Goal: Fast and Robust Velocity Estimation

86
Goal: Fast and Robust Velocity Estimation P 1 P 2 P 3 P 4 Our Approach: Alignment Probability Spatial Distance Color Distance (if available) Probability of Occlusion Annealed Dynamic Histograms Combining 3D Shape, Color, and Motion for Robust Anytime Tracking David Held, Jesse Levinson, Sebastian Thrun, and Silvio Savarese

description

Combining 3D Shape, Color, and Motion for Robust Anytime Tracking. David Held, Jesse Levinson, Sebastian Thrun , and Silvio Savarese. Goal: Fast and Robust Velocity Estimation. Our Approach: Alignment Probability. P 1. P 2. Annealed Dynamic Histograms. P 4. P 3. Spatial Distance - PowerPoint PPT Presentation

Transcript of Goal: Fast and Robust Velocity Estimation

Combining 3D Shape, Color, and Motion for Robust Anytime Tracking

Goal: Fast and Robust Velocity Estimation

P1P2P3P4Our Approach: Alignment Probability

Spatial DistanceColor Distance (if available)Probability of Occlusion

Annealed Dynamic HistogramsCombining 3D Shape, Color, and Motion for Robust Anytime TrackingDavid Held, Jesse Levinson, Sebastian Thrun, and Silvio Savarese

\left p(x_t \mid z_1 \ldots z_t) = \eta \, p(z_t \mid x_t, z_{t-1}) p(x_t \mid z_1 \ldots z_{t-1})

Goal: Fast and Robust Velocity Estimation

Combining 3D Shape, Color, and Motion for Robust Anytime TrackingDavid Held, Jesse Levinson, Sebastian Thrun, and Silvio Savarese

Baseline: Centroid Kalman Filter

Local Search Poor Local Optimum!

t+1tOcclusionsActual MotionBaseline: ICP

Annealed Dynamic Histograms

Goal: Fast and Robust Velocity Estimation

P1P2P3P4Our Approach: Alignment Probability

Spatial DistanceColor Distance (if available)Probability of OcclusionCombining 3D Shape, Color, and Motion for Robust Anytime TrackingDavid Held, Jesse Levinson, Sebastian Thrun, and Silvio Savarese

Annealed Dynamic HistogramsMotivation

Quickly and robustly estimate the speed of nearby objects

Show videos - cars converging onto a lane, bikes swerving into traffic

Laser DataCamera ImagesSystem

Laser DataCamera ImagesSystem

Previous Work(Teichman, et al)

System

Laser DataCamera ImagesThis WorkVelocityEstimation

Previous Work(Teichman, et al)

Velocity Estimation

t

Velocity Estimation

t+1t

Velocity Estimation

t+1t

Velocity Estimation

t+1tVelocity Estimation

t+1tOcclusionsActual Motion

ICP Baseline

ICP Baseline

ICP BaselineTracking Probabilityvyvx?????

Local Search Poor Local Optimum!ICP Baseline

Tracking Probability

Velocity Estimation

t

Velocity Estimation

t+1t

Velocity Estimation

t+1t

Velocity Estimation

t+1t

Velocity Estimation

t+1t

Velocity Estimation

t+1t

Velocity Estimation

t+1t

Xt

Velocity Estimation

t+1t

Xt

MeasurementModelMotion ModelTracking Probability\left p(x_t \mid z_1 \ldots z_t) = \eta \, p(z_t \mid x_t, z_{t-1}) p(x_t \mid z_1 \ldots z_{t-1})

MeasurementModelMotion ModelTracking ProbabilityConstant velocity Kalman filter

MeasurementModelTracking Probability

Motion Model

MeasurementModelTracking Probability

Motion Model

MeasurementModelTracking Probability

Motion Model

MeasurementModelTracking ProbabilityMotion Model

MeasurementModelTracking ProbabilityMotion Model

MeasurementModelTracking ProbabilityMotion Model

MeasurementModelTracking ProbabilityMotion Model

MeasurementModelTracking ProbabilityMotion Model

MeasurementModelTracking ProbabilityMotion Model

MeasurementModelTracking ProbabilityMotion Model

MeasurementModelTracking ProbabilityMotion Model

MeasurementModelTracking ProbabilityMotion Model

k

MeasurementModelTracking ProbabilityMotion Model

Sensor noiseSensor resolution

k

Delta Color ValueProbabilityColor ProbabilityIncluding Color

p(z_t \mid x_t, z_{t-1}) =\eta\prod_{z_i \in z_t}p_s(z_i \mid \bar{z}_j)p_c(z_i \mid \bar{z}_j))\eta (\prod_{z_i \in z_t} \exp (-\frac{1}{2}(z_i - \bar{z}_j)^T \Sigma^{-1} (z_i - \bar{z}_j))+k)p(C)p(z_t \mid \bar{z}_j,V,C) +P(\neg C)p(z_t \mid \bar{z}_j,V,\neg C)1-p_c \exp(\frac{-r^2}{2\sigma_c^2})Including Color

p(z_t \mid x_t, z_{t-1}) =\eta\prod_{z_i \in z_t}p_s(z_i \mid \bar{z}_j)p_c(z_i \mid \bar{z}_j))\eta (\prod_{z_i \in z_t} \exp (-\frac{1}{2}(z_i - \bar{z}_j)^T \Sigma^{-1} (z_i - \bar{z}_j))+k)p(C)p(z_t \mid \bar{z}_j,V,C) +P(\neg C)p(z_t \mid \bar{z}_j,V,\neg C)1-p_c \exp(\frac{-r^2}{2\sigma_c^2})Including Color

