GeoSciML – A GML Application for Geoscience Information … · 2008-05-07 · resource discovery,...

13
47 GeoSciML – A GML Application for Geoscience Information Interchange By Stephen M. Richard and CG nteroperability Working Group U.S. Geological Survey and Arizona Geological Survey 416 W. Congress #100 Tucson, AZ 85701 Telephone: (520) 770-3500 Fax: (520) 770-3505 e-mail: [email protected] CG nteroperability Working Group is (in alphabetic order): Eric Boisvert, Boyan Brodaric, Simon Cox, Tim Duffy, Jonas Holmberg, Bruce Johnson, John Laxton, Tomas Lindberg, Stephen Richard, Alistair Ritchie, Francois Robida, Marcus Sen, Jean Jacques Serrano, Bruce Simons, and Lesley Wyborn. INTRODUCTION The GeoSciML application is a standards-based data format that provides a framework for application-neutral encoding of geoscience thematic data and related spatial data. GeoSciML is based on Geography Markup Lan- guage (GML, Cox et al., 2004) for representation of fea- tures and geometry, and the Open Geospatial Consortium (OGC) Observations and Measurements Best Practices (Cox, 2006) for observational data. Geoscience-specific aspects of the schema are based on a conceptual model for geoscience concepts and include geologic unit, geologic structure, and Earth material from the North America Data Model (NADMC1, North American Geologic-Map Data Model Steering Committee, 2004), and borehole informa- tion from the eXploration and Mining Markup Language (XMML, https://www.seegrid.csiro.au/twiki/bin/view/ Xmml/WebHome). Development of controlled vocabulary resources for specifying content to realize semantic data interoperability is underway. The intended scope for initial versions of GeoSciML includes information typically found on geologic maps as well as information typically recorded with boreholes. The possible uses for GeoSciML include transporting, storing, and archiving information. Amongst these, the most significant is transport—or information exchange— which enables information to be visualized, queried, and downloaded in spatial data infrastructures. This role for GeoSciML is particularly important, as geoscience infor- mation consumers are becoming more digitally sophisti- cated and are no longer satisfied with images and portray- als of data, but want digital data in standardized formats that can be used immediately in applications. Hours, days, or weeks spent merging data sets obtained separately from multiple agencies is time wasted. Use of a standardized markup for serializing geoscience information supports a commitment by data providers to publish data to users in a standardized format. Thus, GeoSciML allows applica- tions to utilize globally distributed geoscience data and information. The GeoSciML (https://www.seegrid.csiro.au/twiki/ bin/view/CGModel/GeoSciML) project was initiated in 2003 under the auspices of the Commission for the Management and Application of Geoscience nforma- tion (CG) working group on Data Model Collaboration (https://www.seegrid.csiro.au/twiki/bin/view/CGModel/ WebHome). The CG is a commission of the nternational Union of Geological Sciences and has the objective to enable the global exchange of geoscience information for legal, social, environmental, and geoscientific reasons. The project is part of what is now known as the CG n- teroperability Working Group (https://www.seegrid.csiro. au/twiki/bin/view/CGModel/nteroperabilityWG), which has the specific objectives to: • develop a conceptual model of geoscientific infor- mation that draws on existing data models, • implement an agreed subset of this model in an agreed schema language, • implement an XML/GML encoding of the model subset, • develop a test bed to illustrate the potential of the data model for interchange, and • identify areas that require standardized classifica- tions to enable interchange. GeoSciML draws from many geoscience data model efforts and from them establishes a common suite of fea- ture types based on geological criteria (units, structures, fossils) or artifacts of geological investigations (speci-

Transcript of GeoSciML – A GML Application for Geoscience Information … · 2008-05-07 · resource discovery,...

Page 1: GeoSciML – A GML Application for Geoscience Information … · 2008-05-07 · resource discovery, and service invocation (Figure 1). Applications that use these protocols must communicate

47

47

GeoSciML – A GML Application forGeoscience Information Interchange

ByStephenM.RichardandCG��nteroperabilityWorkingGroup

U.S.GeologicalSurveyandArizonaGeologicalSurvey416W.Congress#100

Tucson,AZ85701Telephone:(520)770-3500

Fax:(520)770-3505e-mail:[email protected]

CG� �nteroperability Working Group is (in alphabetic order): Eric Boisvert,BoyanBrodaric,SimonCox,TimDuffy,JonasHolmberg,BruceJohnson,JohnLaxton,TomasLindberg,StephenRichard,AlistairRitchie,FrancoisRobida,MarcusSen,JeanJacquesSerrano,BruceSimons,andLesleyWyborn.

INTRODUCTION

TheGeoSciMLapplicationisastandards-baseddataformatthatprovidesaframeworkforapplication-neutralencodingofgeosciencethematicdataandrelatedspatialdata.GeoSciMLisbasedonGeographyMarkupLan-guage(GML,Coxetal.,2004)forrepresentationoffea-turesandgeometry,andtheOpenGeospatialConsortium(OGC)ObservationsandMeasurementsBestPractices(Cox, 2006) for observational data. Geoscience-specific aspectsoftheschemaarebasedonaconceptualmodelforgeoscienceconceptsandincludegeologicunit,geologicstructure,andEarthmaterialfromtheNorthAmericaDataModel(NADMC1,NorthAmericanGeologic-MapDataModelSteeringCommittee,2004),andboreholeinforma-tionfromtheeXplorationandMiningMarkupLanguage(XMML,https://www.seegrid.csiro.au/twiki/bin/view/Xmml/WebHome).Developmentofcontrolledvocabularyresourcesforspecifyingcontenttorealizesemanticdatainteroperabilityisunderway.

TheintendedscopeforinitialversionsofGeoSciMLincludesinformationtypicallyfoundongeologicmapsaswellasinformationtypicallyrecordedwithboreholes.ThepossibleusesforGeoSciMLincludetransporting,storing,andarchivinginformation.Amongstthese,themost significant is transport—or information exchange—whichenablesinformationtobevisualized,queried,anddownloadedinspatialdatainfrastructures.ThisroleforGeoSciMLisparticularlyimportant,asgeoscienceinfor-mationconsumersarebecomingmoredigitallysophisti-cated and are no longer satisfied with images and portray-alsofdata,butwantdigitaldatainstandardizedformatsthatcanbeusedimmediatelyinapplications.Hours,days,orweeksspentmergingdatasetsobtainedseparatelyfrommultipleagenciesistimewasted.Useofastandardized

markupforserializinggeoscienceinformationsupportsacommitmentbydataproviderstopublishdatatousersinastandardizedformat.Thus,GeoSciMLallowsapplica-tionstoutilizegloballydistributedgeosciencedataandinformation.

