Gluon Polarization Tensor in external field in SU(3) theory

19
Gluon Polarization Tensor in external field in SU(3) theory New Physics and Quantim Chromodynamics at External Conditions 2011 May 5 Dnipropetrovsk M. Khandoga, V. Skalozub

description

M. Khandoga , V. Skalozub. Gluon Polarization Tensor in external field in SU(3) theory. New Physics and Quantim Chromodynamics at External Conditions 2011 May 5 Dnipropetrovsk. Introduction. - PowerPoint PPT Presentation

Transcript of Gluon Polarization Tensor in external field in SU(3) theory

Gluon Polarization Tensor in external field in SU(3) theory

New Physics and Quantim Chromodynamics at External Conditions 2011

May 5

Dnipropetrovsk

M. Khandoga, V. Skalozub

Introduction

• Magnetic field of order is spontaneously generated in QCD vacuum at high temperatureSuperdaisy resummations: A. O. Starinets, A. V. Vshivtsev, V. Ch. Zukovskii. Phys. Lett. B 322, 403 (1994)Lattice simulations: N.O. Agasian (2003), V. Demchik (2008).

• Cosmological proof: Fermi-LAT Collaboration found out, that relict intergalactic magnetic fields of order ~ 10-15 G are observed (Science, Vol. 328. no. 5979, pp. 725 – 729, April 2010).

• Peripheral collisions of heavy ions: magnetic field is generated by parts of nuclei, travelling by sides

4 2gB g T

SU(2)-gluodynamics in external field

2 21 1( )

4 2L F A D

ab acb cD A [ ] ( ) ( ) ( ) ( )a a a abc a aF A A x A x A x A x

[ [ ], [ ]]ab abc cD A D A F

- QCD Lagrangian

, - Ghost fields

Background gauge

31 2( ) .a aB x x B

( ) ( ) ( ).a a aA x B x Q x

Field potential А(х) is divided into external field B(x) and quantum fluctuations Q(x):

External field is chosen in the following form:

2 33 3 3

3 33

2

1 1 1( )

4 4 21 1

( )2 21 1

( )4 2

ab b ab b

bc c b bc ab b ab b c b

abc abe b c d e ab bgh

L F F D Q D Q F Q

gf F Q Q gf D Q D Q Q Q

g f f Q Q Q Q D Q L

Lagrangian in background gauge:

Ghost Lagrangian3 3 .ac ac a cD gf B

Charged basisSince external field is directed along 3rd axis in the color space, it is

convenient to introduce the following basis, which is called charged:

3Q Q )(2

1 21 iQQW

3

* 3

.

.

D igB

D igB

3 3 * 3 3

3 33

2 3 3 33

1 1 1 1( )( ) ( )( )

4 2

( ) ( )

1 1( 2 )

2 2 gh

L Q Q W W D W D W Q Q

ig F Q W W igQ W W W W

g à W W W W Q Q W W F Q L

3 3 3

* *

( )

( )

Q Q Q

W D W D W

W D W D W

Ã

Corresponding Feynman diagrams

3Q

W

W

3Q3Q W W

3Q

W

3

SU(3)-gluodynamics in external field

• Spatial structure remains unchanged• Now we have 8 degrees of freedom instead of 3

which results in 8 gauge particles. • One more external field is added, it has same

spatial orientation and directed along 8th axis in color space.

3 3 8 81 2( ) ( )a a aB x x B B

SU(3)-gluodynamics Lagrangian in background gauge

à 1 21

1( ),2

W Q Q

4 52

1( ),2

W Q Q

,Q Q Q

Let’s switch to charged basis:

1 21

1( ),2

W Q Q 6 7

3

1( ),2

W Q Q

1 3 ,D igB 32,3 8

3.

2 3

BD i g B

,Ã abcf - SU(3) group structure constants.

SU(3)-gluodynamics Lagrangian in charged basis

Neutral gluons sectorNeutral gluons do not interact with each other. We can write interaction

Lagrangians of both neutral gluons as a combination of SU(2)-like Lagrangians:

3 3 int(3 ) int(3 ) int(3 )free I II IIIL L L L L

8 8 int(8 ) int(8 )free II IIIL L L L Every interaction Lagrangian has a structure, identical to SU(2) case.

Thus the polarization operator of neutral gluons in SU(3) theory can be brought to SU(2) case, already researched by M.Bordag, V. Skalozub, Phys. Rev. D 75, 125003 (2007)

3 3 8 (2) 3 (2) 3 8

(2) 8 3

1 1 3( , , ) ( , ) ( , )

4 2 2

1 3 1( , ),

4 2 2

Q Neut SU Neut SU

Neut SU

k B B k B B k B B B

k B B B

8 3 8 (2) 3 8 (2) 8 33 1 3 3 3 1( , , ) ( , ) ( , ).

2 2 2 2 2 2Q Neut SU Neut SUk B B k B B B k B B B

In the recent paper (V.Skalozub, A. Strelchenko (2004)) it was found out, that two fields are generated. After reaching the deconfinement phase two fields are generated:

3 2 3 2

8 2

30,9989 .

