Geothermal water resources of Poland: uses and ... · uses and perspectives Zasoby wód...

32
Geothermal water resources of Poland: uses and perspectives Zasoby wód geotermalnych w Polsce: wykorzystanie i perspektywy AGH - University of Science and Technology in Krakow, Faculty of Geology, Geophysics and Environmental Protection Department of Fossil Fuels & Polish Geothermal Society "Science for Industry: Necessity is the mother of invention: Third Networking Event dedicated to the Polish experience in the field of shale gas exploration„ 25-27.06.2014, ING PAN, Warszawa Marek Hajto

Transcript of Geothermal water resources of Poland: uses and ... · uses and perspectives Zasoby wód...

Geothermal water resources of Poland: uses and perspectives Zasoby wód geotermalnych w Polsce: wykorzystanie i perspektywy

AGH - University of Science and Technology in Krakow, Faculty of Geology, Geophysics and Environmental Protection Department of Fossil Fuels & Polish Geothermal Society "Science for Industry: Necessity is the mother of invention: Third Networking Event dedicated to the Polish experience in the field of shale gas exploration„ 25-27.06.2014, ING PAN, Warszawa

Marek Hajto

CONTENTS

• THE MAIN CONCEPTS AND DEFINITIONS • GEOLOGICAL SETTING • GEOTHERMAL CONDITIONS OF POLAND –

THE MAIN GEOTHERMAL AQUIFERS • GEOTHERMAL PLANTS IN OPERATION – AN OVERVIEW • GEOTHERMAL WATERS AND ENERGY RESOURCES • PERSPECTIVE AREAS FOR NEW PLANTS CONSTRUCTION • RESEARCH IN PROGRESS AND PROJECTS PLANNED • CONCLUSIONS

GEOTHERMAL ENERGY

• Geothermal energy - the internal heat of the Earth accumulated in waters ("hydrothermal systems") and rocks in the earth's crust

• Thermal water (=geothermal water) - underground water whose temperature at the outlet is at least 20oC, available by the spring or boreholes (Polish

Geological Mining Law, 2011)

• The definition of geothermal energy by the EU Directive concerning the development of RES (3x20%, 2008): "Geothermal energy - energy stored in the form of heat below the surface of the Earth"

GEOLOGICAL BACKGROUND OF CENTRAL EUROPE

Tectonics:

• Precambrian platform of NE - Europe

• Palaeozoic units of Central and Western Europe (Caledonian and Variscian)

• Carpathian range (part of Alpine system)

1. T-T zone, 2. Polish Trough, 3. Inter Cratonic boundary

Poland - “meeting area” of three main European geostructural units:

GEOLOGICAL CONDITIONS DETERMINIG DISTRIBUTION OF HIGH AND LOW GEOTHERMAL TEMPERATURE RESOURCES

http://iga.igg.cnr.it/geo/geoenergy.php

• Poland lie out of areas of present tectonic and volcanic activities

LOW G.T.R. < 150oC > HIGH G.T.R.

(at 1km depth)*

*after Rowley’s, 1982

?

WAYS OF USING GEOTHERMAL ENERGY

• Generation of electricity using geothermal steam (in recent years started producion of electricity based on geothermal waters - binary systems, several hundred kWe - 3 MWe);

• Direct use covering a wide range of temperatures and a variety of goals. The most common: heating, agriculture (greenhouses, floor heating), drying, recreation and balneotherapy (medicine), fish farmers, drying of building materials, industrial processes ...

• Heat pumps (compressors) - heat recovery from subsurface rock and shallow aquifers (temperature: a few of °C, depth: a few, to few hundred meters b.g.l)

(absorption heat pump – at the higher temperature. /use e.g. in Mszczonów nad Pyrzyce/)

SOURCES OF GEOLOGICAL INFORMATION

Large amount of borehole data recorded during long-

term oil and gas development history of the Polish Petroleum Industry

POGC plc

Total lenght of drill wells were estimated

to ab. 20 000 km

=> 3 x Earth radius

> 15 000 wells

> 8 000

GEOTHERMAL POTENTIAL OF POLAND – SOURCES OF INFORMATION

Regional works on geothermal conditions in Poland – important sourcess of information for scientists, investors (published 2006 – 2013, applying also the results of many earlier works):

- Atlas of geothermal resources in the Polish Lowlands (Górecki [ed.] et al., 2006)

- Atlas of geothermal aquifers of the Małopolska Region (Barbacki, Bujakowski, Pająk, 2006)