TheGeoSciML(https://www.seegrid.csiro.au/twiki/bin/view/CG�Model/GeoSciML)projectwasinitiatedin2003undertheauspicesoftheCommissionfortheManagementandApplicationofGeoscience�nforma-tion(CG�)workinggrouponDataModelCollaboration(https://www.seegrid.csiro.au/twiki/bin/view/CG�Model/WebHome).TheCG�isacommissionofthe�nternationalUnionofGeologicalSciencesandhastheobjectivetoenabletheglobalexchangeofgeoscienceinformationforlegal, social, environmental, and geoscientific reasons. TheprojectispartofwhatisnowknownastheCG��n-teroperabilityWorkingGroup(https://www.seegrid.csiro.au/twiki/bin/view/CG�Model/�nteroperabilityWG),whichhas the specific objectives to:

• develop a conceptual model of geoscientific infor-mationthatdrawsonexistingdatamodels,

• implementanagreedsubsetofthismodelinanagreedschemalanguage,

• implementanXML/GMLencodingofthemodelsubset,

• developatestbedtoillustratethepotentialofthedatamodelforinterchange,and

• identify areas that require standardized classifica-tionstoenableinterchange.

GeoSciMLdrawsfrommanygeosciencedatamodeleffortsandfromthemestablishesacommonsuiteoffea-turetypesbasedongeologicalcriteria(units,structures,fossils)orartifactsofgeologicalinvestigations(speci-

Page 2: GeoSciML – A GML Application for Geoscience Information … · 2008-05-07 · resource discovery, and service invocation (Figure 1). Applications that use these protocols must communicate

48 D�G�TALMAPP�NGTECHN�QUES‘06

mens,sections,measurements).Supportingobjectsarealsoconsidered(timescale,lexicons,etc),sothattheycanbe used as classifiers for the primary objects. Predecessor projects that have had a strong influence on the develop-mentofGeoSciMLincludeactivitiesundertakenwithinnationalstatutorybodies(e.g.,theUSGS/AASGNationalGeologicMapDatabase,BritishGeologicalSurvey,andJapaneseGeologicalSurvey)inmulti-jurisdictionalcontexts(theNorthAmericanDataModel,http://nadm-geo.org/,forgeologicalmaps),andactivitiesorientedtoanindustrysector(eXplorationandMiningMarkupLanguage–XMML,https://www.seegrid.csiro.au/twiki/bin/view/Xmml/WebHome).Currently,severalexter-nal projects are leveraging GeoSciML for more specific applications,includingWaterResourcesmonitoringandmanagement,Soils,GeotechnicalandEngineering,AssayData,andGeochemistry.

Thisreportsummarizestheschemaandinstancedocumentsasimplementedinatestbeddemonstratedatthe�AMGmeetinginLiege,BelgiuminSeptember,2006.Theworkinggroupmetsubsequenttothetestbeddemonstration and has identified a number of aspects of themodelandschemainneedofupdate,aswellasmodelelementsthatneedtobeadded.Anticipatedchangesarediscussedhereaswell.Version1.1isthecurrentversionofthemarkuplanguage,withschemaavailableathttps://www.seegrid.csiro.au/subversion/xmml/GeoSciML/tags/1.1.0/schema/.Planningisunderwayforevolutionoftheschematoversion2toexpandthescopeandclarifysomeofthetoplevelmodelissues.Workinggroupactiv-ityiscurrentlyfocusedinseveraltask-groups(pendingformalization):

• Use-casesandrequirementstaskgroup,responsibleforsettingtechnicalgoals.

• Designtaskgroup,responsibleforthestructural

andsyntacticaspectsofthe“�nformationModel”ofaGeoSciML-basedservicearchitecture.

• Servicearchitecturetaskgroup,responsibleforthe“ComputationalModel”ofGeoSciML-basedservicearchitecture.

• Concepts definition task group, responsible for the“SemanticModel,”whichwillbeastandardsetofconcepts(ontology)forthecontentusedtopopulateGeoSciML,andwillfacilitatesemanticinteroperabilitywithGeoSciML.

• �mplementationtestbedtaskgroup,responsibleforliaisonwithGeoSciMLDesignandServiceAr-chitecturetaskgroupstoensurethatrequirementsare satisfied and coordinate and deliver TestBed3 demonstratingtheGeoSciMLv.2use-cases.

• Outreachandtechnicalassistancetaskgroup,responsibleforprovidingadviceandassistancetodirectcollaborators,assistingthemtodeployconformantGeoSciMLservices.

GEOLOGIC MAP DATA SCHEMATIC INTEROPERABILITY

Thedevelopmentofstandardizedmarkuplanguagesisacriticalstepnecessarytoachieveinteroperability,which is defined by ISO/IEC 2382-01 (SC36 Secretariat, 2003)tomean:“Thecapabilitytocommunicate,executeprograms,ortransferdataamongvariousfunctionalunitsinamannerthatrequirestheusertohavelittleornoknowledgeoftheuniquecharacteristicsofthoseunits.”Technicalrequirementstomeetthisgoalincludesys-tem-levelsharedprotocolsfornetworkcommunication,resourcediscovery,andserviceinvocation(Figure1).Applicationsthatusetheseprotocolsmustcommunicateby way of a shared data language that defines how infor-mationwillbeencoded.GeographyMarkupLanguage

Figure 1.Multiplelevelsofinteroperability(BrodaricandGahegan,2006).

Page 3: GeoSciML – A GML Application for Geoscience Information … · 2008-05-07 · resource discovery, and service invocation (Figure 1). Applications that use these protocols must communicate

49GEOSC�ML–AGMLAPPL�CAT�ONFORGEOSC�ENCE�NFORMAT�ON�NTERCHANGE

(http://www.opengeospatial.org/standards/gml)isthedatalanguageadoptedforGeoSciMLdevelopment.GMLprovides a framework for encoding geometry, defining featuresandassociatingthemwithproperties(includinggeometry),andconstructingdictionariesinwhichcon-trolled vocabularies can be defined.

GeoSciMLisaGMLapplicationscheme,whichisdefined by a collection of XML schema that utilize and extendelementsfromGMLtorepresentstandardgeologicobservationsanddescriptionsinageospatialcontext.GeoSciML is not a database structure. GeoSciML defines aformatfordatainterchange(Figure2).AgenciescanprovideaGeoSciMLinterfaceontotheirexistingdatabasesystems,withnorestructuringofinternaldatabasesrequired.

