

concepts  for  brevity's  sake.  

  We  motivate  the  use  of   the  strain  gradient  to  account   for  GNDs  through  the  definition  of  

the  Nye's   tensor   (Arsenlis   and  Parks,   1999;  Bassani,   2001;  Nye,   1953).     The  Nye's   dislocation  

density  tensor  is  a  general  representation  of  the  i-­‐component  of  the  net  Burger's  vector  related  

to  the  GNDs  with  j  direction:    

    αij = ρGNDβ

β∑ bi

βt jβ                                   (41)  

 

,  where  𝜌!"#!  is  the  GND  density,  𝑏!

!  is  the  Burger's  vector,  and  𝑡!!  is  the  tangent  unit  vector  for  

the  ##  slip  system.    The  use  of  the  generalized  Nye's  tensor  allows  for  the  accurate  non-­‐uniform  

distribution   of   GNDs   through   the   crystal   geometry.     Following   (Arsenlis   and   Parks,   1999;  

Bassani,   2001;   Fleck   and   Hutchinson,   1997),   the   definition   for   the   Nye's   dislocation   density  

Page 47: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 39

tensor   can   be   written   as   a   function   of   the   second   derivative   of   displacement   through  

application  of  the  Stokes'  theorem.    

αij = ejklui,lkp     (42)  

  Because   of   the   choice   to   use   the   Hermite   third-­‐order   element,   the   second   derivative   of  

displacement  ui,lkp  could  be  accessed  directly  via  the  second  derivative  variable  class  in  MOOSE.    

However,  to  ensure  thermodynamic  consistency,  the  second  derivative  of  displacement  can  be  

related  to  an  effective  plastic  strain  variable  through  the  plastic  strain  

p = 23εijp εij

p =23uijp uij

p

    (43)  

  Substituting  the  definition  of  the  effective  plastic  strain  from  Eq.  43   into  Eq  42,  we  derive  

the  Nye's  dislocation  density  tensor  as  a  function  of  effective  plastic  strain  

    αij = pkβ

β∑ ejklµil

β                                   (44)  

as   in   Gao   et.al.   (Gao   et   al.,   1999).   The   introduction   of   the   effective   strain   gradient   to  

incorporate   additional   isotropic   hardening   has   been   employed   by   several   groups   in   various  

forms  (Acharya  and  Bassani,  2000;  Muhlhaus  and  Aifantis,  1991;  Polizzotto  et  al.,  1998).      Gurtin  

(Gurtin,   2000,   2003)   treated   dependence   on   plastic   strain   gradients   through   microforce  

balances  and  supplemented  classical  boundary  conditions  with  non-­‐local  boundary  conditions  

from  the  flow  rule.  

 

Within   the   CDD  model   represented   by   equation   Eq.   40,   the   scalar   accumulation   of   the  GND  

density   is  used.    By   taking   the   square   root  of   the   square  of  equations  Eq.  41  and  Eq.  44,  we  

propose   that   the   accumulated   density   of   GNDs   can   be   calculated   from   the   effective   plastic  

strain  by  setting  these  two  equations  equal  to  each  other:    

α = αijαij = bρGND = ρ,kβρ,k

β

β

∑ ,     (45)  

Page 48: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 40 Aug 2013

when   interactions   among   dislocations   on   different   slip   systems   are   neglected.     A   similar  

approach   to   an   effective   strain   gradient   is   employed   by   Gao   (Gao   et   al.,   1999).     Eq.   45  

demonstrates   the   calculation   of   the   density   of   the   GNDS   from   the   gradient   of   the   effective  

strain.     This   calculated   effective   GND   density   can   then   be   used   to   update   the   mean   free  

dislocation  glide  path   (Eq.  40  within   the   larger  CDD  model.     The  use  of  an  accumulated  GND  

density  value  is  in  contrast  to  the  tensor  approach  used  by  Akasheh  et.al.  (Akasheh,  2007  #100)  

although  this  difference  in  approach  should  be  evident  only  in  the  numerical  implementation.  

  The  effective  strain  gradient  model  we  use  here,  differs  from  previous  approaches  (Acharya  

and  Bassani,  2000;  Muhlhaus  and  Aifantis,  1991;  Polizzotto  et  al.,  1998)  in  the  inclusion  of  the  

effective  strain  gradient  in  the  internal  power  expression.    The  principle  of  virtual  power  is  used  

to  derive  the  microforce  balance  in  the  vein  of  Gurtin  (Gurtin,  2003).        

