GLG101:PhysicalGeology&...

19
G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 1 of 20 GLG101: Physical Geology Lecture Review Series Instructor: Gary Calderone 623.845.3654; PS105 GLG101: Physical Geology Lecture Outlines for Exam #3: Geologic Time (p. 26) Geologic Structures & Mountain Building (p. 79) Earthquakes (p. 2016) Earth Interior (p. 1620) References to Tarbuck, Lutgens & Tasa (or T & L) refer to the 11 th or custom GCC edition. 20 pages including this cover

Transcript of GLG101:PhysicalGeology&...

Page 1: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 1 of 20

GLG101:  Physical  Geology  Lecture  Review  Series  Instructor:    Gary  Calderone  623.845.3654;  PS105    

 

 

 

 

 

 

 

 

 

GLG101:    Physical  Geology  Lecture  Outlines  for  Exam  #3:  

   

Geologic  Time  (p.  2-­‐6)  Geologic  Structures  &  Mountain  Building  (p.  7-­‐9)  

Earthquakes  (p.  20-­‐16)  Earth  Interior  (p.  16-­‐20)  

 

 

References  to  Tarbuck,    Lutgens  &  Tasa  (or  T  &  L)  refer  to  the  11th  or  custom  GCC  edition.    

 

20  pages  including  this  cover  

Page 2: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 2 of 20

GLG101:  Geologic  Time  Lectures-­‐  Reviews    Time  and  Terrestrial  Change  

Our  concept  of  time  Time  and  Geologic  Processes  

Dramatic  Changes  =  Catastrophic  change  •Volcanic  Eruptions         •Earthquakes  &  sudden  uplifts  of  land    •Tsunamis       •Floods  •Point:  some  processes  occur  episodically  as  dramatic  events  through  time.    In  short,  over  large  

amounts  of  time,  these  "catastrophes"  are  quite  usual,  although  we  tend  to  think  of  them  as  somewhat  rare.  

Subtle  Changes  =  Slower  almost  imperceptible  uniform  changes  •Sea  level  rise  (Seaport  measurements,  1.2  mm/year)  •Uplifts  of  land  (California  example-­‐  1.5  meters/century)  •Cutting  of  the  Grand  Canyon  (.7  mm/year)  •Point:  some  processes  occur  slowly  and  uniformly  through  time.    Although  seemingly  inconsequential  

even  over  the  last  century,  uniform  processes  can  create  impressive  geological  features.    Relative  versus  Absolute  (Numerical)  Time  

Relative  Time:    a  sequence  of  events-­‐  what  came  first,  second,  third…last  etc.  Absolute  Time:    assigning  some  numerical  estimate  of  age  to  an  event.  

 Principles  of  relative  dating-­‐  no  jokes  please  

•Superposition  •Original  Horizontality  •Lateral  Continuity  •Cross-­‐cutting  Relationships  •Inclusions/Baked  Contacts  

 Unconformities  (or  erosional  surfaces):  

Angular  unconformity  =  erosional  surface  between  two  originally  horizontal  rocks  now  at  different  angles.  

Nonconformity  =  erosional  surface  between  a  surface  rock  and  a  rock  that  must  have  formed  deep  beneath  the  surface.  

Disconformity  =  erosional  surface  between  two  parallel  surface  rocks    

Page 3: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 3 of 20

Development  of  the  Modern  Geologic  Time  Scale  •Faunal  Succession  (another  principle  of  relative  dating)  -­‐Life  has  varied  through  time  -­‐Fossil  assemblages  can  be  distinguished  from  one  another  -­‐Relative  ages  of  fossil  assemblages  can  be  determined  using  the  other  principles  of  relative  time.  

The  succession  of  fossils  or  fossil  assemblages  from  oldest  to  youngest  is  the  same  everywhere.    This  allows  us  to  make  a  relative  time  scale  based  on  the  life  forms  found  in  the  rocks.  

 Relative  Geologic  Time  Scale  (see  attached)  

•Period-­‐  the  basic  unit  of  Geologic  Time:  Name  of  a  place  where  a  rock  unit  contains  a  distinct  faunal  assemblage.    Cambrian  system  named  for  old  Roman  names  for  Wales  =  Cambria.    Silurian  named  for  the  Silures,  an  ancient  Welsh  tribe  that  occupied  that  region-­‐  and  so  forth.  •  Periods  of  the  Relative  Geologic  Time  Scale  developed  by  Sedgewick  and  Murchison-­‐  1835.    Cambrian  Ordovician,  Silurian,  Devonian,  Mississippian,  Pennsylvanian,  Permian,  Triassic,  

Jurassic,  Cretaceous,  Tertiary,  Quaternary.  Memory  device  for  periods  from  oldest  to  youngest:  •Can  Old  Senators  Demand  More  Political  Power  Than  Junior  Congressmen?  Tough  Question.  

 •Other  Time  units:  Periods  are  the  basic  time  units  but  these  are  grouped  and  subdivided  for  

convenience.  •Periods  grouped  into  Eras.    Eras  named  for  the  degree  to  which  life  is  similar  to  present.  