Thesemanticlevelofinteroperability(Figure1)requiresagreementonthemeaningofwordsusedtoexpresspropertyvaluescontainedinGeoSciMLelements.DevelopingcommonmeaningsforGeoSciMLcontentsthatcanbeappliedtovariousmulti-lingualvocabular-iesisaplannedfutureactivity.Atpresent,weanticipatethatimplementationofschematicinteroperabilitywilldemonstratetheneedfordatacontentstandardstoenablesemanticinteroperability.

IMPLEMENTATION

GeoSciMLwasdevelopedbyrepresentativesfromaninternationalgroupofgeologicmapdataprovidersinaseriesofface-to-facemeetingsandonlinediscussion(seeTwikiathttps://www.seegrid.csiro.au/twiki/bin/view/CG�-Model/GeoSciML).Onedesignobjectivewastore-use,revise,andextendexistingstandardswhereverpossible.Thedesignphilosophyofthisinterchangeformathasfocusedonanaccuraterepresentationofgeosciencein-formationinageneralway.Thisresultsingreatrepresen-tational flexibility at the price of complexity and verbose encoding.Fortunately,text-basedXMLcompressesveryefficiently, and the markup is designed for machine input andoutput,nothumanreadability.

ModeldevelopmenthasutilizedUMLnotationwithaUML profile to enable systematic mapping from UML to XMLschema.ThemappingfromUMLmodelstoGMLisdescribedinhttps://www.seegrid.csiro.au/twiki/bin/view/AppSchemas/UmlGmlandhttps://www.seegrid.csiro.au/twiki/bin/view/AppSchemas/UmL2GMLAS.AdetailedprocedureforgeneratingaGML-compliantXMLschemaissummarizedinhttps://www.seegrid.csiro.au/twiki/bin/view/AppSchemas/HollowWorldand

Figure 2.CommunicationbetweendataprovidersandconsumersutilizesstandardGeoSciMLschema.ClientsthatcaninterpretGeoSciMLcanoperatewithanyGeoSciML-enableddatasource.

Page 4: GeoSciML – A GML Application for Geoscience Information … · 2008-05-07 · resource discovery, and service invocation (Figure 1). Applications that use these protocols must communicate

50 D�G�TALMAPP�NGTECHN�QUES‘06

http://www.seegrid.csiro.au/twiki/bin/view/AppSchemas/OandMCookbook.SeealsoBoisvertetal.(2004)fromtheUSGSDMT2004workshop.Useofastandardgraph-icalnotationformodelrepresentationduringdevelopmentmakesgroupanalysisandreviewoftheevolvingmodelmucheasier.

Major Entities

OnlyasmallpartoftheGeoSciMLmodelisdis-cussedhere.SeetheGeoSciMLTwiki(https://www.seegrid.csiro.au/twiki/bin/view/CG�Model/GeoSciML)formoreinformationaboutthefullmodel.Figure3presentsthelogicalframeworkthatunderliesthedraftGeoSciMLversion2GeologicFeatureimplementation,acoreaspectofGeoSciML.Startingfromthecenterleft,aMappedFeatureassociatesaGeologicFeaturewithaGML_geometry that specifies a location on or within theEarth.ThemappedfeaturemaybetheresultofanObservationifobservation-relatedmetadataconcerningidentification of the mapped feature are recorded. Each GeologicFeatureisassociatedwithaControlledConceptclassifier that specifies the intention of what the Geolog-icFeaturerepresents.AGeologicFeaturemayhaveoneormoreassociatedGeologicFeatureDescriptionsthatspecifypropertiesassignedtothefeature.EachdescriptionmayalsoberepresentedastheresultofanObservation.Table1summarizesthepackagesincludedintheGeoSciMLUMLmodel.EachpackageisimplementedasaseparateXMLschema.

Geologic Feature

�nthedraftGeoSciMLversion2model,Geolog-icFeatureisanassociationclassthatbindsmapped

feature(s) and description(s) with one or more classifica-tionconcepts.Geologicfeatureisanentitythatrepre-sentssomeparticularphenomenonthatmaybeobservedin the Earth. It has a primary classification in terms of acontrolledconcept,andthisassociationestablishesacontentmodelorconceptspacewithinwhichthefeatureis located/given identity by specification of a collection ofpropertiesinadescription.AMappedFeatureinstancespecifies a particular located occurrence of a geologic featurebyassociatingitwithalocation(GML_geometry).GeologicFeatures may be classified by geologic unit or geologicstructureControlledConceptsterms.�nadditionto its primary classification (e.g. a lithostratigraphic desig-nation), a feature may carry alternative classifications (e.g. geotechnical classification). GeologicFeature corresponds witha“legenditem”fromatraditionalgeologicmapandwith“occurrence”inconceptualmodelspresentedbyBrodaricandGahegan(2006)orRichard(2006).Geo-logicFeaturesmayhaveoneormoreassociatedGeolog-icFeatureDescriptions.Multipledescriptionsassociatedwithafeaturemaybetheresultofdifferentobservations(differentobserver,differenttime,differentobservationprocedure…),ormayspecifydifferentproperties

Mapped Feature

A MappedFeature is a specific bounded occurrence, suchasanoutcropormappolygonthatcarriesageometryorshape(throughitssamplingFrameassociation).�thasan associated GeologicFeature instance that specifies what kindofthingisrepresentedbythemappedgeometry,bothby classification with a vocabulary term (ControlledCon-cept)andthroughassociationwithoneormoredescrip-tionobjects(GeologicUnitDescription)thatspecifypropertyvalues.

Figure 3.CoreGeoSciML2.0logicalmodel.

Page 5: GeoSciML – A GML Application for Geoscience Information … · 2008-05-07 · resource discovery, and service invocation (Figure 1). Applications that use these protocols must communicate

51GEOSC�ML–AGMLAPPL�CAT�ONFORGEOSC�ENCE�NFORMAT�ON�NTERCHANGE

Table 1.PackagesinGeoSciMLmodel.

Package Name Contents

TopLevel Thecoremodelformappedentitiesdistinguishesbetweengeologicfeatures,mappedfeatures,andcontrolledconcepts

BasicTypes Simple package, extends gml:MeasureType to represent quantification of measurements using relativecomparisons,e.g.greaterthan,lessthan.

LiteralValue TheGeoSciML“value”modelprovidesagenericwayofencoding“literal”values,bothtextualandnumeric,whichhaveuncertaintyandmaybearange.Thesevaluesareusuallyobtainedastheresultofanobservation.Thedescriptionoftheassociatedobservationeventwillprovidemoredetailabouttheobservationmethod,resultquality,etc.