  Considering   higher   order   variables,   introduced   as   the   work   conjugate   to   the   gradient   of  

effective  strain  as  done  by  Shu  et  al.  (Shu  et  al.,  2001),  the  virtual  power  balance  is  written  for  a  

body  V.    

σ ij, jV∫ δ uidV + Ti −σ ijn j( )

∂V∫ δ uidS + τ ijNij − R+Qk,k( )

V∫ δ pdV + m−Qknk( )

∂V∫ δ pdS = 0

    (46)  

  In  this  expression  N   is  the  flow  direction,  R  represents  the  nonlocal  dislocation  drag  stress  

related   to   isotropic   hardening,   and   Q   is   the   higher   order   nonlocal   work   conjugate   of   the  

effective   strain  gradient.     This   virtual  power  balance  expression   is  based  on   the  concept   that  

power  expended  can  be  associated  with  a  force  system;  therefore,   independent  treatment  of  

the  coupling  of  the  nonlocal  variables  may  not  be  needed.    

  Following  the  usual  treatment,  the  boundary  conditions  can  be  determined  from  the  virtual  

power  balance  expression  by  requiring  that  variational  displacement  and  effective  strain  (u  and  

p)   may   be   arbitrarily   specified.     On   the   macroscopic   level   the   classical   boundary   conditions  

remain  unchanged:    

σ ij,i = 0 and Ti =σ ijn j     (47)  

Page 49: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 41

  Additionally   two   nonlocal   boundary   conditions   also   appear:     the   nonlocal   microforce  

condition  

τ ijNij = R−Qk,k     (48)  

and  the  microtraction  bound  condition  

m =Qknk     (49)  

  The   nonlocal   microforce   boundary   condition   may   be   considered   as   the   nonlocal   yield  

condition,   following  Gurtin   (Gurtin,  2003),  and  a  nonlocal  application  of   the  Clausius-­‐Duhmen  

inequality   may   be   used   demonstrate   thermodynamic   admissibility   of   the   associated  

constitutive   equations   (Abu   Al-­‐Rub   et   al.,   2007).     The   microtraction   boundary   condition   is  

considered  to  represent  the  interaction  of  long-­‐range  dislocation  forces  across  interfaces,  such  

as  the  grain  boundaries.  

  The  use  of   a  C1   formulation   to   incorporate   the  effects  of   long-­‐range  dislocations   into   the  

CDD  model  is  proposed  as  a  solution  to  the  numerical  challenges  and  mathematical  limitations  

of  the  C0  formulation  currently  employed  within  the  WSU  ABAQUS  UMAT  subroutine.    Although  

this  proposed  C1   formulation   is  not  without   its  own  numerical   implementation  concerns,   the  

potential  to  capture  the  effects  of  long  range  GND  densities  is  exciting  

ACKNOWLEDGEMENTS  

This   work   was   funded   by   DOE’s   Nuclear   Energy   Advanced   Modeling   and   Simulation  

(NEAMS)   program   at   Pacific   Northwest   National   Laboratory   (PNNL).     PNNL   is   operated   by  

Battelle  for  the  DOE  under  contract  No.  DE-­‐AC05-­‐76RL01830.  

Page 50: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 42 Aug 2013

REFERENCES Abu  Al-­‐Rub,  R.K.,  Voyiadjis,  G.Z.,  Aifantis,   E.C.,  2009.  On   the   thermodynamics  of  higher-­‐order  gradient   plasticity   for   size-­‐effects   at   the   micron   and   submicron   length   scales.   International  Journal  of  Materials  &  Product  Technology  34,  172-­‐187.  

Abu  Al-­‐Rub,  R.K.,   Voyiadjis,  G.Z.,   Bammann,  D.J.,   2007.  A   thermodynamic  based  higher-­‐order  gradient  theory  for  size  dependent  plasticity.  International  Journal  of  Solids  and  Structures  44,  2888-­‐2923.  

Acharya,  A.,  Bassani,  J.L.,  2000.  Lattice  incompatibility  and  a  gradient  theory  of  crystal  plasticity.  Journal  of  the  Mechanics  and  Physics  of  Solids  48,  1565-­‐1595.  