p(z_t \mid x_t, z_{t-1}) =\eta\prod_{z_i \in z_t}p_s(z_i \mid \bar{z}_j)p_c(z_i \mid \bar{z}_j))\eta (\prod_{z_i \in z_t} \exp (-\frac{1}{2}(z_i - \bar{z}_j)^T \Sigma^{-1} (z_i - \bar{z}_j))+k)p(C)p(z_t \mid \bar{z}_j,V,C) +P(\neg C)p(z_t \mid \bar{z}_j,V,\neg C)1-p_c \exp(\frac{-r^2}{2\sigma_c^2})Including Color

p(z_t \mid x_t, z_{t-1}) =\eta\prod_{z_i \in z_t}p_s(z_i \mid \bar{z}_j)p_c(z_i \mid \bar{z}_j))\eta (\prod_{z_i \in z_t} \exp (-\frac{1}{2}(z_i - \bar{z}_j)^T \Sigma^{-1} (z_i - \bar{z}_j))+k)p(C)p(z_t \mid \bar{z}_j,V,C) +P(\neg C)p(z_t \mid \bar{z}_j,V,\neg C)1-p_c \exp(\frac{-r^2}{2\sigma_c^2})Including Color

p(z_t \mid x_t, z_{t-1}) =\eta\prod_{z_i \in z_t}p_s(z_i \mid \bar{z}_j)p_c(z_i \mid \bar{z}_j))\eta (\prod_{z_i \in z_t} \exp (-\frac{1}{2}(z_i - \bar{z}_j)^T \Sigma^{-1} (z_i - \bar{z}_j))+k)p(C)p(z_t \mid \bar{z}_j,V,C) +P(\neg C)p(z_t \mid \bar{z}_j,V,\neg C)1-p_c \exp(\frac{-r^2}{2\sigma_c^2})Including Color

Delta Color ValueProbability

p(z_t \mid x_t, z_{t-1}) =\eta\prod_{z_i \in z_t}p_s(z_i \mid \bar{z}_j)p_c(z_i \mid \bar{z}_j))\eta (\prod_{z_i \in z_t} \exp (-\frac{1}{2}(z_i - \bar{z}_j)^T \Sigma^{-1} (z_i - \bar{z}_j))+k)p(C)p(z_t \mid \bar{z}_j,V,C) +P(\neg C)p(z_t \mid \bar{z}_j,V,\neg C)1-p_c \exp(\frac{-r^2}{2\sigma_c^2})Including Color

Delta Color Value

Probabilityp(z_t \mid x_t, z_{t-1}) =\eta\prod_{z_i \in z_t}p_s(z_i \mid \bar{z}_j)p_c(z_i \mid \bar{z}_j))\eta (\prod_{z_i \in z_t} \exp (-\frac{1}{2}(z_i - \bar{z}_j)^T \Sigma^{-1} (z_i - \bar{z}_j))+k)p(C)p(z_t \mid \bar{z}_j,V,C) +P(\neg C)p(z_t \mid \bar{z}_j,V,\neg C)1-p_c \exp(\frac{-r^2}{2\sigma_c^2})Including Color

Delta Color Value

Probabilityp(z_t \mid x_t, z_{t-1}) =\eta\prod_{z_i \in z_t}p_s(z_i \mid \bar{z}_j)p_c(z_i \mid \bar{z}_j))\eta (\prod_{z_i \in z_t} \exp (-\frac{1}{2}(z_i - \bar{z}_j)^T \Sigma^{-1} (z_i - \bar{z}_j))+k)p(C)p(z_t \mid \bar{z}_j,V,C) +P(\neg C)p(z_t \mid \bar{z}_j,V,\neg C)1-p_c \exp(\frac{-r^2}{2\sigma_c^2})Probabilistic Framework3D ShapeColorTrackingMotion HistoryTracking Probability

P1P2P3P4Tracking ProbabilityvyvxDynamic DecompositionvyvxDynamic DecompositionvyvxDynamic DecompositionvyvxDynamic DecompositionvyvxDerived from minimizing KL-divergence between approximate distribution and true posteriorAnnealing

Inflate the measurement modelAnnealing

Inflate the measurement model

Annealing

Inflate the measurement model

AlgorithmFor each hypothesisCompute the probability of the alignment

MeasurementModelMotion ModelAlgorithmFor each hypothesisCompute the probability of the alignment

Finely sample high probability regions

MeasurementModelMotion ModelAlgorithmFor each hypothesisCompute the probability of the alignment

Finely sample high probability regions

Go to step 1 to compute the probability of new hypotheses

MeasurementModelMotion ModelAnnealingMore timeMore accurateAnytime Tracker

Anytime TrackerChoose runtime based on:Total runtime requirementsImportance of tracked object...

Comparisons

Comparisons

Comparisons

Kalman Filter

Kalman FilterADH Tracker(Ours)Models

Quantitative Evaluation 2

Sampling Strategies

Advantages over Radar

Conclusions3D ShapeColorTrackingMotion HistoryRobust to Occlusions, Viewpoint ChangesAdd figures and illustrations for these pointsConclusions3D ShapeColorTrackingMotion HistoryRobust to Occlusions, Viewpoint ChangesRuns in Real-timeRobust to Initialization ErrorsAdd figures and illustrations for these points

Delta Color ValueProbabilityColor ProbabilityError vs Number of Points

Error vs Distance

Error vs Number of Frames

Error vs Number of Frames