RootDoc GenericcollectionelementforpackagingobjectsfromtheGeoSciMLschema.GeologicMetadata �nterimmodelforrepresentationofdataset,feature,andattribute-levelmetadata.�SO19115

metadatawouldbepreferred,buttheXMLimplementation(�SO19139)isnotyetsupportedbycommonsoftwareTheinterimmodelisintendedtohavesomeforwardcompatibilitywith�SO.Forexample,thescope-codesareasubsetofMD_ScopeCodefrom�SO19115.

GeologicVocabulary Modelforcontrolledvocabulariesoftermslinkedtonormativedescriptions,linktoontology.AGeologicVocabularyisacollectionofterms(ControlledConcept)andrelationships(VocabRelation).

BoreHole SupportforboreholedatainGeoSciMLisprovidedbyXMMLcomponents.Boreholeismod-eled as a kind of sampling profile that may have various sorts of associated ‘logs’, modeled as kindsofcoverages.

EarthMaterial EarthMaterialisaclassthatholdsamaterialdescription.AnaturallyoccurringsubstanceintheEarth.EarthMaterialrepresentssubstance,andisthusindependentofquantityorlocation.Ideally, Earth Materials are defined strictly based on physical properties, but because of standard geologicalusage,geneticinterpretationsenterintothedescriptionaswell.

GeologicAge Theageofaparticulargeologicaleventorfeatureexpressedintermsofyearsbeforepresent(absoluteage),referredtothegeologicaltimescale,orbycomparisonwithothergeologicaleventsorfeatures(relativeage).AGeologicAgecanrepresentaninstantintime,anintervaloftime, or any combination of multiple instants or intervals. Specifications of age in years before presentarebasedondeterminationoftimedurationsbasedoninterpretationofisotopicanalysesofEarthMaterial(someothermethodsareusedforgeologicallyyoungmaterials).Agesreferredtogeologicaltimescalesareessentiallybasedoncorrelationofageologicalunitwithastandardchronostratigraphicunitthatservesasareference.Relativeagesarebasedonrelationshipsbe-tweengeologicalunitssuchassuperposition,intrudedby,cross-cuts,or‘containsinclusionsof’.

GeologicRelation GeologicRelationsaretyped,directedassociationsbetweengeologicobjects.RepresentsanyofawidevarietyofrelationshipsthatcanexistbetweentwoormoreGeologicFeatures.Forexample,theGeologicRelation‘intrudes’isarelationshipbetweenanintrusiveigneousrockandsomehostrock.�ncludesspatial,temporal,sequence,correlation,andparent/childrelations.

TwoormoreGeologicFeaturesareassociatedinaGeologicRelation;eachhasaroleintherelationship.Examplesofgeologicalrolesinclude“overlies”,“isoverlainby”,“isyounger”,“isolder”,“intrudes”,“isintrudedby”,andsoforth.�narelationshipwhereanigneousunitintrudesasedimentaryunit,thegeologicalrelationshipis‘intrudes’,theintrudedsedimentaryunithastherole‘host’,andtheigneousunithastherole‘intrusion’.Manyothertypesofrela-tionshipscanalsobeaccommodatedviaGeologicRelation,forexample,topologicalrelationsbetween spatial objects could be described where they are scientifically significant.

GeologicTime TheGeoSciMLGeologicTimescalemodelandencodingisdescribedindetailinthepaper‘Aformalmodelforthegeologictimescaleandglobalstratotypesectionandpoint,compatiblewithgeospatialinformationtransferstandards’(CoxandRichard,2005).

Theclassic“geologicaltimescale”isahierarchicalordinalsystem,inwhichtheerasareranked:“stages”nestwithin“series”within“systems”within“eras”within“eons”(inthemostcommonversionoftherankingsystem).

GeologicUnit Packagecontainingcontentmodelforgeologicunit.Geologicunitisanotionalunit,whosecom-pleteandpreciseextentisinferredtoexist.Practically,spatialpropertiesareonlyavailablethroughassociationwithaMappedFeature.�ncludesbothformalunits(i.e.formallyadoptedandnamedinthe official lexicon) and informal units (i.e. named but not promoted to the lexicon) and unnamed units (i.e. recognizable and described and delineable in the field but not otherwise formalized).

StructureObject Packagecontainingcontentmodelforgeologicstructure.Version1includesfaultsystem,fault,contact,andfaultdisplacement.

Page 6: GeoSciML – A GML Application for Geoscience Information … · 2008-05-07 · resource discovery, and service invocation (Figure 1). Applications that use these protocols must communicate

52 D�G�TALMAPP�NGTECHN�QUES‘06

Controlled Concept

ControlledConceptsrepresenthumanconceptsincomputerform,typicallyaswords(lexicalobjects)withan associated definition. Because GeoSciML extends GML,eachcontrolledconceptinstancemayhaveoneormoregml:names,buttheGeoSciMLmodeladdsapre-ferred name element that specifies one term that is used to identifytheconcept.Practicallyspeaking,eachpreferred-Nameshouldbeassociatedwithauniqueconcept,butinadistributedsystem,thiscardinalitycannotbeenforced.ControlledConceptsareaggregatedintoGeologicVocabu-larycollections,whicharederivedfromaGMLdiction-ary.DataproducersshouldensurethatpreferredNamesareuniquewithinaparticularvocabulary.AControlledConceptmayhaveanassociatedprototypeentity(notshowninFigure3)thatcanbeaGeologicFeature,Earth-Material,orSpecimen.Theprototypeentityprovidesamechanismtoassociatemachine-analyzablepropertieswithControlledConceptterms.SimilarfunctionalitymightbeprovidedbylinksfromtheControlledConcepttosomeotherformalontologyrepresentation.

Geologic Feature Description

Descriptionsarecollectionsofpropertieswithas-signedvalues(e.g.attributes)thatcharacterizesomefeature.Differentkindsofdescriptionsspecifydifferentproperties.DescriptionsmaybeassociatedwithObserva-tionelementsthatsupplyinformationontheoriginofthepropertyvalueassignments.

Observation

Observationdescribesthe“metadata”associatedwithaninformationcaptureevent,togetherwithavaluefortheresultoftheobservation.Observationsarethebasisforclassified features, interpretations, and models. GeoSciML usestheObservationandMeasurementmodelfromtheOpenGeospatialConsortium(Cox,2006),whichmodelsobservationasakindofevent,inwhicharesultvalueisassignedtosomepropertyofafeatureofinterest,usingsomeprocedure.