2

g TB

Spontaneous generation of magnetic fields at high temperature

3 2

3 20,2976 ,

g TB

0 3 8( ) , ,dB T T T B B

But after reaching some temperature only one field remains: 0 dT T

3 22

0 3 82

1 1( ) (1 ) ; 0.

4 2

g TB T T B B

Hence the behavior of field-dependant quantities differs significantly at high temperature. Let’s illustrate it on Debye mass.

Debye mass

Sometimes it is convenient to use an inverted quantity:

If electrical potential is surrounded by plasma, it has a limited reach:

.)( Dr

r

er

QrV

DD

mr

1

In QFT Debye screening is caused by vacuum polarization. Debye mass can be obtained from polarization operator:

).0,0,,( 4442 kkBTmD

In finite-temperature QCD there is a well-known result:

.)63

( 222 TgNN

m fcD O. Kalashnikov (1984)

Debye mass of neutral gluons

)))(2

4775.0

2

8859.0(

2

3(

3

2 32222

)( 3 BT

iT

gTgmQD

)))(2

4775.0

2

8859.0(

2

3(

3

2 2222

)( 8 T

iT

gTgmQD

38

3

1

2

3BB 38

3

1

2

3BB

Debye mass slightly grows at high temperature:

8

2 42 2 2

0 2( )( ) (1 (0,8222 0,4431) 0,1289 )

3 (2 )dD Q

g gm T T T g T i

8

2 42 2 2

0 2( )( ) (1 (0,5799 0,3866) 0,3982 )

3 (2 )D Q

g gm T T g T i

3

2 42 2 2

0 2( )( ) (1 (0,7574 0,4082) 0,0853 )

3 (2 )dD Q

g gm T T T g T i

3

2 42 2 2

0 2( )( ) (1 (0,3486 0,1638) 0,4289 )

3 (2 )D Q

g gm T T g T i

Vertex term of the Lagrangian3 3 3

1 1 1 1 1 1

8 3 8 32 2 2 2 2 2

8 3 8 33 3 3 3 3 3

( )

3 1 1( ) ( )( )

2 3 3

3 1 1( ) ( )( )

2 3 3

ig Q W W Q W W Q W W

i g Q Q W W Q Q W W W W

i g Q Q W W Q Q W W W W

1

2abc a b cgf Q Q Q

1 2 3 1 2 3

2 3 1 2 3 1

3 2 1 3 2 1

2(

2

)

ig W W W W W W

W W W W W W

W W W W W W

aW aW

bW

cWa b c

Charged gluons sectorIn SU(3) theory charged gluons do interact with each other:

int(3 ) int(8 ) int( ) ,WII WII free II II I II IIIL L L L L

int(3 ) int(8 ) int( ).WIII WIII free III III I II IIIL L L L L

SU(2) case was researched in paper by M. Bordag and V. Skalozub Phys. Rev. D 77, 105013 (2008)

For polarization operators of charged gluons we get

int(3 ) int( ) ,WI WI free I I II IIIL L L L

3 8 (2) 3 8 (2) 3 8

int 3 8

3 1 3 1 1 3( , , ) ( , ( )) ( , ( ))

4 2 2 4 2 2

( , , ),

IIw Char SU Char SU

Char

p B B p B B B p B B B

p B B

3 8 (2) 3 int 3 8( , , ) ( , ) ( , , ),Iw Char SU Charp B B p B B p B B

3 8 (2) 3 8 (2) 3 8

int 3 8

1 1 3 3 1 3( , , ) ( , ( )) ( , ( ))

4 2 2 4 2 2

( , , ).

IIIw Char SU Char SU

Char

p B B p B B B p B B B

p B B

Charged gluons Debye mass

Expressions for Debye mass:

38

3

1

2

3BB

38

3

1

2

3BB

Dependence on temperature:

2 42 2 2

0 2( )( ) (1 (0,8419 0,4567) 0,0915 )

3 (2 )I dD W

g gm T T T g T i

2 2 2 2 3

( )

2 3 0.8859 0.4775( ( )( ))

3 2 2 2ID W

m g T g i BT T

2 2 2 2 3

( )

2 3 0.8859 0.4775( ( )( ))

3 2 2 2IID W

m g T g i BT T

2 2 2 2 3

( )

2 3 0.8859 0.4775( ( ))

3 2 2 2IIID W

m g T g i BT T

2 42 2 2

0 2( )( ) (1 (0,7128 0,3794) 0,0179 )

3 (2 )II dD W

g gm T T T g T i

2 42 2 2

0 2( )( ) (1 (0,8562 0,1794) 0,1128 )

3 (2 )III dD W

g gm T T T g T i

2 42 2 2

0 2( )( ) (1 (0,2965 0,1459) 0,0671 )

3 (2 )ID W

g gm T T g T i

2 42 2 2

0 2( )( ) (1 (0,4821 0,1786) 0,2465 )

3 (2 )IID W

g gm T T g T i

2 42 2 2

0 2( )( ) (1 (0,3579 0,1421) 0,5872 )

3 (2 )IID W

g gm T T g T i

Conclusions

• Gluon polarization operator in external field is obtained in SU(3) case. Significant differences with SU(2) gluodynamics are observed.

• The spontaneously generated external field appears to reduce Debye mass.

• Obtained result may be used for further research, finding gluon spectra and magnetic masses.

Thank you for attention!