Paleozoic-­‐  "ancient  life";  life  very  different  from  today  (Cambrian  –  Permian)  Mesozoic-­‐  "middle  life";  life  between  ancient  and  recent  (Triassic-­‐  Cretaceous)  Cenozoic-­‐  "recent  life;  life  resembles  today's  fauna  and  flora.  (Tertiary-­‐Quaternary)  

•Eras  grouped  into  Eons.    Eons  named  for  visibility  of  life  Phanerozoic-­‐  "visible  life";  forms  are  visible  to  naked  eye.  Proterozoic-­‐  "early  or  proto  life";  microscopic  forms-­‐  mostly  primitive  algae  Archean-­‐      this  is  actually  named  for  a  distinct  assemblage  of  rocks  assumed  to  be  older  than  

life-­‐  (recent  evidence  suggests  life  also  existed  in  Archean  time)  

Page 4: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 4 of 20

 

Page 5: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 5 of 20

 Rock  Units  and  Correlations    Just  as  the  fundamental  unit  of  Geologic  Time  is  the  Period,  the  fundamental  unit  of  rock  is  called  the  

Formation.    A  Formation  is  a  single  mapable  rock  type  or  lithology  (e.g.  the  Coconino  Sandstone);  or  multiple  lithologies  having  some  related  or  common  characteristics  (e.g.  the  Kayenta  Formation).      

Rock  Formations  can  be  divided  into  Members  (e.g.  the  Shinerump  Member  of  the  Chinle  Formation).  Rock  Formations  can  be  parts  of  larger  Groups  (e.g.  the  Unkar  Group  of  the  Grand  Canyon  area).  Groups  can  be  further  gathered  into  Supergroups  (Grand  Canyon  Supergroup)    Lithologic  correlations:  Rock  Formations  may  be  traced  laterally  for  hundreds  of  miles.    This  is  called  

lithologic  correlation.    Such  correlations  do  not  necessarily  indicate  same  time  because  of  environment  transgressions  and  regressions  

Time  correlations  •Key  bed  correlations  (ash  layers  are  best  as  they  indicate  a  single  time  event)  •Biostratigraphic  correlations-­‐  rocks  with  the  same  fossil  assemblages  are  the  same  age.  Guide  or  Index  

Fossils  are  easily  recognized,  abundant  &  geographically  widespread,  and  have  a  narrow  range  of  existence.    These  are  useful  when  a  full  assemblage  is  not  present.  

 Absolute  or  Numerical  Time  

Principles  of  Absolute  Dating:    Any  regularly  occurring  event  can  be  used  to  numerically  date  at  geological  or  archaeological  feature.  •Tree  ring  dating:  Can  count  ring  sequences  in  trees  to  obtain  age  of  wood  and  times  of  drought  and  

abundant  rainfall.  •Glacial  Varve  dating:  Can  count  couplets  of  dark  and  light  layers  of  sediment  in  glacial  lakes  to  

determine  years  that  it  has  been  depositing  sediment.  •Radiometric  or  isotopic  dating  

Radioactive  isotopes:  An  unstable  isotope  of  an  element.    Emits  radiation  to  decay  to  a  stable  daughter  isotope  of  another  element.  

Half-­‐life:  the  time  it  takes  for  half  of  the  radioactive  parent  isotope  to  decay  to  a  stable  daughter.  Calculation  of  ages:    Determine  amount  of  parent/daughter  in  a  mineral  or  glass  to  determine  age.    

For  most  circumstances,  these  quantities  are  then  fed  into  the  radioactive  decay  equation  for  the  particular  isotope  system:  N  =  Noe-­‐λt,  where  N  is  the  amount  of  parent  remaining,  No  is  the  original  amount  of  the  parent  (=  remaining  parent  +  daughter),  λ  is  the  radioactive  decay  constant  for  that  parent-­‐daughter  pair,  and  t  is  time.    The  equation  is  then  solved  for  time.      

Page 6: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 6 of 20

For  even  multiples  of  ½,  however,  the  age  can  be  calculated  by  multiplying  the  half-­‐life  value  by  the  number  of  multiples  of  ½  that  it  takes  to  equal  the  amount  of  radioactive  parent  left  in  the  sample.    For  example,  ½  =  1  half  life;  ¼  =  2  half  lives;  1/8  =  3  half  lives;  and  so  on.  

Commonly  used  isotopic  systems  Long-­‐lived  (half  lives  are  in  billions  or  millions  of  years)  

Uranium-­‐Lead  (238U  decays  to  206Pb  with  a  half  life  =  4.5  billion  years)  Rubidium-­‐Strontium  (87Rb  decays  to  87Sr  with  a  half  life  =  48  billion  years)  Potassium-­‐Argon  (40K  decays  to  40Ar  with  a  half  life  =  1.3  billion  years)  

Short  lived  (half  lives  are  in  thousands  of  years)  Carbon-­‐Nitrogen  (14C  decays  to  14N  with  a  half  life  =  5700  years)  

•What  are  we  dating?  Minerals,  glasses  at  the  time  of  their  isotope  closure  Usually  minerals  in  igneous  and  metamorphic  rocks  Cannot  easily  date  sedimentary  rocks-­‐  so  how  do  we  attach  numbers?  

 Attaching  numbers  to  the  Geologic  Time  Scale  

Combination  of  radiometric  dating  and  superposition  and  crosscutting  relationships  of  igneous  and  metamorphic  rocks  relative  to  the  sedimentary  sequences.  Example:    Sequence  intruded  by  dikes  and  interbedded  with  lava  flows  Do  this  all  over  the  globe  and  the  system  boundaries  can  be  defined  and  refined  in  absolute  time.    This  process  is  ongoing  and  continues  to  this  day.    In  other  words,  the  absolute  age  assignments  to  the  Geologic  Time  Scale  are  constantly  being  revised  

 •Summary  diagrams-­‐  attached  •Summary  films  -­‐  Geologic  Time-­‐  Annenberg  (Earth  Revealed  Series);    Geologic  Time-­‐  Britannica    Both  available  in  media  center  library.  

Page 7: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 7 of 20

 GLG101:  Structural  Geology  and  Mountain  Building  Lectures-­‐  Reviews    Basic  concepts-­‐  Stress  and  strain-­‐  [Free  physics  lesson-­‐  no  charge!]  