SOME SCHEMA DESIGN AND USAGE PATTERNS ISSUES

Names and Identifiers

AnyGMLObjectorFeaturemayhaveanunlimitednumber of gml:name properties, which reflects the fact that the same object often has different identifiers assigned bydifferentauthorities.Toassert“thisisthenameoridentifier assigned by authority XYZ corporation,” use the codeSpace attribute on gml:name (i.e. the scope identifier).

If the codespace for the gml:name is not specified, then the valueisimplicitlyundertheauthorityoftheorganizationorservicethatsuppliesthedocument,whichshouldbeindicatedbyassociateddocument-levelmetadata.

NotethatGMLdocumentelementsalsoincludeagml:idattribute,whichplaysadifferentrolefromthegml:nameelement.Thevalueofthegml:idhastype=”xsd:�D”,soitmustbeuniquewithinthe(XML)document.�tis a document fragment identifier that acts as a handle for anXMLelementinthescopeofitsappearancewithinaparticulardocument,andisusuallyassignedbytheinfor-mation management system since it is primarily signifi-cantinthatcontext.Thegml:idsupportscross-referenceswithinadocumentandreferencesthatinvolveindividualnodes(elements)withinasystemofdocuments.Thevalueofagml:namehastype=”gml:CodeType”,whichisastringwitha“codeSpace”attribute.�nthecontextofaGMLobject,thevalueofagml:nameisalabeloridenti-fier for the object described by the containing element, andistypicallyassignedbythedataprovideragency.Thegml:name should be used for identifiers that are required tobepersistentandaresubjecttoconstraints(e.g.unique-ness)applicabletoacontextwiderthanjustthedocumentscope.Differentauthoritiesmayhavedifferentauthorita-tive identifiers for the same item.

Namespace and Packaging

ThenamespaceforGeoSciMLversion2.0schemaishttp://www.cgi-iugs.org/xml/GeoSciML/2.Versioningstrategyfornamespaceevolutionwillfollowpracticede-scribedinOGC05-062r3.Forfutureupgrades,eachmi-norversionofanysuchschemathatretainsthenamespaceofthepredecessorshallnotintroduceanynewXMLtypesorelementsthatcouldnotbesafelyignoredbyexistingapplicationbasedonthepreviousminorversion,whichensuresastrongformofbackwardcompatibility.Componentsfromothernamespaces(e.g.,http://www.opengis.net/om)mayalsoconstitutea“canonical”partofGeoSciMLbutwillbeincorporatedusingtheWXSimportmechanismand,thus,retaintheirownnamespacenames.

Thephysicaldocumentlocation(path)forGeoSciMLschemawillincludethecompleteversionnumber—ini-tially 1.0.0, moving to 1.0.x for bug-fix releases, and 1.1.x (etc.)forextensionsthatdonotchangethescopeoftheschema.SchemadocumentsarehostedintheGeoSciMLpublish/buildrepository,whichisathttps://www.seegrid.csiro.au/subversion/xmml/GeoSciML/tags/.

Use of Scoped Names

Useofscopednames,i.e.,atermorwordwithanidentifier for the source of the term, provides a method for linkagetoformalcontrolledvocabularies(e.g.anontol-ogy)thatmaythenbeusedforsemanticmediation.For

Page 7: GeoSciML – A GML Application for Geoscience Information … · 2008-05-07 · resource discovery, and service invocation (Figure 1). Applications that use these protocols must communicate

53GEOSC�ML–AGMLAPPL�CAT�ONFORGEOSC�ENCE�NFORMAT�ON�NTERCHANGE

example, a GeoSciML file might have a property value specified by the following element:

<CGI_TermValue> <qualifier>common</qualifier> <valuecodeSpace=”http://www.iugs-

cgi.org/outcropCharacterVocabulary”>ledgeforming</value>

</CGI_TermValue>

The<value>elementcontainsascopedname“ledgeforming” from the vocabulary specified by the codeSpace attribute.�fthedatainterpreterisfamiliarwiththe“http://www.iugs-cgi.org/outcropCharacterVocabulary”codeSpace(vocabulary),thentheymayusethescopednamedirectlyorbycorrelationwithapreferredterminadifferent vocabulary. On the other hand, if the identified codeSpace (vocabulary) is not familiar and its identifier is aresolvableURLthatpointstoservicethatcanprovidea definition of the term in a known format (e.g. free text, OWL,K�F...),itispossibletointerprettheterm.Thismaybe as simple as someone studying a free text definition anddeterminingtheclosestcorrespondingtermintheirvocabulary.Anautomatedsemanticmediatormightbeable to use a formal definition (e.g., OWL) to match with theclosestsubsumingterminadifferentformalvocabu-larythatispreferredbythedatainterpreter.

Value specification

The GeoSciML data model includes a flexible value specification scheme that is designed to capture value descriptionsconventionallyrecordedbygeologists.All

values may carry a qualifier. Numeric values include units of measure. Values may be specified in several manners:

• byasinglenumericvaluewithoptionaluncertain-ty,e.g.,5.24+/-0.12

• byanumericrange,e.g.,5.7-13.6• by a term with an identifier for the source vocabu-

lary,e.g.,“thick-bedded(NADMSLTTs)”• asarangewithboundsassignedbytermsorby

a term and a numeric value, e.g. “fine- to me-dium-grained(Folk1968)”or“Miocene(�UGS2004)”–1.7Ma.

Instance Document Example

Exampleinstancedocumentsassociatedwitheachversionoftheschemainthesubversionreposi-tory(https://www.seegrid.csiro.au/subversion/xmml/GeoSciML/tags/)arestoredinan“�nstances”subdirec-toryinthedirectoryforthatversion.Thefollowinglistingprovidesanexampleusageofmanyoftheelementsforgeologicunitdescription.Thebaseelementinthedocu-mentisaGeoSciMLcollection(gsml:);eachmemberofthecollectionstartswitha<member>element.GeoSciMLcollectionmembersmaybe:

1.Geologicfeatures(akindofGMLfeature)2.GMLgeometryelements3.MappedFeatures(outcrops,samplelocations,

traverses/sections) 4. Controlled concepts (vocabulary definitions)5.Geologicrelationships6.Dictionaries(collectionsofcontrolledconcepts)

Commentsinthefollowinglistingaredelimitedby‘<!--’and‘-->’.