- Atlas of geothermal enery resources in the Upper Silesia Region (Solik-Heliasz [ed.] et al., 2009)

- Atlas of geothermal water and energy in the Western Carpathians (Górecki [ed.] et al., 2011)

- Geothermal Atlas of Carpathian Foredeep (Górecki [ed.] et al., 2012)

- Geothermal atlas of the Eastern Carpathians (Górecki [ed.] et al., 2013)

Cover ca. 80% of the country’s territory, indicate, among other, prospective areas and types of geothermal water / energy uses (heating sector, bathing / balneotherapy, …)

N I Ż P O L S K I

W A R S Z A W A

K R A K Ó W

S U D E T Y

K A R P A T Y

Z A P A D L I S K O

P R Z E D K A R P A C K I E

G Ó R Y Ś W IĘ T O K R Z YS K IE

C ie c h o c in e k

C ie p lic e Ś lą s k ie Z d ró j

D u s z n ik i Z d ró j

L ą d e k Z d ró j

U s t ro ń

I w o n ic z

Z d ró j

K o n s t a n c in

G ru d z ią d z

L u b a t ó w k aR a b k a Z d ró j

P y r z y c e

M s z c z o n ó w

P o d h a le

U n ie jó w

S ta r g a r d S z c z e c iń s k i

1

2

3 4

GEOTHERMAL PROVINCES OF POLAND

Geothermal resources of Poland are connected with 4 Geothermal Provinces characterized with different geological setting:

1. Polish Lowlands (80%) 2. The Carpathian Province (6.5%) - Western Carpathians - Eastern Carpathians 3. Carpathian Foredeep (6.5%) 4. The Sudetes Region (5%) * areas where the geothermal aquifers of

commercial value do not occur: - Holy-Cross Massif - Tatra Mts. - Pieniny Clippen Belt

GEOTHERMAL CONDITIONS IN THE POLISH LOWLANDS

1) Area: ca. 250 thous km2, 80% of the Polish territory 2) Geology: paleozoic-mesozoic sedimentary rock ab. 8 km

thickness 3) Lithology: sandstones, limestones, marls, dolomite, claystones,

mudstones, evaporates ... 4) Heat Flow: 35 – 105 mW/m2

5) Geothermal gradient: varies from about 2 to over 3oC/100m

6) Tres: 20 – 130oC (1 – 4 km) 7) Proven geothermal water reserves (discharge of wells):

several to ~300 m3/h 8) TDS: 1 – 300 g/dm3 (corrosion) 9) Aquifers: significant share of carbonates and sandstones,

sometimes good reservoir features, prospective for underground waters, including geothermal

GEOTHERMAL CONDITIONS IN THE POLISH LOWLANDS

Distribution map of temperatures at 2,000 m depth below surface in the Polish Lowlands

1.Lower Cretaceous

2.Upper Jurassic

3.Middle Jurassic

4.Lower Jurassic

5.Upper Triassic

6.Lower Triassic

7.Lower Permian

8.Carboniferous

9.Devonian

55 - 80oC Poddębice GT-2

35km

150km

WARSZAWA

Parameters: - sandstones of Lower Cretaceous - outflow temperature 71°C - artesian outflow 125 m3/h - reserves 190 m3/h - TDS 0.432 g/dm3

Poddębice GT-2

K2 K1

HYDROGEOTHERMAL CONDITIONS

CARPATHIAN PROVINCE (WESTERN AND EASTERN CARPATHIANS)

1) Area: ca. 20 thous km2 (6.5% of the Polish territory) including ab. 500 km2 - Podhale Trough

2) Geology: • outer Carpathian Basin: flysch sediments (cretaceous-paleogene, thickness of ab.

5-8 km • inner Carpathian Basin: (Podhale): carbonate rocks, limestones, dolomites, flysch

rocks 3) Lithology: sandstones, limestones, marls, dolomite, claystones, mudstones,

evaporates ... 4) Heat Flow: 60 – 95 mW/m2

5) Geothermal gradient: from ab. 1.8 to over 3.6oC/100m 6) Tres: 20 – 60oC (flysch) to 87 – max. 127.5oC (Podhale) 7) Discharge of wells: max. several tens (fysch) – 550 m3/h (Bańska PGP-1) -