Stress  =  force  applied  over  a  given  area.    Forces  caused  largely  by  interaction  of  plates  as  a  result  of  the  Earth's  internal  heat  engine  trying  to  lose  heat.  

Strain  =  response  of  rocks  to  stress-­‐  also  called  deformation.  Stress-­‐  types  of:  

Compressional  =  convergent  plate  boundaries  Tensional  =  divergent  plate  boundaries  Shear  =  transform  plate  boundaries  

Strain  Elastic  strain  =  return  to  unstrained  state  with  removal  of  stress    Inelastic  strain  =  not  returned  to  unstrained  state    

Brittle  =  fracture-­‐  material  physically  breaks  along  discrete  and  separate  planes  Ductile  strain  =  Plastic-­‐  material  changes  shape    

Factors  governing  how  a  substance  will  deform/strain  under  stress  Strain  rate-­‐  how  fast  material  is  deforming      Material  type  Temperature  (&  confining  pressure)  conditions  -­‐  When  cold  materials  will  exhibit  brittle  behavior  

under  most  stresses.    When  hot,  materials  behave  plastically.    Folding-­‐  Inelastic,  ductile  deformation  under  compressive  stress    

Basic  parts  of  a  fold  and  description  of  its  geometry:  Hinge  &  Limb-­‐  the  bent  and  straight  parts  of  a  fold,  respectively  Axial  plane-­‐  imaginary  plane  that  divides  the  fold  in  half  Fold  axis-­‐  imaginary  line  running  through  the  hinge  of  the  fold  Plunge  of  fold-­‐  angle  that  the  fold  axis  makes  relative  to  horizontal  Strike  and  Dip  =  describing  tilt  of  bedding  or  other  planes  Strike  and  dip  symbols  

Horizontal  beds  &  vertical  beds,  overturned  beds          

Page 8: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 8 of 20

Anticlines  and  Synclines:  Map  or  outcrop  pattern  is  mirror  symmetry  of  rock  units  and  map  pattern  after  erosion  is  stripes  of  different  rock  units  Anticlines-­‐  Up-­‐turned  fold-­‐  memory  device-­‐  resembles  the  letter  "A"  or  "Anthill".  Beds  always  dip  away  

from  axial  plane  or  fold  axis  and  oldest  rock  is  in  center  after  erosion  Syncline-­‐  Down-­‐turned  fold  -­‐  memory  device  -­‐  resembles  a  smile  that  begins  with  the  letter  "S";  or  "Sink".  

Beds  always  dip  towards  axial  plane  or  fold  axis  and  youngest  rocks  are  in  center  after  erosion  Plunging  folds-­‐  map  pattern  changes  to  "S"  or  “zigzag”  or  “horseshoe”  shaped  geometry.  BUT  all  the  rules  we  

just  established  are  still  valid.  Plunging  anticlines  &  Plunging  synclines.  Structural  Domes  &  Basins-­‐  map  pattern  forms  "bulls-­‐eye"  or  target  pattern  

Domes-­‐  oldest  rx  in  center,  all  beds  dip  away  from  center  Basins-­‐  youngest  rx  in  center,  all  beds  dip  toward  center  

Monoclines-­‐  folds  formed  over  fault  blocks-­‐  common  in  AZ  &  UT    

Intensity  of  folding-­‐  Limit  of  how  much  folding  a  rock  can  endure  under  compression.    Eventually  rocks  will  break  

 Faults  

Dfn:  Fracture  with  movement.    Joint  =  fracture  without  movement  Basic  components  of  fault  

Fault  plane       Strike  &  Dip    Displacement     Relative  motion  Hanging  wall  &  footwall  

Dip  slip  faults  Normal  Fault-­‐  hanging  wall  down  relative  to  footwall  

Detachment  fault=  normal  fault  dipping  less  than  45°  Horsts  and  Grabens  

Reverse  Fault  -­‐  hanging  wall  up  relative  to  footwall  Thrust  Fault=  reverse  fault  dipping  less  than  45°  

Strike-­‐slip  faults  Right  lateral  =  dextral  Left  lateral  =  sinistral  Strike-­‐slip  faults  and  transform  faults  

Oblique-­‐slip  faults  Note  that  although  most  faults  have  some  oblique  component,  they  tend  to  be  dominantly  dip-­‐  or  

strike-­‐  slip.  So  we  simply  classify  most  of  them  as  if  they  were  completely  one  way  or  the  other.    

Page 9: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 9 of 20

Mountains  Types  of  mountains  

•Fold  and  Thrust  Belts-­‐  Compressional  stress  e.g.  Himalayas    •Block  Faulting  &  Rift  Valleys-­‐  Tensional  stress  e.g.  Basin  &  Range  province  of  SW  N.  America.  

Horsts  &  Grabens  •Single  volcanoes  or  volcanic  chains  (island  or  continental  arcs)-­‐  found  around  subduction  zones  •Erosional  remnants-­‐  present  day  Appalachians  formed  originally  as  a  fold  and  thrust  belt  when  Africa  

collided  with  North  America  at  the  end  of  the  Paleozoic.    Eroded  to  flat.    Exhumed  by  later  uplift  and  differential  erosion  of  weaker  rock  units.    