Alankar,   A.,   Field,   D.P.,   Zbib,   H.M.,   2012a.   Explicit   incorporation   of   cross-­‐slip   in   a   dislocation  density-­‐based  crystal  plasticity  model.  Philosophical  Magazine  92,  3084-­‐3100.  

Alankar,   A.,   Mastorakos,   I.N.,   Field,   D.P.,   Zbib,   H.M.,   2012b.   Determination   of   Dislocation  Interaction   Strengths   Using   Discrete   Dislocation   Dynamics   of   Curved   Dislocations.   Journal   of  Engineering  Materials  and  Technology  134,  021018.  

Arnold,   S.,   Saleeb,   A.F.,   1994.   On   the   thermodynamic   framework   of   generalized   coupled  thermoelastic-­‐viscoplastic-­‐damage  modeling.  International  Journal  of  Plasticity  10,  263-­‐278.  

Arsenlis,   A.,   Parks,   D.M.,   1999.   Crystallographic   aspects   of   geometrically-­‐necessary   and  statistically-­‐stored  dislocation  density.  Acta  Materialia  47,  1597-­‐1611.  

Arsenlis,  A.,  Parks,  D.M.,  2002.  Modeling  the  evolution  of  crystallographic  dislocation  density  in  crystal  plasticity.  Journal  of  the  Mechanics  and  Physics  of  Solids  50,  1979-­‐2010.  

Asaro,  R.J.,  1983.  Micromechanics  of  crystals  and  polycrystals.  Advances   in  applied  mechanics  23,  1-­‐115.  

Asaro,  R.J.,  Needleman,  A.,  1985.  Texture  development  and  strain  hardening  in  rate  dependent  polycrystals.  Acta  metallurgica  33,  923-­‐953.  

Asaro,  R.J.,  Rice,  J.,  1977.  Strain  localization  in  ductile  single  crystals.  Journal  of  the  Mechanics  and  Physics  of  Solids  25,  309-­‐338.  

Bassani,   J.L.,   2001.   Incompatibility   and   a   simple   gradient   theory   of   plasticity.   Journal   of   the  Mechanics  and  Physics  of  Solids  49,  1983-­‐1996.  

Bitzek,   E.,   Brandl,   C.,   Derlet,   P.,   Van   Swygenhoven,   H.,   2008.   Dislocation   cross-­‐slip   in  nanocrystalline  fcc  metals.  Physical  review  letters  100,  235501.  

Bonny,   G.,   Pasianot,   C.,   Malerba,   L.,   2009.   e-­‐Ni   many-­‐body   potential   for   metallurgical  applications.  Modelling  and  Simulation  in  Materials  Science  and  Engineering  17,  075005.  

Busso,   E.P.,  Meissonnier,   F.T.,   O'Dowd,   N.P.,   2000.   Gradient-­‐dependent   deformation   of   two-­‐phase  single  crystals.  Journal  of  the  Mechanics  and  Physics  of  Solids  48,  2333-­‐2361.  

Canova,  G.,  Brechet,  Y.,  Kubin,  L.P.,  Devincre,  B.,  Pontikis,  V.,  Condat,  M.,  1993.  3D  Simulation  of  Dislocation   Motion   on   a   Lattice:   Application   to   the   Yield   Surface   of   Single   Crystals.  Microstructures  and  Physical  Properties  (ed.  J.  Rabiet),  CH-­‐Transtech.  

Page 51: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 43

Daw,  M.,  Baskes,  M.,  1983.  Embedded-­‐atom  method:  Derivation  and  application  to  impurities,  surfaces,  and  other  defects  in  metals.  Physical  Review  B  29,  6443-­‐6453.  

De  Borst,  R.,  Pamin,  J.,  1996.  SOME  NOVEL  DEVELOPMENTS  IN  FINITE  ELEMENT  PROCEDURES  FOR   GRADIENT-­‐DEPENDENT   PLASTICITY.   International   Journal   for   Numerical   Methods   in  Engineering  39,  2477-­‐2505.  

Devincre,   B.,   Hoc,   T.,   Kubin,   L.,   2008.   Dislocation   mean   free   paths   and   strain   hardening   of  crystals.  Science  320,  1745-­‐1748.  