<?xmlversion=”1.0”encoding=”UTF-8”?><Gsmlxmlns=”http://www.cgi-iugs.org/xml/GeoSciML/1”...othernamespacedeclara-tions> <!--Thelexiconwouldprobablybeinaseparatefile.TheStratigraphicLexi-conelementextendsGMLdictionary(throughGeologicVocabularyGeoSciMLelement)--><member> <StratigraphicLexicongml:id=”AZGSGeologicUnits”> <!--Thisisalexiconelementthatincludesthreeunits--> <gml:description>CollectionofgeologicunitsdefinedbyStateofArizona</

gml:description> <gml:name>Arizonastratigraphicunitlexicon</gml:name> <member> <ControlledConceptgml:id=”MartinFormationConcept”> <gml:description>lithostratigraphicformationdefinedby...</gml:

description> <gml:name>urn:x-cgi:def:lithostratigraphy:USGS:2006:Geolex:Martin-Formation</gml:name> <preferredName>MartinFormation</preferredName> <prototypexlink:href=”#Feature2524”/>

Page 8: GeoSciML – A GML Application for Geoscience Information … · 2008-05-07 · resource discovery, and service invocation (Figure 1). Applications that use these protocols must communicate

54 D�G�TALMAPP�NGTECHN�QUES‘06

<vocabularyxlink:href=”#AZGSGeologicUnits”/> <metadata/> </ControlledConcept> </member> <member> <ControlledConceptgml:id=”LS2”>...</ControlledConcept> </member> <member> <ControlledConceptgml:id=”LS3”>...</ControlledConcept> </member> </StratigraphicLexicon></member>

<member> <GeologicFeatureRelationgml:id=”rel-100”> <!--Thisisageologicrelationshipelement--> <gml:name>urn:x-cgi:def:lithostratigraphy:USGS:2006:featureRelation:

Stratigraphicposition</gml:name> <rolecodeSpace=”http://www.iugs-cgi.org/featureRelationVocabulary”>overli

es</role> <sourcexlink:href=”#BeckersButteMemberPrototype”/> <targetxlink:href=”#JeromeMemberPrototype”/> </GeologicFeatureRelation></member>

<member><!--GeologicFeatureisderivedfromGMLAbstractFeature,itassociatesade-scription,aclassifier(whatisdescribed)andanextent(whereitwasde-scribed,ifdefined).TheClassifierelementdefinesthetypeofafeature.Mul-tipledescriptionsmaybeassociatedwithaGeologicFeature--><GeologicFeaturegml:id=”Feature2524”><!--ThisisageologicunitGMLfeature,

whichisthebasiccontainerforgeologicunitdescriptionsinGeoSciMLv.1-->

<gml:description>ThetypesectionoftheMartinFormationatMt.MartinnearBisbeeconsistsalmostentirelyofmedium-graytomediumdark-grayaphantiictofine-grainelimestone.dolostoneisentirelysubordi-nate,...

</gml:description> <gml:name>urn:x-cgi:def:lithostratigraphy:USGS:2006:Geolex:TypeMartinForma-tion</gml:name> <gml:boundedBy> <gml:Envelope> <gml:lowerCorner/><!--cornersofaboundingboxfortypeareaofthe

MartinFormation;geometryspecificationelementsnotincludedhere-->

<gml:upperCorner/> </gml:Envelope> </gml:boundedBy> <purpose>typicalNorm</purpose> <age><!--Geologicageelementincludesadatevaluespecification(seebelow),andaneventspecificationthatexplicitlyidentifiestheeventtowhichtheageisas-signed(e.g.deposition,coolingthroughbiotiteclosuretemperature...)--> <GeologicAge> <value> <CGI_TermValue> <valuecodeSpace=”http://www.iugs-cgi.org/geologicAgeVocabulary”>Middle

Page 9: GeoSciML – A GML Application for Geoscience Information … · 2008-05-07 · resource discovery, and service invocation (Figure 1). Applications that use these protocols must communicate

55GEOSC�ML–AGMLAPPL�CAT�ONFORGEOSC�ENCE�NFORMAT�ON�NTERCHANGE

Devonian</value> </CGI_TermValue> </value> <event> <CGI_TermValue> <valuecodeSpace=”http://www.iugs-cgi.org/EventVocabulary”>deposition</

value> </CGI_TermValue> </event> </GeologicAge> </age> <classifierxlink:href=”#MartinFormationConcept”/><!--here’sthelinktothe

controlledconceptthatdefinestheintentionoftheMartinFormation.Linkisreferencetocontrolledconceptinstanceinthisdocument-->

<description> <LithostratigraphicUnitDescription> <metadata/><!--xlinktometadataforthisdescription;thisprovidestieto

Observationmodel-->

<partOf> <GeologicUnitDescriptionPart><!--310-340thinbedded,nonfossiliferous

dolostone--> <unit> <LithostratigraphicUnitDescriptiongml:id=”GeoUnitPart0235”><!--partisalsoalithostratigraphicunit,usessamedescriptionschemaascon-tainingunit;itcouldhavepartsitself;partonomyisrecursive.--> <descriptionSourcexlink:href=”referencetodescriptionsourceobserva-

tion”/><!—Sourceobservationelementnotincludedhere--> <bodyMorphologyxlink:href=”urn:x-ogc:def:nil:OGC:unknown”/> <outcropCharacterxlink:href=”urn:x-ogc:def:nil:OGC:unknown”/> <grossGenesisTermxlink:href=”urn:x-ogc:def:nil:OGC:unknown”/> <exposureColorxlink:href=”urn:x-ogc:def:nil:OGC:unknown”/> <grossChemistry> <CGI_TermValue> <qualifier>always</qualifier> <valuecodeSpace=”http://www.iugs-cgi.org/grossChemistryList”>carb

onate</value> </CGI_TermValue> </grossChemistry> <rankcodeSpace=”http://www.iugs-cgi.org/Vocabulary”>DescriptionPart</

rank> <weatheringCharacterxlink:href=”urn:x-ogc:def:nil:OGC:unknown”/> <metamorphicGrade/> <!--notspecifiedsoimpliessameascontaining

unit--> <unitThickness> <CGI_NumericValue> <principalValueuom=”meter”>30</principalValue> <plusDeltauom=”meter”>20</plusDelta> <minusDeltauom=”meter”>10</minusDelta> </CGI_NumericValue> </unitThickness> <beddingStylexlink:href=”urn:x-ogc:def:nil:OGC:unknown”/> <beddingPatternxlink:href=”urn:x-ogc:def:nil:OGC:unknown”/> <beddingThickness> <CGI_TermValue> <valuecodeSpace=”http://www.iugs-cgi.org/ThicknessVocabulary”>Thin-

Page 10: GeoSciML – A GML Application for Geoscience Information … · 2008-05-07 · resource discovery, and service invocation (Figure 1). Applications that use these protocols must communicate