Anatomy  of  an  orogenic  belt-­‐  The  Plate  Tectonic  or  Wilson  Cycle  Passive  and  active  continental  margins  Rifting  and  Sea-­‐Floor  spreading  to  produce  Passive  margin  

Deposition  of  sediments  Change  in  tectonic  environment  to  produce  subduction    Beginning  of  andesitic  volcanism  Compressional  deformation  

Folding  Faulting  Metamorphism  

Continental  Collision  and  return  to  passive  margin  tectonics    Microplate  tectonics-­‐  Suspect  Terranes    Supplemental  Materials:  Films:    Earth  Revealed  Series-­‐  Mountain  Building  &  Earth  Structures    

Page 10: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 10 of 20

GLG101:  Earthquakes  Lectures-­‐  Reviews    Elastic  Rebound  Theory:  Stress  can  be  stored  as  elastic  strain,  then  suddenly  released  in  part  as  seismic  

waves.    The  waves  travel  some  distance-­‐  vibrating  the  ground  or  quaking  it  as  they  pass.    This  action  is  what  we  call  an  earthquake.  

 Basic  definitions:  

Earthquake  (EQ)  =  shaking  of  ground  by  passage  of  seismic  waves  resulting  from  the  release  of  stress  through  breakage  of  rock  

Focus  the  point  of  rupture-­‐=  usually  occurs  below  the  surface  of  the  Earth.  Epicenter  =  the  surface  location  directly  above  the  point  of  rupture  Aftershocks  =  smaller  Earthquakes  representing  adjustments  of  remaining  rock  to  new  motion.  

 Causes  of  earthquakes  

Faulting  =  two  masses  of  rock  sliding  past  one  another  along  fault  plane-­‐  Elastic  rebound  theory.    Buildup  of  strain,  release  in  an  earthquake,  repeat  

Magma  motion  =  as  magma  forces  its  way  to  surface,  rocks  may  break  causing  earthquakes  Explosions  =  Volcanic  eruptions  or  nuclear  bombs  Possible  mineral  phase  changes  for  really  deep  earthquakes  

 Seismic  Waves-­‐    

Body  Waves-­‐  Waves  travel  through  the  "body  of  rock  or  body  of  Earth"  p  waves-­‐  Primary  Waves-­‐  compressional  waves-­‐  particle  motion  is  back  and  forth-­‐  very  fast  waves-­‐  4-­‐7  

km/sec  can  travel  through  almost  any  material  s  waves  -­‐  Secondary  or  Shear  waves-­‐  particle  motion  is  up/down  and  sideways  (perpendicular  do  

direction  of  wave  travel)-­‐  slower  than  p-­‐waves  for  the  same  material-­‐  2-­‐5  km/sec.    Because  waves  propagate  by  shearing  particles,  s-­‐waves  cannot  travel  through  fluids  such  as  gasses  and  liquids  

 Surface  Waves-­‐  waves  travel  along  Surface  of  the  Earth-­‐  slower  than  body  waves  

Love  Waves  -­‐  particle  motion  is  a  horizontal  shear  wave-­‐  cannot  travel  through  fluid.  Rayleigh  Waves  -­‐  particle  motion  is  retrograde  elliptical-­‐  similar  to  ocean  waves.  Rayleigh  waves  

produce  very  large  ground  motion  and  are  responsible  for  much  of  the  destructive  power  of  EQs.          

Page 11: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 11 of 20

Effects  of  Earthquakes  (see  movie  "When  the  Bay  Area  Quakes")  Ground  motion-­‐  from  the  passage  of  seismic  waves  

The  Mercali  Scale:  a  measure  of  Earthquake  Intensity-­‐  Ground  shaking  “scale”  Factors  influencing  earthquake  intensity.  Distance  from  epicenter     Rock  type     Construction  Type  

Landslides-­‐  triggered  by  passage  of  seismic  waves  Liquefaction-­‐  creation  of  "quicksand"  in  wet  muddy  sediments  Surface  rupture-­‐  actual  ground  breakage  Fires-­‐  from  rupture  and  ignition  of  gas  lines  etc.  Seismic  Sea  Waves  (Tsunamis)-­‐  large  waves  (hurricane  sized  or  larger)  caused  by  land  shifts  in  earthquakes  Seiches  (pronounced  "Say-­‐shays")-­‐  rocking  motion  of  water  in  closed  bays  Aftershocks-­‐  "smaller  earthquakes"  following  the  main  shock.    These  may  further  damage  structures  

weakened  by  the  main  shock.    Although  there  will  be  hundreds  or  thousands  of  aftershocks  after  a  large  earthquake,  there  will  usually  be  2  or  three  aftershocks  of  one  magnitude  less  than  the  main  shock.    If  the  main  shock  was  a  magnitude  8,  some  of  the  aftershocks  may  be  magnitude  7-­‐  very  large  aftershocks!      

Power  outages/  Water  shortages/  communications  out  etc.    Coping  with  the  Threat  of  Earthquakes  (see  attached  FEMA  what  to  do  list]    Earthquake  prediction.  

Long  term  Seismic  frequency-­‐  some  areas  seem  to  have  earthquakes  at  "regular"  intervals  of  time  (Parkfield  

Experiment)  Space-­‐time  patterns-­‐  patterns  in  where  and  when  earthquakes  occur.  Seismic  gaps-­‐  areas  along  faults  that  have  not  ruptured  in  a  long  time.    Stress  is  building.  

Short  term-­‐  Parkfield  Experiment  Foreshocks-­‐  smaller  earthquakes  that  may  signal  onset  of  larger  one  Water  level  changes-­‐  possible  changes  in  groundwater  well  levels  due  to  shift  prior  to  rupture  Radon  emissions-­‐  possibly  due  to  shifts  in  Earth  prior  to  rupture  Geodetic  changes-­‐  shifts  in  location  of  areas  prior  to  rupture  Low  Frequency  Radio  Waves-­‐  for  whatever  reason,  these  may  indicate  immanent  rupture  Animal  behavior  

     

Page 12: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 12 of 20

Measuring  Seismic  Waves  Seismometers-­‐  device  that  can  detect  the  passage  of  waves  through  the  earth.    Many  types  of  

seismometers  used  to  measure  different  periods  of  waves.    World-­‐wide  seismic  network  (WWSN)-­‐  set  up  after  W.W.II  to  monitor  nuclear  testing.  