Podhale 8) TDS: • outer Carpathians: 10 - over 120 g/l, • Podhale Trough: < 3g/l 9) Aquifers: • outer Carpathians: flysch sandstones of Silesian Nappe, • Podhale Trough: limestones and dolomites of the middle Triassic, Jurassic

sandstones and carbonates of the middle Eocene

Differentiation of hydrogeological conditions: • in vertical profile: Carpathian flysch (weak) flysch basement (good) • horizontaly:

Podhale Basin (very good) outer Carpathian flysch (weak)

• deep flysch water intakes characterized with low output due to low or lack of surface-water supplying

CARPATHIAN FOREDEEP

1) Area: ca. 20 thous km2 (6.5% of the Polish territory) 2) Geology: sedimentary rocks oligocene-upper miocene age (total

thickness to ca. 3 km (North of Przemyśl) 3) Lithology: mudstones, marls and claystones, limestones, evaporates,

sandstones... 4) Heat Flow: 60 – 95 mW/m2

5) Geothermal gradient: moderate from 1.8 – over 4.5oC/100m 6) Tres: 20 – 100oC (3 km bgl) 7) Discharge of wells: several tens, locally to 100 m3/h 8) TDS: 1 – 100/150 g/l (increases from E to W) 9) Aquifers: sandstones, marls, limestones • aquifer beds are generally discontinuous • The best hydrogeothermal parameters characterize waterbearing layers

overlying of evaporate ones (upper badenian, sarmatian age) • Perspective areas: - E of Tarnow - N of Ropczyce, - N of Łańcut, - NE of Leżajsk

temp.: 30-40oC outflow: 30-60 (100) m3/h

PALAEOZOIC-MESOZOIC AQUIFERS IN THE BASEMENT OF CARPATHIAN FLYSCH AND CARPATHIAN FOREDEEP

1. Upper Cretaceous (without Cenomanian) - marls and limestones

2. Cenomanian - sandstones, conglomerates (Miechów Trough, Bochnia-Brzesko)

3. Lower Cretaceous – marginal !

4. Upper Jurassic – carbonate rocks

5. Middle Jurassic - sandstones

6. Upper Triassic – claystone, shales, sandstones

7. Middle Triassic (T2+Tp3) – carbonate rocks

8. Lower Triassic (Tp1+Tp2) – sandstones

9. Permian – sandstones and tufs

10. Carboniferous /clastic/– clastic sediments, mainly sandstones

11. Devonian-Carboniferous /carbonate/ – carbonate rocks (aquifers in Ustroń, Jaworze)

SUDETES

1) Different conditions of occurrence of thermal waters:

• Thermal waters occur in the crystalline massifs (granites, metamorphic

rocks)

• The flow and accumulation are associated with cracks of different origins: a

greater degree of rock massif fracturing is related mainly to zones of deep

faults,

2) TDS: <1 g/dm3,

3) Contain specific ingredients: which makes them particularly attractive for

use for the purposes of recreation and therapy (fluoride, sulfide, radon

water)

• Cieplice Śląskie-Zdrój and Lądek-Zdrój – thermal waters known from XII

and XIII centuries)

4) Tres: 20.5oC to 86.5oC (Cieplice Śląskie-Zdrój; borehole C1 – depth of

2002.5m)

5) Heat flow: 40 - 70 mW/m2

6) Outflow: an average of about 10 m3/h to 50 m3/h

7) Use: marginal importance for heat – mainly balneotherapy and recreation

THE MAIN GEOTHERMAL AQUIFERS IN POLAND SUMMARY

1.Lower Cretaceous

2.Upper Jurassic

3.Middle Jurassic

4.Lower Jurassic

5.Upper Triassic

6.Lower Triassic

7.Lower Permian

8.Carboniferous

9.Devonian

Kreda Lower Cretaceous

Dolna Jura Upper Jurassic

Górna Jura Middle Jurassic

Środkowa

Jura DolnaLower Jurassic

Trias GórnyUpper Triassic

Trias DolnyLower Triassic

Perm DolnyLower Permian

KarbonCarboniferous

DewonDevonian

24236 km2

7409 km2 35637 km

2

81390 km2

29776 km2

38839 km2

28613 km2 10375 km

2

7304 km2

In the Polish Lowlands prospective geothermal water

resources are mostly connected with Jurassic and Cretaceous

sandstones

PERSPECTIVE AREAS FOR THE NEW HEAT PLANTS CONSTRUCTION

A

Czarnków

Oborniki

JanikowoKruszwica

KołoKonin

PoddębiceAleksandrów Łódzki

Konstantynów ŁódzkiŁódź

Zgierz

Piotrków Trybunalski

Żyrardów

Szczecin

GoleniówPolice

B

C

D

E

Lokalizacje miast o korzystnych warunkach dla budowy ciepłowni geotermalnych

obszary perspektywiczne

Funkcjonujące zakłady geotermalne:A - Bańska - Biały DunajecB - MszczonówC - PyrzyceD - UniejówE - Stargard Szczeciński