Diaz   de   la   Rubia,   T.,   Zbib,  H.M.,   Victoria,  M.,  Wright,   A.,   Khraishi,   T.,   Caturla,  M.,   2000.   Flow  Localization  in  Irradiated  Materials:  A  Multiscale  Modeling  Approach.  Nature  406,  871-­‐874.  

Evans,   A.G.,   Hutchinson,   J.W.,   2009.   A   critical   assessment   of   theories   of   strain   gradient  plasticity.  Acta  Materialia  57,  1675-­‐1688.  

Evers,   L.P.,   Brekelmans,  W.A.M.,  Geers,  M.G.D.,   2004.  Non-­‐local   crystal   plasticity  model  with  intrinsic  SSD  and  GND  effects.  Journal  of  the  Mechanics  and  Physics  of  Solids  52,  2379-­‐2401.  

Fleck,   N.,   Hutchinson,   J.,   1993.   A   phenomenological   theory   for   strain   gradient   effects   in  plasticity.  Journal  of  the  Mechanics  and  Physics  of  Solids  41,  1825-­‐1857.  

Fleck,   N.,   Hutchinson,   J.,   1997.   Strain   gradient   plasticity.   Advances   in   applied  mechanics   33,  295-­‐361.  

Fleck,   N.,   Muller,   G.,   Ashby,   M.,   Hutchinson,   J.,   1994.   Strain   gradient   plasticity:   theory   and  experiment.  Acta  Metallurgica  et  Materialia  42,  475-­‐487.  

Fleck,   N.,  Willis,   J.,   2009a.   A  mathematical   basis   for   strain-­‐gradient   plasticity   theory—Part   I:  Scalar  plastic  multiplier.  Journal  of  the  Mechanics  and  Physics  of  Solids  57,  161-­‐177.  

Fleck,   N.,  Willis,   J.,   2009b.   A  mathematical   basis   for   strain-­‐gradient   plasticity   theory.   Part   II:  Tensorial  plastic  multiplier.  Journal  of  the  Mechanics  and  Physics  of  Solids  57,  1045-­‐1057.  

Gao,   H.,   Huang,   Y.,   Nix,   W.D.,   Hutchinson,   J.W.,   1999.   Mechanism-­‐based   strain   gradient  plasticity—  I.  Theory.  Journal  of  the  Mechanics  and  Physics  of  Solids  47,  1239-­‐1263.  

Ghoniem,  N.M.,  Singh,  B.N.,  Sun,  L.Z.,  de  la  Rubia,  T.D.,  2000.  Interaction  and  accumulation  of  glissile  defect  clusters  near  dislocations.  Journal  of  Nuclear  Materials  276,  166-­‐177.  

Ghoniem,   N.M.,   Sun,   L.,   1999.   A   Fast   Sum   Method   for   the   Elastic   Field   of   3-­‐D   Dislocation  Ensembles.  Phys.  Rev.  B,  60,  128-­‐140.  

Gilbert,   M.,   Queyreau,   S.,   Marian,   J.,   2011.   Stress   and   temperature   dependence   of   screw  dislocation  mobility  in  α-­‐Fe  by  molecular  dynamics.  Physical  Review  B  84,  174103.  

Groh,  S.,  Marin,  E.,  Horstemeyer,  M.,  Zbib,  H.,  2009.  Multiscale  modeling  of  the  plasticity  in  an  aluminum  single  crystal.  International  Journal  of  Plasticity  25,  1456-­‐1473.  

Gurtin,  M.E.,   2000.  On   the  plasticity  of   single   crystals:   free  energy,  microforces,  plastic-­‐strain  gradients.  Journal  of  the  Mechanics  and  Physics  of  Solids  48,  989-­‐1036.  

Gurtin,   M.E.,   2003.   On   a   framework   for   small-­‐deformation   viscoplasticity:   free   energy,  microforces,  strain  gradients.  International  Journal  of  Plasticity  19,  47-­‐90.  

Page 52: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 44 Aug 2013

Guyot,  P.,  Dorn,   J.E.,   1967.  A   critical   review  on   the  Peierls  mechanism.  Can.   J.   Phys.  45,  983-­‐1016.  

Henshall,   G.,   1996.   Improvement   in   the  MATMOD  equations   for  modeling   solute   effects   and  yield-­‐surface  distortion.  Unified  Constitutive  Laws  of  Plastic  Deformation.  Academic  Press,  Inc,  6277  Sea  Harbor  Dr,  Orlando,  FL  32887-­‐4900,  USA,  1996.,  153-­‐227.  