Seismographs  -­‐  seismometer  with  a  recording  mechanism  to  show  passage  of  waves  Seismogram  -­‐  graph  from  a  seismograph-­‐  and  the  fundamental  source  of  seismic  data.    Record  of  arrival  of  

various  waves  and  their  times.    Seismograms  from  all  the  stations  of  the  WWSN  are  stored  and  archived  by  the  National  Earthquake  Information  Center  in  Golden  Colorado  and  several  other  sites  as  well.    Nowadays  the  seismograms  are  recorded  digitally  for  instant  data  dissemination  all  over  the  world.  

 Locating  Earthquakes  from  seismograms  

Difference  in  p  and  S  velocities  allow  construction  of  Travel  time  curves.  Difference  in  wave  type  allow  for  easy  recognition  of  p  and  S  waves  on  seismograms.    The  two  combined  allow  us  to  Figure  out  from  any  given  seismic  station,  how  far  away  an  Earthquake  occurred.    Triangulation  is  needed  to  give  real  location  of  epicenter.    Can  also  get  depth  to  focus.  

Shallow  focus  0-­‐70  km  Intermediate  Focus  70-­‐350  km  Deep  focus  350-­‐700  km.      

Can  also  determine  type  of  faulting  first  motion  studies  (don't  worry  about  how  we  do  this-­‐  just  that  we  can  do  it.)  

Distribution  of  aftershocks  indicates  fault  plane.    Distribution  of  Earthquakes  Plate  boundary  quakes-­‐  most  earthquakes  occur  on  and  help  define  plate  boundaries  Shallow  focus  

Divergent  boundary  Convergent  boundary  Transform  boundary  

Deep  focus-­‐  Convergent  boundary  only  Benioff  zones-­‐  can  determine  which  plate  is  subducting—know  this.  Subduction  angles      

   

Page 13: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 13 of 20

Earthquake  Magnitude    Earthquake  magnitude-­‐  relative  amplitudes  of  waves  and  energy  released  

The  Richter  Scale-­‐  logarithmic  scale  based  on  amplitudes  of  waves.    An  increase  of  one  on  the  scale  corresponds  to  a  factor  of  10  increase  in  wave  amplitude.    Consequently,  the  waves  produced  by  a  Richter  Magnitude  5  earthquake  are  10  times  greater  than  those  produced  in  a  Richter  magnitude  4  earthquake;  and  100  times  greater  than  in  a  magnitude  3  earthquake.      

 However,  it  takes  about  30  times  the  stored  strain  energy  to  create  a  ten-­‐fold  increase  in  wave  

amplitude.    Thus,  a  magnitude  7  earthquake  releases  30  times  the  strain  energy  of  a  magnitude  6  earthquake  and  roughly  900  times  the  energy  of  a  magnitude  5  earthquake.    In  short,  it  would  take  900  magnitude  5  earthquakes  to  release  the  same  amount  of  energy  as  one  magnitude  7  earthquake.  

 Other  magnitude  scales-­‐  such  as  total  moment  magnitude  and  surface  wave  magnitude  are  actually  

used  more  often  by  geologists.    These  are  converted  to  hypothetical  Richter  magnitudes  for  Dan  Rather  (the  press).  

 •Summary  diagrams-­‐  attached  FEMA  what-­‐to-­‐do  list  •Summary  films  -­‐  When  the  Bay  Area  quakes;  available  in  media  center  library;      •Supplemental  film-­‐  Earthquakes  (Earth  Revealed);  Nova-­‐  Earthquake;  The  San  Andreas  Fault  

Page 14: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 14 of 20

What  to  do  Before,  During,  and  After  an  Earthquake  

Source:  FEMA  (http://www.fema.gov/library/quakef.htm).    Earthquakes  strike  suddenly,  violently  and  without  warning.  Identifying  

potential  hazard  ahead  of  time  and  advance  planning  can  reduce  the  dangers  of  serious  injury  or  loss  of  life  from  an  earthquake.    

BEFORE  Check  for  hazards  in  the  home.  

Fasten  shelves  securely  to  walls.  

Place  large  or  heavy  objects  on  lower  shelves.  

Store  breakable  items  such  as  bottled  foods,  glass,  and  china  in  low,  closed  cabinets  with  latches.  

Hang  heavy  items  such  as  pictures  and  mirrors  away  from  beds,  couches,  and  anywhere  people  sit.  

Brace  overhead  light  fixtures.  

Repair  defective  electrical  wiring  and  leaky  gas  connections.  These  are  potential  fire  risks.  

Secure  a  water  heater  by  strapping  it  to  the  wall  studs  and  bolting  it  to  the  floor.  

Repair  any  deep  cracks  in  ceilings  or  foundations.  Get  expert  advice  if  there  are  signs  of  structural  defects.  

Store  weed  killers,  pesticides,  and  flammable  products  securely  in  closed  cabinets  with  latches  and  on  bottom  shelves.    

Identify  safe  places  in  each  room.    Under  sturdy  furniture  such  as  a  heavy  desk  or  table  or  against  an  inside  wall.  

Away  from  where  glass  could  shatter  around  windows,  mirrors,  pictures,  or  where  heavy  bookcases  or  other  heavy  furniture  

could  fall  over.  

Locate  safe  places  outdoors.  In  the  open,  away  from  buildings,  trees,  telephone  and  electrical  lines,  overpasses,  or  elevated  

expressways.  