AGeothermal plants in

operation:

A - Zakopane

B - Mszczonów

C - Pyrzyce

D - Uniejów

E - Stargard Szczeciński

Perspective areas

of the new heat plants

localization

Cities characterized by

good parameters for heat

plants construction

POLAND – GEOTHERMAL WATER AND ENERGY USES, 2013

• Balneotherapy, bathing:

- 10 health resorts (Lądek – from XIII cent.)

- 8 new recreation centres

(opened in 2006 – 2013)

• Space heating (since early 1990s):

- 5 district heating plants

+ Poddębice

• Heat pumps: > 30 000 installations (2012)

• Installed capacity: ~ 445 MWt

(incl. ~330 MWt heat pumps)

• Heat production: ~2370 TJ/2012

(incl. ~ 1 700 TJ heat pumps)

1. operating DH plants, 2. geothermal heating installations in realisation

(mostly in recreation centres), 3. health resorts using geothermal

water, 4. geothermal recreation centres opened in 2006-2013,

2. 5. geothermal recreation centres in realisation

(Kępińska 2013, Proceedings of the European Geothermal Congress

2013) Kępińska, 2013

Installation

Year of launch Type of

use

Maximum geothermal water flow

rate

Maximu geothermal

water temperature

Installed / estimated capacity

Heat use / sales2

total Geothermal total Geothermal

m3/h oC MWt MWt TJ/r TJ/r

Podhale - DH plant / 1992/94 C 670 86 80.8 40.7 376 286.5

Pyrzyce – district heating / 1996 C 340 61 48 14.8 100 60.0

Mszczonów – district heating / 2001

C 60 41 10.2 2.7 56.9 15.1

Uniejów – district heating / 2006 C 120 68 5.0 3.2 17.8 8.9

Stargard Szczecinski / 2012 C 100 87 10 10 91 91

Uniejów – playground heating Ia 20 28 0.28 0.28 4.4 4.4

Geoth. outdoor pool Szymoszkowa, Zakopane/2008

R+C 80 27 0.3 0.3 3.0 3.0

Terma Bukovina Tatrzańska / 2008

R /B+C 40 64.5 0.35 0.35 11 11

Terma Białka Tatrzańska / 2011 R/B+C 40 72

Aqua Park Zakopane / 2006 R 130 36 - 28 0.23 0.23 1.8 1.8

Termy Szaflary / 2008 R 25 38 0.14 0.14 5.0 5.0

Termy Mszczonowskie / 2008 R 15 32 0.07 0.07 2.2 2.2

Termy Uniejów / 2008 R/B+C 30 42 0.5 0.5 7.7 7.7

Poddębice / 2011/12 C+R+B 190 71 3.8 3.8 ~19/2013

Cieplice Śląskie Zdrój B 27 36 - 39 0.3 0.3 10.0 10.0

Lądek Zdrój B 50 20 - 44 0.7 0.7 12.0 12.0

Duszniki Zdrój B, Ib 20 19 - 21 0.05 0.05 0.7 0,7

Ciechocinek B 204.5 27 - 29 1.9 1.9 2.8 2.8

Konstancin B 9 21 0.01 0.01 0,2 0.2

Ustroń B 2.2 28 - 11 0.06 0.06 0.6 0.6

Iwonicz Zdrój B 2.5 24,5 0.01 0.01 0.4 0.4

Rabka Zdrój B 4.5 28 Geothermal installations in Poland, 2012 C – heating, B – bathing, balneotherapy

R – recreation, I – other (Kępińska, 2013)

Grudziądz-Marusza /2006 B 20 20

Lubatówka (L-12 + L-14) Ic 11.0 24.5

GEOTHERMAL PROJECTS UNDERWAY, 2013

• Podhale: space heating project in realisation (connecting new receivers, drilling new production well) geothermal heating shall remain a priority (recreation / „Termy” – shall be developed as an element of wider cascaded uses) - Bańska PGP-3 (03.2013, depth 3519 m) • Gostynin, Kleszczów, Lidzbark W., Poddębice, Toruń – geothermal wells have been drilled, projects in progress (Piaseczno – well drilled, project awaits for further realisation), Poznań (Termy Maltańskie) – geothermal water used for recreation since 30.04.2013 • Poręba Wlk. – 2011 - 2012: works to confirm water reserves and reconstruction of well drilled in the 1970s (water: Q = 12 m3/h, T = 42ºC/ for balneotherapy / recreation)

• Some next possible projects: localities of Gorlice, Sękowa, Jaworze (S-Poland)

• feasibility studies for local authorities, provate investors, etc. - by MEERI PAS, AGH-UST, other entities • Research, R+D projects (injectivity, scaling problems, HDR, binary installations, geothermal water desalination/spent water utlisation and treatment, etc.)