Hill,  R.,  1966.  Generalized  constitutive  relations  for   incremental  deformation  of  metal  crystals  by  multislip.  Journal  of  the  Mechanics  and  Physics  of  Solids  14,  95-­‐102.  

Hiratani,  M.,  Bulatov,  V.,  Zbib,  H.M.,  2004.  Orientation  dependent  elastic  interaction  between  a  truncated   stacking   fault   tetrahedron   and   a   glissile   dislocation.   .   J.   Nuc.   Materials,   329-­‐333,  1103-­‐1106.  

Hiratani,   M.,   Zbib,   H.M.,   Khaleel,   M.A.,   2002a.   Modeling   of   Thermally   Activated   Dislocation  Glide  and  Plastic  Flow  through  Local  Obstacles.  Int.  J.  Plasticity  19,  1271-­‐1296.  

Hiratani,  M.,  Zbib,  H.M.,  Wirth,  B.,  2002b.  Interaction  of  Glissele  Dislocations  with  Perfect  and  Truncated  Stacking  Fault  Tetraherda  in  Irradiated  Materials.  Phil  Mag.  82,  2709-­‐2735.  

Hochrainer,   T.,   Zaiser,   M.,   Gumbsch,   P.,   2007.   A   three-­‐dimensional   continuum   theory   of  dislocation  systems:  kinematics  and  mean-­‐field  formulation.  Philosophical  Magazine  87,  1261-­‐1282.  

Huang,  Y.,  Qu,  S.,  Hwang,  K.C.,  Li,  M.,  Gao,  H.,  2004.  A  conventional  theory  of  mechanism-­‐based  strain  gradient  plasticity.  International  Journal  of  Plasticity  20,  753-­‐782.  

Hutchinson,   J.,   1976.   Bounds   and   self-­‐consistent   estimates   for   creep   of   polycrystalline  materials.  Proceedings  of  the  Royal  Society  of  London.  A.  Mathematical  and  Physical  Sciences  348,  101-­‐127.  

Jackson,  P.,  1985.  Dislocation  modelling  of  shear  in  fcc  crystals.  Progress  in  materials  science  29,  139-­‐175.  

Keh,  A.S.,  1965.  Work  hardening  and  deformation  sub-­‐structure  in  iron  single  crystals  deformed  in  tension  at  298K.  Philosophical  Magazine  12,  9-­‐30.  

Khraishi,   T.,   Zbib,   H.M.,   Diaz   de   la   Rubia,   T.,   Victoria,  M.,   2002a.   Localized   Deformation   and  Hardening  In  Irradiated  Metals:  Three-­‐Dimensional  Discrete  Dislocation  Dynamics  Simulations,.  Metall.  Mater.  Trans.  33B,  285-­‐296.  

Khraishi,   T.A.,   Zbib,   H.M.,   De   La   Rubia,   T.D.,   Victoria,  M.,   2002b.   Localized   deformation   and  hardening   in   irradiated  metals:   Three-­‐dimensional   discrete   dislocation   dynamics   simulations.  Metallurgical  and  Materials  Transactions  B-­‐Process  Metallurgy  and  Materials  Processing  Science  33,  285-­‐296.  

Kocks,  U.F.,  1976.  Laws  for  work-­‐hardening  and  low-­‐temperature  creep.  Journal  of  Engineering  Materials  and  Technology-­‐Transactions  of  the  Asme  98,  76-­‐85.  

Lebensohn,   R.,   Tomé,   C.,   1993.   A   self-­‐consistent   anisotropic   approach   for   the   simulation   of  plastic   deformation   and   texture   development   of   polycrystals:   application   to   zirconium  alloys.  Acta  Metallurgica  et  Materialia  41,  2611-­‐2624.  

Page 53: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 45

Lebensohn,   R.,   Tomé,   C.,   1994.   A   self-­‐consistent   viscoplastic   model:   prediction   of   rolling  textures  of  anisotropic  polycrystals.  Materials  Science  and  Engineering:  A  175,  71-­‐82.  

Lebensohn,  R.A.,  and  Tome,  C.  N.   ,  1991.  Modelling  Twinning   in  Texture  Development  Codes.  Textures  and  Microstructures  14-­‐18,  959-­‐964.  