Make  sure  all  family  members  know  how  to  respond  after  an  earthquake.  

Teach  all  family  members  how  and  when  to  turn  off  gas,  electricity,  and  water.  

Teach  children  how  and  when  to  call  9-­‐1-­‐1,  police,  or  fire  department  and  which  radio  station  to  tune  to  for  emergency  

information.  

Contact  your  local  emergency  management  office  or  American  Red  Cross  chapter  for  more  information  on  earthquakes.    

Have  disaster  supplies  on  hand.    

Flashlight  and  extra  batteries     Nonelectric  can  opener  

Portable  battery-­‐operated  radio  and  extra  batteries   Essential  medicines  

First  aid  kit  and  manual   Cash  and  credit  cards  

Emergency  food  and  water   Sturdy  shoes  

Develop  an  emergency  communication  plan.    

In  case  family  members  are  separated  from  one  another  during  an  earthquake  (a  real  possibility  during  the  day  when  adults  

are  at  work  and  children  are  at  school),  develop  a  plan  for  reuniting  after  the  disaster.  

Ask  an  out-­‐of-­‐state  relative  or  friend  to  serve  as  the  "family  contact."  After  a  disaster,  it's  often  easier  to  call  long  distance.  

Make  sure  everyone  in  the  family  knows  the  name,  address,  and  phone  number  of  the  contact  person.  

DURING  If  indoors:    

Take  cover  under  a  piece  of  heavy  furniture  or  against  an  inside  wall  and  hold  on.  Stay  inside.    The  most  dangerous  thing  to  do  

during  the  shaking  of  an  earthquake  is  to  try  to  leave  the  building  because  objects  can  fall  on  you.  

Page 15: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 15 of 20

If  outdoors:    

Move  into  the  open,  away  from  buildings,  streetlights,  and  utility  wires.  

Once  in  the  open,  stay  there  until  the  shaking  stops.  

If  in  a  moving  vehicle:    

Stop  quickly  and  stay  in  the  vehicle.  

Move  to  a  clear  area  away  from  buildings,  trees,  overpasses,  or  utility  wires.  

Once  the  shaking  has  stopped,  proceed  with  caution.  Avoid  bridges  or  ramps  that  might  have  been  damaged  by  the  quake.  

AFTER  Be  prepared  for  aftershocks.  

Although  smaller  than  the  main  shock,  aftershocks  cause  additional  damage  and  may  bring  weakened  structures  down.  

Aftershocks  can  occur  in  the  first  hours,  days,  weeks,  or  even  months  after  the  quake.  

Help  injured  or  trapped  persons.    Give  first  aid  where  appropriate.  Do  not  move  seriously  injured  persons  unless  they  are  in  

immediate  danger  of  further  injury.  Call  for  help.  

Listen  to  a  battery-­‐operated  radio  or  television  for  the  latest  emergency  information.    Remember  to  help  your  neighbors  who  

may  require  special  assistance-­‐-­‐infants,  the  elderly,  and  people  with  disabilities.  

Stay  out  of  damaged  buildings.  Return  home  only  when  authorities  say  it  is  safe.    

Use  the  telephone  only  for  emergency  calls.  

Clean  up  spilled  medicines,  bleaches  or  gasoline  or  other  flammable  liquids  immediately.  Leave  the  area  if  you  smell  gas  or  

fumes  from  other  chemicals.  

Open  closet  and  cupboard  doors  cautiously.  

Inspect  the  entire  length  of  chimneys  carefully  for  damage.  Unnoticed  damage  could  lead  to  a  fire.  

 

INSPECTING  UTILITIES  IN  A  DAMAGED  HOME    

Check  for  gas  leaks-­‐-­‐If  you  smell  gas  or  hear  blowing  or  hissing  noise,  open  a  window  and  quickly  leave  the  building.  Turn  off  the  

gas  at  the  outside  main  valve  if  you  can  and  call  the  gas  company  from  a  neighbor's  home.  If  you  turn  off  the  gas  for  any  

reason,  a  professional  must  turn  it  back  on.  

Look  for  electrical  system  damage-­‐-­‐If  you  see  sparks  or  broken  or  frayed  wires,  or  if  you  smell  hot  insulation,  turn  off  the  

electricity  at  the  main  fuse  box  or  circuit  breaker.  If  you  have  to  step  in  water  to  get  to  the  fuse  box  circuit  breaker,  call  an  

electrician  first  for  advice.  

Check  for  sewage  and  water  lines  damage-­‐-­‐If  you  suspect  sewage  lines  are  damaged,  avoid  using  the  toilets  and  call  a  plumber.  

If  water  pipes  are  damaged,  contact  the  water  company  and  avoid  using  water  from  the  tap.  You  can  obtain  safe  water  by  

melting  ice  cubes.  

Pets  after  an  Earthquake    The  behavior  of  pets  may  change  dramatically  after  an  earthquake.  Normally  quiet  and  friendly  cats  

and  dogs  may  become  aggressive  or  defensive.  Watch  animals  closely.  Leash  dogs  and  place  them  in  a  fenced  yard.    Pets  

may  not  be  allowed  into  shelters  for  health  and  space  reasons.  Prepare  an  emergency  pen  for  pets  in  the  home  that  

includes  a  3-­‐day  supply  of  dry  food  and  a  large  container  of  water.  