56 D�G�TALMAPP�NGTECHN�QUES‘06

bedded</value> </CGI_TermValue> </beddingThickness> </LithostratigraphicUnitDescription> </unit> <rolecodeSpace=”http://www.iugs-cgi.org/unitPartRoleVocabulary”>Stratigrap

hicpart</role> <type>codeSpace=”http://www.iugs-cgi.org/unitPartTypeVocabulary”>Descriptiv

ePart</role> <proportion> <CGI_NumericValue> <qualifier>approximate</qualifier> <principalValueuom=”percent”>12</principalValue> <plusDeltauom=”percent”>0</plusDelta> <minusDeltauom=”percent”>0</minusDelta> </CGI_NumericValue> </proportion></GeologicUnitDescriptionPart> </partOf><!--endofpartdescriptions.Followingpropertiesapplytoentiredescribedunit-->

<descriptionSourcexlink:href=”referencetodescriptionsourceobservation”/> <bodyMorphologyxlink:href=”urn:x-ogc:def:nil:OGC:unknown”/> <outcropCharacter> <CGI_TermValue> <qualifier>common</qualifier> <valuecodeSpace=”http://www.iugs-cgi.org/outcropCharacterVocabulary”>le

dgeforming</value> </CGI_TermValue> </outcropCharacter> <grossGenesisTerm <CGI_TermValue> <qualifier>always</qualifier> <valuecodeSpace=”http://www.iugs-cgi.org/GenesisVocabulary”>Sedimentary

,marine</value> </CGI_TermValue> </grossGenesisTerm> <exposureColor> <CGI_TermValue> <qualifier>common</qualifier> <valuecodeSpace=”http://www.color.org/ColorVocabulary”>Lightgray</val-

ue> </CGI_TermValue> <CGI_TermValue> <qualifier>common</qualifier> <valuecodeSpace=”http://www.color.org/ColorVocabulary”>Mediumgray</

value> </CGI_TermValue> <CGI_TermValue> <qualifier>rare</qualifier> <valuecodeSpace=”http://www.color.org/ColorVocabulary”>Pink</value> </CGI_TermValue> <exposureColor/> <grossChemistry> <CGI_TermValue>

Page 11: GeoSciML – A GML Application for Geoscience Information … · 2008-05-07 · resource discovery, and service invocation (Figure 1). Applications that use these protocols must communicate

57GEOSC�ML–AGMLAPPL�CAT�ONFORGEOSC�ENCE�NFORMAT�ON�NTERCHANGE

<qualifier>common</qualifier> <valuecodeSpace=”http://www.iugs-cgi.org/grossChemistryList”>carbonate</

value> </CGI_TermValue> <CGI_TermValue> <qualifier>occasional</qualifier> <valuecodeSpace=”http://www.iugs-cgi.org/grossChemistryList”>siliceous</

value> </CGI_TermValue> </grossChemistry> <rankcodeSpace=”http://www.iugs-cgi.org/Vocabulary”>Formation</rank> <weatheringCharacterxlink:href=”urn:x-ogc:def:nil:OGC:unknown”/> <metamorphicGrade> <CGI_TermValue> <qualifier>always</qualifier> <valuecodeSpace=”http://www.iugs-cgi.org/metamorphicGradeVocabulary”>not

metamorphosed</value> </CGI_TermValue> </metamorphicGrade> <unitThickness> <CGI_NumericValue> <principalValueuom=”meter”>340</principalValue> <plusDeltauom=”meter”>10</plusDelta> <minusDeltauom=”meter”>10</minusDelta> </CGI_NumericValue> </unitThickness> <beddingStyle> <CGI_TermValue> <qualifier>common</qualifier> <valuecodeSpace=”http://www.iugs-cgi.org/Vocabulary”>Planarbedding</

value> </CGI_TermValue> </beddingStyle> <beddingPatternxlink:href=”urn:x-ogc:def:nil:OGC:unknown”/> <beddingThickness> <CGI_TermRange> <lower> <CGI_TermValue> <qualifier>common</qualifier> <valuecodeSpace=”http://www.iugs-cgi.org/Vocabulary”>thinbedded</

value> </CGI_TermValue> </lower> <upper> <CGI_TermValue> <qualifier>rare</qualifier> <valuecodeSpace=”http://www.iugs-cgi.org/Vocabulary”>thickbedded</

value> </CGI_TermValue> </upper> </CGI_TermRange> </beddingThickness> </LithostratigraphicUnitDescription> </description></GeologicFeature></member>

</Gsml>

Page 12: GeoSciML – A GML Application for Geoscience Information … · 2008-05-07 · resource discovery, and service invocation (Figure 1). Applications that use these protocols must communicate

58 D�G�TALMAPP�NGTECHN�QUES‘06

TEST BED DEMONSTRATION

Sixnationalandtwostategeologicalsurveyagencies,inAustralia,Europe,andNorthAmerica,participatedinaproof-of-conceptdemonstrationofGeoSciMLatthe�nter-nationalAssociationofMathematicalGeologists(�AMG)meetinginLiege,Belgium,inSeptember2006.Thedem-onstrationshowedthatitispossibletoaccessinformationinrealtimefromgloballydistributeddatasources.Geo-logicalmappolygonsandattributeinformation,andbore-holedata,weredisplayed,queried,andre-portrayedusingwebapplicationshostedbytheGeologicalSurveyofCanadaandtheFrenchBureaudeRechercheGéologiquesetMinières(BRGM).Functionsdemonstratedincludedcontinuous map portrayal with attribute query, reclassifi-cationaccordingtoattributes,anddownloadofcomplexdatastructuresencodedinGeoSciML.

�nformationdeliveryfromdifferentcomplexdatastoresusingacommunitystandardschemademonstratedthatGeoSciMLprovidesadatamodelandformatcapableofsupportingtransferofgeologydatafrommultiplejurisdictions.Thisalsodemonstratedthatadistributeddatadeliverysystemcanbeconstructedbyspecifyingstandardinterfaces,notlimitedtosinglevendorsoftware.Newservicescanbeaddedeasily,providingtheycon-formtotheinterface.Alloftheservicesinthetestbeduseddifferentdatastores,wrappedbyavarietyofserversoftware applications. Deployment requires configuration ofserver-andclient-sidesoftwaretoconformtothedatamodel,butdoesnotrequiredevelopmentofnewsoftware“fromscratch.”

Threeusecasesweredemonstratedatthe�AMG2006meetinginBelgium.UseCase1demonstrateddis-playofmapdataandqueryforthedescriptionofasingle

mapobject.Whentheclientasksforthemap,theserverreturnsamapwithdefaultsymbolization.Ausercanthenclickonanygraphicfeaturefromalayertoretrieveinformationforthefeature,whichcanbepresentedtotheuserasrawGeoSciMLorasamoreclearly-renderedHTMLversion.PresentationformatsotherthanHTMLcanberequestedbytheclientiftheserversupportsthem.Thetypesoffeaturesusedmustincludeatleastoneofthefollowing:geologicunits,faults,contactsorboreholes.