Lee,  M.,   Lim,   H.,   Adams,   B.,   Hirth,   J.,  Wagoner,   R.,   2010a.   A   dislocation   density-­‐based   single  crystal  constitutive  equation.  International  Journal  of  Plasticity  26,  925-­‐938.  

Lee,  M.G.,  Lim,  H.,  Adams,  B.L.,  Hirth,   J.P.,  Wagoner,  R.H.,  2010b.  A  dislocation  density-­‐based  single  crystal  constitutive  equation.  International  Journal  of  Plasticity  26,  925-­‐938.  

Lequeu,  P.,  Gilormini,  P.,  Montheillet,  F.,  Bacroix,  B.,  Jonas,  J.,  1987.  Yield  surfaces  for  textured  polycrystals-­‐-­‐I.  Crystallographic  approach.  Acta  metallurgica  35,  439-­‐451.  

Li,   D.S.,   Zbib,   H.,   X.,   S.,   M.,   K.,   in   preparation.   Mechanism   based   Continuum   Dislocation  Dynamics   with   Application   on   Plastic   Flow   and   Irradiation   Hardening   of   Single   Crystal   Iron.  International  Journal  of  Plasticity.  

Li,   D.S.,   Zbib,   H.M.,   Garmestani,   H.S.,   Khaleel,   M.,   Sun,   X.,   2010.   Modeling   of   irradiation  hardening  of  Polycrystalline  Materials.  Comp.  Mater.  Sci.  50,  2496-­‐2501.  

Lim,   H.,   Lee,   M.G.,   Kim,   J.H.,   Adams,   B.L.,   Wagoner,   R.H.,   2011.   Simulation   of   polycrystal  deformation  with  grain  and  grain  boundary  effects.  International  Journal  of  Plasticity  27,  1328-­‐1354.  

Mandel,  J.,  1965.  Généralisation  de  la  théorie  de  plasticité  de  WT  Koiter.  International  Journal  of  Solids  and  structures  1,  273-­‐295.  

Marian,  J.,  Caro,  A.,  2006.  Moving  dislocations  in  disordered  alloys:  Connecting  continuum  and  discrete  models  with  atomistic  simulations.  Physical  Review  B  74,  024113.  

Mastorakos,   I.,   Le,   L.,   Zeine,   M.,   Zbib,   H.M.,   Khaleel,   M.,   2010.   Multiscale   Modeling   of  irradiation   induced   hardening.   In:   a-­‐Fe,   Fe-­‐Cr   and   Fe-­‐Ni   Systems.   In:   a-­‐Fe,   Fe-­‐Cr   and   Fe-­‐Ni  Systems,  in  Basic  Actinide  Science  and  Materials  for  Nuclear  Applications,  in:  J.K.  Gibson,  S.K.M.,  E.D.   Bauer,   L.   Soderholm,   T.   Fanghaenel,   R.   Devanathan,   A.  Misra,   C.   Trautmann,   B.D.  Wirth  (Ed.),  MRS.  MRS.  

Mastorakos,  I.,  Zbib,  H.M.,  Khaleel,  M.,  2011a.  The  effect  of  copper  and  nickel  concentration  on  the  mobility  of  edge  dislocations  in  Fe  alloys.  Mat  Sc  Eng  A  submitted.  

Mastorakos,   I.,  Zbib,  H.M.,  Khaleel,  M.,  2011b.  On  the   interaction  of  an  edge  dislocation  with  spherical  voids  in  α-­‐Fe  and  Fe-­‐Ni  systems.  Computational  Materials  Science  submitted.  

Mendelev,  M.I.,  Han,  S.,  Srolovitz,  D.J.,  Ackland,  G.J.,  Sun,  D.Y.,  Asta,  M.,  2003.  Development  of  new  interatomic  potentials  appropriate  for  crystalline  and  liquid  iron.  Phil  Mag  83,  3977-­‐3994.  

Miller,  A.,  1976.  An  inelastic  constitutive  model  for  monotonic,  cyclic,  and  creep  deformation:  Part  I—Equations  development  and  analytical  procedures.  Journal  of  Engineering  Materials  and  Technology  98,  97.  