GEOTHERMAL RESOURCES

McKelvey Diagram

NIEODKRYTE

GEOTHERMAL RESOURCES IN THE POLISH LOWLANDS

7.75 · 1022 J = 1.85 · 1012 TOE

1.45 · 1022 J = 3.47 · 1011 TOE

2.90 · 1021 J = 6.92 · 1010 TOE

9.21 · 1018 J/rok = 2.2 · 108 TOE/rok

1.38 · 1017 − 2.30 · 1017 J/rok (3.3 – 5.5 · 106 TOE/rok)

EXPLOITABLE RESERVES FOR HEATING PURPOSES

1) Assuming that 1.5 - 2.5% of disposable reserves will be used, the size of the exploitable reserves would be:

1.38 · 1017 − 2.30 · 1017 J/rok

Equivalent of 300 - 500 geothermal installations, each about 500 TJ/y of heat production

2) Assuming heat consumpion ca. 540 MJ/m2 (120 kWh/m2) and floor area ca. 100 m2 total head demand per flat/house per year is equal to ca. 54 GJ/y

summarizing, theoretically: using geothermal about 2.5 to 4 mln houses/flats can be heated

SUMMARY

1. In Poland, particularly in the Polish Lowlands significant unused potential of geothermal waters and energy exist,

2. Geothermal resources are associated with waters of different temperatures from 20 to over 80/100°C,

3. Geothermal waters can be used in a wide range for heating purposes (individual and communal), preparation of hot tap water and others,

4. Use warm water for heating purposes should first be used in areas: - Polish lowland: Lower Jurassic and Lower Cretaceous aquifers - Podhale: Middle Triassic/Eocene aquifer, - Flysch sediments: not much perspective low or lack of rainwater infiltration into the deep part of profile

5. Theoretical potential of geothermal resources is significant and is equivalent to 300-500 geothermal installations /plants/, (each gets annually ca. 500 TJ of heat), theoretical geothermal potential is sufficient for heating ca. 2.5 to 4 millions of houses,

6. Possibilities of using geothermal water for recreational purposes and / or balneotherapy (Sudetes – Carpathian - Carpathian Foredeep – Polish Lowlands),

7. Possibilities of using geothermal in Enhanced Geothermal Systems (EGS) in the areas of: Sudetes and Polish Lowlands - electricity production in binary systems

Thank you for your attention !

Marek Hajto

AGH-UST Kraków

[email protected]

Wiercenie otw. Bańska PGP-3, marzec’13

more information:

www.energia-geotermalna.org.pl

Efekty ekologiczne –

ciepłownictwo geotermalne

(Podhale)

• Redukcja emisji – Zakopane: W porównaniu z sytuacją przed wprowadzaniem c.o. geotermalnego: - średnie roczne stężenie SO2 - spadek o 60 - 70 %

• Redukcja emisji CO2 – Podhale:

~ 33,5 tys. ton/2010 r. (sprzedaż ~ 350 TJ geo-ciepła )

Średnioroczne stężenie SO2 (mg/m3), Zakopane

Redukcja emisji CO2, 1999-2010 (tys. T/r) 1998/1999: uruchomienie ciepłowni gazowej 2001/2002: 1-szy „geotermalny” sezon grzewczy w Zakopanem 2013: > 1600 odbiorców, > 386 000 TJ geo-ciepła, projekt ciepłowniczy nadal w realizacji (powinien być priorytetem), wykonany trzeci otwór produkcyjny

Ogrz.

węglowe

Ciepł.

gazowa Ogrzewanie geotermalne

Źródło: PEC Geotermia Podhalańska SA Koszty ciepła z różnych źródeł energii – odbiorcy indywidualni, 2010

geotermia

25/28

Koszty otworów geotermalnych

2008 - 2013

Wsparcie z programu: „Energetyczne wykorzystanie zasobów geotermalnych”