Usecase2demonstratedselectionanddownloadof features; a geographic bounding box is specified and thecontentsdownloadedasaGeoSciMLdocument.TheGeoSciMLdocumentcanbereformatted(e.g.byXSLTfordisplayinabrowser)orserveasinputforanotherprocess in a workflow. The GeoSciML document contains acollectionofGeologicFeaturesorBoreholes.

Usecase3demonstrateddynamicqueryandre-sym-bolizationofmappedfeaturesonthebasisofage,usingthe�UGSstandardgeologicagecolorscheme,oronthebasisof lithology, using a CGI defined lithology color scheme. TheresultsofsymbolizationbylithologyfordatafromCanada,theU.S.,andScandinaviancountriesisshowninFigure 4. A very simple lithologic classification and sym-bolizationwasused,withfourclassesandrelatedcolors:igneous(pink),sedimentary(green),metamorphic(purple),andunconsolidated(yellow).Eachparticipanthadtoimple-mentamechanismtomapfrompropertiesassociatedwiththemappedfeaturestothestandardizedlithologyclasses.�tistheserviceprovider’sprerogativetodeterminethemap-ping from the data source to the classification.

SUMMARY

Astandardizedschemaandsyntaxforinformationen-codingisafundamentalrequirementforinteroperableinfor-

Figure 4.UseCase3fromTestbed2,re-symbolizationofgeologicunitsbylithologyforCanada,U.S.andScandina-viancountries:igneous(mediumgray),sedimentary(lightgrey),metamorphic(darkgray),andunconsolidated(nearlywhite).

Page 13: GeoSciML – A GML Application for Geoscience Information … · 2008-05-07 · resource discovery, and service invocation (Figure 1). Applications that use these protocols must communicate

59GEOSC�ML–AGMLAPPL�CAT�ONFORGEOSC�ENCE�NFORMAT�ON�NTERCHANGE

mationsystems.The�UGSCG�DataModelcollaborationworkinggrouphasdevelopedGeoSciML,anXML-basedGML(geographymarkuplanguage)application,tomeetthisrequirementfortheinterchangeofgeoscienceinforma-tion.Theschemaforthisapplicationreusesexistingmarkuplanguages where possible. Newly developed markup specifi-cationsarebasedonexistingconceptualmodelsinmostcas-es.Thisstandards-baseddataformatprovidesaframeworkforapplication-neutralencodingofgeosciencethematicdataandrelatedspatialdata.�tisintendedforuseinpublish-ingorinterchangingdatabetweenorganizationsthatusedifferentdatabaseimplementationsandsoftware/systemsenvironments.Fullrealizationofdatainteroperabilityatthesemanticlevelwillrequiredevelopmentofcontrolledvo-cabularyresourcesforspecifyingactualcontent.ATestbeddemonstratedsimpleinteroperabilityusingwebmapandfeatureservices(WMS,WFS)betweengeologicalsurveysinseveraldifferentcountries.GeoSciMLisbeingconsid-eredasanationalstandardforgeosciencedataexchangebyfederalandstategeologicalsurveysinAustraliaandtheEuropeanUnionSpatialData�nfrastructure(�NSP�RE),andwill be submitted in 2007 as an IUGS-CGI specification.

DevelopmentofGeoSciMLisanopenprocesswiththeintenttoinvolveasmanyparticipantsaspossible.Thiswillensuredevelopmentofaschemaandservicesthatwillmeettheneedsofawidevarietyofgeosciencedataproducersandusers.Threetypesofparticipationareavailable:1)directparticipationinGeoSciMLdevelop-ment,2)monitoringGeoSciMLdevelopmentviatheweb-collaborationtoolsand3)deployinganinternetservertoprovidedatainGeoSciMLformat.

REFERENCES

Boisvert,E.,Johnson,B.R.,Cox,S.J.,andBrodaric,B.M.,2004,GMLEncodingofNADMC1,inSoller,D.R.,ed.,Digital

MappingTechniques‘04—WorkshopProceedings:U.S.GeologicalSurveyOpen-FileReport2004–1451,p.95-103.Availableathttp://pubs.usgs.gov/of/2004/1451/bois-vert/index.html(accessed12/12/2006).

Brodaric,B.M.,andGahegan,Mark,2006,Representinggeosci-entific knowledge in cyberinfrastructure: some challenges, approachesandimplementations,inSinha,Krishna,ed.,Geoinformatics-Datatoknowledge:GeologicalSocietyofAmericaSpecialPaper397,p.1-20.

Cox,S.J.D.,ed.,2006,Observationsandmeasurements:OpenGeospatialConsortium,�nc.,documentOGC05-087r4,version0.14.7,168pages.Availableathttp://portal.opengeospatial.org/files/?artifact_id=17038(accessed12/13/2006).

Cox,S.J.D.,Daisey,P.,Lake,R.,Portele,Clemens,andWh-iteside,Arliss,eds.,2004,OpenG�SGeographyMarkupLanguage (GML) Implementation specification: Open GIS Consortium,�nc,documentOGC03-105r1,version3.1.0,580p.

Cox,S.J.D.,andRichard,S.M.,2005,Aformalmodelforthegeologictimescaleandglobalstratotypesectionandpoint,compatiblewithgeospatialinformationtransferstandards:Geosphere,v.1,p.119-137,DO�:10.1130/GES00022.1.Availableathttp://geosphere.geoscienceworld.org/cgi/con-tent/abstract/1/3/119(accessed12/12/2006).

NorthAmericanGeologic-MapDataModelSteeringCommit-tee,2004,NADMConceptualModel1.0,AConceptualModelForGeologicMap�nformation:U.S.GeologicalSurveyOpen-FileReport2004-1334,61p.,availableathttp://pubs.usgs.gov/of/2004/1334/.

Richard,S.M.,2006,Geoscienceconceptmodels,inSinha,Krishna,ed.,Geoinformatics-Datatoknowledge:Geologi-calSocietyofAmericaSpecialPaper397,p.81-108.

SC36Secretariat,2003,ProposedDraftTechnicalReportfor:�SO/�EC2382,�nformationtechnology—Learning,educa-tion, and training—Management and delivery—Specifica-tion and use of extensions and profiles: ISO/IEC 2382-01, �SO/�ECJTC1SC36N0646,availableathttp://jtc1sc36.org/doc/36N0646.pdf(accessed12/12/2206).