Page 54: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT 46 Aug 2013

Muhlhaus,  H.B.,  Aifantis,  E.C.,  1991.  The   influence  of  microstructure-­‐induced  gradients  on  the  localization  of  deformation  in  viscoplastic  materials.  Acta  Mechanica  89,  217-­‐231.  

Nadgorny,   E.,   1988.   Dislocation   Dynamics   and   Mechanical   Properties   of   Crystals.   Pergamon  Press,  Oxford.  

Nye,  J.F.,  1953.  Some  geometrical  relations  in  dislocated  crystals.  Acta  Metallurgica  1,  153-­‐162.  

Ohashi,   T.,   1994.  Numerical  modeling  of  plastic  multislip   in  metal   crystals   of   fcc   type.   Philos.  Mag.  A-­‐Phys.  Condens.  Matter  Struct.  Defect  Mech.  Prop.  70,  793-­‐803.  

Ohashi,  T.,  Kawamukai,  M.,  Zbib,  H.,  2007.  A  multiscale  approach  for  modeling  scale-­‐dependent  yield  stress  in  polycrystalline  metals.  International  Journal  of  Plasticity  23,  897-­‐914.  

Orowan,  E.,  1940.  Problems  of  plastic  gliding.  Proceedings  of  the  Physical  Society  52,  8.  

Ortiz,  M.,  Repetto,  E.,  Stainier,  L.,  2000.  A  theory  of  subgrain  dislocation  structures.  Journal  of  the  Mechanics  and  Physics  of  Solids  48,  2077-­‐2114.  

Peeters,   B.,   Kalidindi,   S.,   Van  Houtte,   P.,   Aernoudt,   E.,   2000.   A   crystal   plasticity   based  work-­‐hardening/softening   model   for   bcc   metals   under   changing   strain   paths.   Acta   materialia   48,  2123-­‐2133.  

Peirce,  D.,  Asaro,  R.,  Needleman,  A.,  1982.  An  analysis  of  nonuniform  and  localized  deformation  in  ductile  single  crystals.  Acta  metallurgica  30,  1087-­‐1119.  

Polizzotto,   C.,   Borino,   G.,   Fuschi,   P.,   1998.   A   thermodynamically   consistent   formulation   of  nonlocal  and  gradient  plasticity.  Mechanics  Research  Communications  25,  75-­‐82.  

Püschl,  W.,  2002.  Models   for  dislocation  cross-­‐slip   in  close-­‐packed  crystal  structures:  a  critical  review.  Progress  in  materials  science  47,  415-­‐461.  

Rashid,   M.M.,   1993.   Incremental   kinematics   for   finite   element   applications.   International  Journal  for  Numerical  Methods  in  Engineering  36,  3937-­‐3956.  

Rhee,   M.,   Zbib,   H.,   Hirth,   J.,   Huang,   H.,   De   la   Rubia,   T.,   1999.   Models   for   long-­‐/short-­‐range  interactions   and   cross   slip   in   3d   dislocation   simulation   of   bcc   single   crystals.   Modelling   and  Simulation  in  Materials  Science  and  Engineering  6,  467.  

Roters,  F.,  Eisenlohr,  P.,  Hantcherli,  L.,  Tjahjanto,  D.D.,  Bieler,  T.R.,  Raabe,  D.,  2010.  Overview  of  constitutive   laws,   kinematics,   homogenization   and   multiscale   methods   in   crystal   plasticity  finite-­‐element  modeling:  Theory,  experiments,  applications.  Acta  Materialia  58,  1152-­‐1211.  

Sandfeld,  S.,  Hochrainer,  T.,  Zaiser,  M.,  Gumbsch,  P.,  2011.  Continuum  modeling  of  dislocation  plasticity:  Theory,  numerical  implementation,  and  validation  by  discrete  dislocation  simulations.  Journal  of  Materials  Research  26,  623-­‐632.  

Schoenfeld,   S.,   Ahzi,   S.,   Asaro,   R.,   1995.   Elastic-­‐plastic   crystal   mechanics   for   low   symmetry  crystals.  Journal  of  the  Mechanics  and  Physics  of  Solids  43,  415-­‐446.  

Shu,  D.J.,  Liu,  F.,  Gong,  X.G.,  2001.  Simple  generic  method  for  predicting  the  effect  of  strain  on  surface  diffusion.  Physical  Review  B  64,  245410.  