Page 16: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 16 of 20

GLG101:  Earth  Interior  Lecture  Reviews    Methods  used  to  determine  properties  and  characteristics  of  the  Earth  Interior  

•Seismology-­‐  the  study  of  seismic  waves  produced  by  Earthquakes  and  explosions  •Gravity-­‐  the  study  of  the  Earth's  gravitational  field  •Geomagnetism-­‐  the  study  of  the  Earth's  magnetic  field  •Meteorites-­‐  study  of  the  extra-­‐terrestrial  bits  of  rock  that  occasionally  hit  the  Earth  •Heat  Flow-­‐  study  of  the  Earth's  internal  heat  •Physical  and  Chemical  constraints-­‐  laboratory  study  of  material  behavior  

 Seismology-­‐  Evidence  from  seismic  waves  

Seismic  waves  travel  at  different  speeds  depending  on  the  material.    In  general,  denser,  more  rigid  material  (crystalline  rocks)  transmits  waves  faster  than  lighter,  less  cohesive  rocks.    In  addition,  experimental  and  theoretical  considerations  indicate  that  some  waves  (S-­‐waves)  cannot  pass  through  liquids.      

 •Wave  fronts  versus  ray  paths-­‐  seismic  waves  traveling  through  the  Earth  can  be  represented  either  as  

wave  fronts  or  as  rays  perpendicular  to  wave  fronts.  •Arrivals  at  some  seismic  stations  at  medium  distances  from  EQ  epicenters  come  too  fast  for  material  to  

be  completely  homogeneous.    Example:    Distance  =  rate  x  time.    Given  epicenter  and  station  A  (a  short  distance  away),  we  can  measure  distance  and  time  and  thus  calculate  the  velocity  for  each  type  of  wave.    Given  these  velocities  we  can  predict  the  arrival  times  at  other  seismic  stations,  say  at  distance  B  (a  longer  distance  from  the  epicenter).    In  reality,  however,  the  arrival  times  at  farther  stations  are  almost  always  too  soon-­‐  indicating  that  the  waves  must  have  been  traveling  faster.    Stations  farther  away  receive  waves  that  travel  deeper  within  the  Earth.    Therefore,  rocks  deeper  within  the  Earth  are  more  rigid  or  denser  than  those  at  the  surface.    Point:    layered  Earth.  

•Seismic  refraction-­‐  Waves  are  bent  by  passage  into  a  layer  of  different  velocity.    If  the  new  layer  is  more  dense  (hence  faster  velocity),  waves  are  bent  more  shallowly  than  entrance  angle.    If  new  layer  is  less  dense  then  waves  are  bent  more  steeply.      

•Seismic  reflection-­‐  experiments  with  explosions  indicated  that  some  waves  are  not  refracted  but  bounce  right  back-­‐  they  are  reflected.    This  is  also  difficult  to  explain  in  a  homogeneous  Earth.  

         

Page 17: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 17 of 20

•Seismic  velocity  versus  depth  curves-­‐  Upper  Earth  Seismic  refraction  and  reflection  of  the  various  waves  allow  us  to  construct  a  picture  of  the  velocities  

versus  depth  within  the  Earth    Basically,  velocities  increase  with  depth  with  a  few  exceptions  and  jumps  called  discontinuities  

-­‐Moho  Discontinuity-­‐  crust-­‐mantle  boundary.    Jump  is  consistent  with  change  of  rock  type  from  felsic/intermediate/mafic  in  crusts  to  ultramafic  in  mantle.    confirmation  from  mantle  xenoliths  of  peridotite  

-­‐LVZ  (Low  Velocity  Zone)  =  Asthenosphere-­‐  both  S  and  P  waves  transmitted  so  material  must  behave  like  solid  in  short  time  frames.    Large  drop  in  wave  velocities,  however,  suggests  that  material  is  not  all  that  rigid.  

-­‐400km  Discontinuity-­‐  sharp  velocity  increase.    Possibly  due  to  mineral  phase  change  or  chemical  change  at  this  level.    Not  well  known-­‐  either  would  work.  

-­‐670km  Discontinuity-­‐sharp  velocity  increase.    Possibly  due  to  mineral  phase  change  or  chemical  change  at  this  level.    Not  well  known-­‐  either  would  work.  

•Seismic  velocity  versus  depth  curves-­‐  Whole  Earth  Shadow  zones  and  velocities  of  the  various  waves  allow  us  to  construct  a  picture  of  the  velocities  

versus  depth  within  the  whole  Earth  •S-­‐Wave  shadow  zone-­‐  Since  S-­‐Waves  cannot  transmit  through  liquids  and  no  S-­‐Waves  are  observed  

to  arrive  beyond  103°  from  epicenter,  then  there  must  be  a  liquid  layer  of  the  Earth.    Depth  can  be  calculated  by  geometry.    Evidence  for  existence  of  liquid  core.  

•P-­‐Wave  Shadow  zone-­‐  No  P-­‐wave  arrivals  are  know  between  103  and  143°  from  epicenter.    P-­‐Waves  can  transmit  through  liquids  although  their  velocities  will  be  slowed  down.    Therefore,  refraction  will  make  them  enter  core  more  steeply.    This  will  create  a  shadow  zone  in  the  way  portrayed  by  the  illustration  in  book.    Depth  can  be  calculated  by  geometry.    Consistent  with  S-­‐Wave  Shadow  zone  for  existence  of  liquid  core.  

-­‐Gutenberg  discontinuity  -­‐  major  drop  in  P-­‐wave  velocity.    S  waves  not  transmitted.    Therefore,  material  is  most  likely  fluid.    Core/mantle  boundary  

-­‐Slight  discontinuity  in  p-­‐wave  arrivals  traveling  through  inner  most  part  of  core  -­‐  Chemical  considerations  dictate  that  extra  pressure  may  allow  liquid  core  to  go  to  a  solid  at  depth.    Appears  that  there  may  be  a  solid  inner  core.    Other  evidence  from  free  oscillations  suggests  solid  inner  core.  