Page 55: Gradient Plasticity Model and its Implementation into MARMOT · 2014-06-06 · Gradient Plasticity Model and its Implementation into MARMOT PNNL-22702 Prepared for U.S. Department

Gradient Plasticity and its Implementation into MARMOT Aug 2013 47

Simo,   J.C.,   Taylor,   R.L.,   1985.   Consistent   tangent   operators   for   rate-­‐independent  elastoplasticity.  Computer  methods  in  applied  mechanics  and  engineering  48,  101-­‐118.  

Stelmashenko,  N.,  Walls,  M.,  Brown,   L.,  Milman,  Y.V.,  1993.  Microindentations  on  W  and  Mo  oriented  single  crystals:  an  STM  study.  Acta  Metallurgica  et  Materialia  41,  2855-­‐2865.  

Stukowski,   S.,   Sadigh,   B.,   Erhart,   P.,   Caro,   A.,   2009.   Efficient   implementation   of   the  concentration-­‐dependent   embedded   atom  method   for  molecular-­‐dynamics   and  Monte-­‐Carlo  simulations.  Modelling  and  Simulation  in  Materials  Science  and  Engineering,  17,  075005.  

Tiem,  S.,  Berveiller,  M.,  and  Canova,  G.  R.,  1986.  Grain  Shape  Effects  on  the  Slip  System  Activity  and  on  the  Lattice  Rotations.  Acta  Metall.  34,  2139-­‐2149.  

Tome,   C.N.,   Lebensohn,   R.   A.,   and   Kocks,   U.   F.,   1991.   A   Model   for   Texture   Development  Dominated   by   Deformation   Twinning:   Application   to   Zirconium   Alloys.   Acta  Metallurgica   39,  2667.  

Tonks,  M.,  2012.  MARMOT  Theory  Manual.  Idaho  National  Laboratory.  

Zbib,   H.,   Li,   D.,   Sun,   X.,   Khaleel,   M.A.,   2012.   Large   Scale   DD   Simulation   Results   for   Crystal  Plasticity  Parameters  in  Fe-­‐Cr  and  Fe-­‐Ni  Systems.  Pacific  Northwest  National  Laboratory.  

Zbib,   H.M.,   Aifantis,   E.C.,   1992.   On   the   gradient-­‐dependent   theory   of   plasticity   and   shear  banding.  Acta  Mechanica  92,  209-­‐225.  

Zbib,   H.M.,   Aifantis,   E.C.,   2003.   Size   effects   and   length   scales   in   gradient   plasticity   and  dislocation  dynamics.  Scripta  Materialia  48,  155-­‐160.  

Zbib,   H.M.,   de   la   Rubia,   T.D.,   2002.   A  multiscale  model   of   plasticity.   International   Journal   of  Plasticity  18,  1133-­‐1163.  

Zbib,  H.M.,  de  La  Rubia,  T.D.,  Rhee,  M.,  Hirth,  J.P.,  2000.  3D  Dislocation  Dynamics:  Stress-­‐Strain  behavior  and  Hardening  Mechanisms  in  FCC  and  BCC  Metals.  J.  Nuc.  Maters  276,  154-­‐165.  

Zbib,  H.M.,  Diaz  de  la  Rubia,  T.,  2002.  A  multiscale  model  of  plasticity.  International  Journal  of  Plasticity  18,  1133-­‐1163.  

Zbib,  H.M.,  Rhee,  M.,  Hirth,  J.P.,  1996.  3D  Simulation  of  Curved  Dislocations:  Discretization  and  Long  Range  Interactions.  Advances  in  Engineering  Plasticity  and  its  Applications,  eds.  T.  Abe  and    T.  Tsuta.  Pergamon,  NY,  15-­‐20.  

Zbib,   H.M.,   Rhee,   M.,   Hirth,   J.P.,   1998.   On   plastic   deformation   and   the   dynamics   of   3D  dislocations.  International  Journal  of  Mechanical  Sciences  40,  113-­‐127.  

Zhang,  L.,  Tonks,  M.R.,  Gaston,  D.,  Peterson,   J.W.,  Andrs,  D.,  Millett,  P.C.,  Biner,  B.S.,  2013.  A  quantitative  comparison  between  and  elements  for  solving  the  Cahn–Hilliard  equation.  Journal  of  Computational  Physics  236,  74-­‐80.