     

Page 18: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 18 of 20

Evidence  from  gravity  •Gravity  is  the  name  given  to  the  attraction  between  masses.    Gravity  is  a  force  and  the  strength  of  this  

force  is  proportional  to  the  masses  involved  and  the  square  of  the  distance  between  them.  •Observations  of  gravitational  attraction  of  the  Earth  indicate  that  the  Earth  must  have  more  mass  than  is  

visible  from  crustal  rocks  and  those  of  the  upper  mantle.  •Density  within  the  Earth  

Average  Earth  Density  is  about  5.5  grams/cc.  Average  Crust  &  Upper  mantle  densities,  however,  are  only  about  2.7-­‐3.5  g/cc  Calculations  indicate  that  core  must  have  density  of  about  10  g/cc-­‐  consistent  with  iron/nickel  

•Gravimeters  and  Gravity  anomalies  Bodies  of  heavier  rock  perturb  the  usual  value  of  the  Earth's  gravity  field.      Heavier  rock  beneath  the  surface  produces  positive  gravity  anomalies  (field  strength  is  higher  than  

normal)  Lighter  rock  beneath  the  surface  produces  negative  gravity  anomalies  (field  strength  is  less  than  

normal)  Gravitational  anomalies  can  be  used  to  locate  metal  ore  bodies  or  depth  to  crystalline  rock  in  deep  

sedimentary  basins  •Principles  of  Isostacy  

In  mountain  belts,  we  would  expect  a  positive  gravity  anomaly  due  to  extra  mass  of  mountains  In  most  mountain  belts,  however,  we  see  no  gravity  anomaly  Lithosphere  blocks  of  extra  mass  can  actually  sink  into  the  asthenosphere  (like  icebergs  sink  into  

water).    The  displacement  of  heavy  mantle  material  away  from  the  roots  of  mountains  removes  positive  gravity  anomaly.  

Compensation  of  weight  of  lithosphere  by  displacement  of  asthenosphere  is  isostacy.  As  erosion  removes  mountains,  the  lithosphere  rises.  

 Evidence  from  magnetism  

•Shape  of  magnetic  field-­‐  geometry  of  Earth's  magnetic  field  is  the  same  AS  IF  a  bar  magnet  were  centered  in  the  Earth's  core  and  aligned  with  the  magnetic  poles.  

•Generation  of  magnetic  field-­‐    temperatures  are  too  hot  in  the  core,  however,  for  a  bar  magnet  to  exist.    An  electrical  current  moving  around  the  Earth’s  spin  axis  in  the  core  can  generate  the  field.    Therefore,  the  Earth's  core  must  be  an  electrically  conducting  fluid.    Again,  iron-­‐nickel  would  work  

•The  Earth's  magnetic  field  occasionally  reverses  (NOT  every  500,000  years  though,  I  don't  care  what  your  text  says)    irregular  through  time.    Cause:    unknown.  

•Magnetic  field  anomalies  Bodies  of  magnetic  rock  perturb  the  usual  value  of  the  Earth's  magnetic  field.      

Page 19: GLG101:PhysicalGeology& LectureOutlinesforExamweb.gccaz.edu/academicdepartments/physicalscience/gjcweb/gjcftp/...G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October

G. Calderone- GLG101: Physical Geology Lecture Reviews, Exam#3, October 19, 2015 Page 19 of 20

More  magnetic  rock  beneath  the  surface  magnetized  in  the  direction  of  the  Earth's  present  magnetic  field  produces  positive  magnetic  anomalies  (field  strength  is  higher  than  normal)  

Less  magnetic  rock  beneath  the  surface  OR  rock  magnetized  opposite  of  the  direction  of  the  Earth's  present  magnetic  field  produces  negative  gravity  anomalies  (field  strength  is  less  than  normal)  

Magnetic  anomalies  can  be  used  to  locate  metal  ore  bodies  or  depth  to  crystalline  rock  in  deep  sedimentary  basins  AND  play  an  important  role  in  the  determinations  of  plate  motions  

 Evidence  from  meteorites  

•Origin  of  meteorites-­‐  trajectories  place  most  of  them  in  asteroid  belt  between  Jupiter  &  Mars.    They  are  thought  to  represent  either  a  broken  up  planet  or  original  material  of  the  solar  system  that  never  coalesced  into  a  planet  because  of  Jupiter's  enormous  gravity  field.  •Composition  of  meteorites-­‐  Nickel-­‐iron.    Stony-­‐  much  like  Peridotite  in  composition  Point:    Earth  interior  is  probably  made  up  of  similar  stuff  

•Age  of  meteorites-­‐  gives  ultimate  age  of  Earth  at  4.6  billion  years  (supported  by  moon  rocks)      

Summary  of  Earth's  interior  •Seismology  gives  layers  of  Earth  

Crust-­‐mantle-­‐outer  core-­‐inner  core  Lithosphere-­‐asthenosphere-­‐lower  mantle  (=  mesosphere)-­‐outer  core-­‐inner  core  

•Xenoliths  (inclusions),  seismology,  constrain  properties  of  mantle,  meteorites  constrain  composition.    Mantle  is  most  probably  solid  (more-­‐or-­‐less)  peridotite.    Seismology,  however,  suggests  that  some  composition  changes  may  occur  below  asthenosphere  (400  &  670  km  discontinuities.  

•Gravity,  seismology,  and  magnetism  constrain  properties  of  core,  meteorites  constrain  composition.    Outer  core  is  most  probably  liquid  iron-­‐nickel.    Seismology,  however,  suggests  that  innermost  core  is  solid.  

•Age  of  meteorites-­‐  gives  ultimate  age  of  Earth  at  4.6  billion  years  •Summary  films:    Earth  Interior  (Earth  Revealed)