George Salvan Architectural Utilities 1 Plumbing and Sanitary

216

description

George Salvan Architectural Utilities 1 Plumbing and Sanitary

Transcript of George Salvan Architectural Utilities 1 Plumbing and Sanitary

Page 1: George Salvan Architectural Utilities 1 Plumbing and Sanitary
Page 2: George Salvan Architectural Utilities 1 Plumbing and Sanitary

ARCHITECTURAL UTILITIEs· 1

PLUMBING AND SANITARY

• THE NEW LADDER TYPE CURRICULUM

GEO'RGE SALINDA SALVAN ... fuap • ASSISTANT PROFESSOR

College of Engineering and Architecture . Baguio Colleges Foundation 1980-1988

• First and lone graduate of B.S. Architecture, 1963 North of Manila, St. louis University Baguio City

• Former instructor 1965-1969 at St. louis University • Recipient of various ACE certificates. Architects Continuing

Education Program • A licensed Architect, active practitioner and

a licensed building constructor, inventor and a board topnotcher. • Past president of United Architects P~.·•s. Baguio Chapter 1982 and 1963 • Elected National Director; UAP, Regionc..· District I for the year 1987. • Conferred the title of "FELLOW" United 1-. ·-:hitects Phils.

College of Fellows, October. 1988

JMC PRESSY INC. 388 Quezon Avenue, Quezon City

Page 3: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Copyright © 1986 by: JMC PRESS, INC. and GEORGES. SALVAN

All rights reserved. No part of this t>ook may be reproduced in any manner without permission of the publisher.

FIRST EDITION

ISBN: 971-11 -0322-2 Published and Printed by: JMC PRESS, INC. 388 Quezon Avenue, Quezon City

Distributed by: GOODWILL BOOKSTORE Main Office: Rizal Avenue, Manila P.O. Box 2942. Manila

Page 4: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Dedicated to all future Architects and Engineers

The hope for a functional, comfortable and convenient designs for better living.

Page 5: George Salvan Architectural Utilities 1 Plumbing and Sanitary
Page 6: George Salvan Architectural Utilities 1 Plumbing and Sanitary

ACKNOWLEDGMENTS

The completion of this book was made into reality through the patient and hardworking artist and graduate of architecture. Johnny T. Camsol who spent most of his time w ith the illustrations and all the layouts of the dummy.

Special thanks and mention is also acknowledged to the Artists who helped in the illustrations notably, Clamor C. Lecitona from NU, Fermin Balangcod, Jerry Jun Suyat, Roy Pagador, Frederick Palasi, and Aey Puna, all from Baguio Colleges Foundations.

To those who lent unselfishly their books, like Dean Aveline Cruz of BCF. Engineering Department, also to to Mr. Val Gutierrez, and to the BCF library through Ms. Macabior. for mderstanding my late returns of books.

To Mr. Luis V. Canave who guided me on the complete process of publishing and printing of books and to Mr. Francisco C. Malicsi, Teresita G. Espinosa, Eduardo C. Villanueva and Enrico P. Gomez for their untiring cooperation in preparing the manuscripts typewritten by Ms. Thelma T. Villareal , in computerized typesetting. The many students of architecture whose curiositY about and interest in the Plumbing and Sanitary its realization in book form have been a source of inspiration and lastly the writer wishes to acknowledge his heavy indebtedness to the authors listed in the bibliography.

GEORGES . SALVAN

Baguio City, Philippines

v

Page 7: George Salvan Architectural Utilities 1 Plumbing and Sanitary
Page 8: George Salvan Architectural Utilities 1 Plumbing and Sanitary

PREFACE

The Architect as the prime professional; functions as the creator, coordinator and author of the building design with which a project will be cQnstructed.

Architects has to be knowledgeable in a number of fields in addition to those that are con­cerned mainly with building design for him to properly assist and serve his client.

It is not expected that the Architect will actually perform all the services, Rather he is to act as the agent of the client in procuring and coordinating the necessary services required by a project.

After the design is approved, the complete construction drawings and specifications are prepared. It is here where the specifications and detailed construction drawings setting forth in detail the work required for Plumbing/ Sanitary and other service-connected equipment is done.

Since the curriculum for B.S. Architecture was revised, there is a need for a more Compre­~ensive Study of this subject in Plumbing and Sanitation.

This book is intended for Architectural and engineering students but nevertheless offers in­formation and reference materials for Practicing Professionals. It is arranged in 'a sequential manner so as to guide the reader from the Water Supply, Fire Protection, Storm Water Sys­tem to Sanitary drainage systems. To make this book more complete is the addition of the chapter on RefLJse handling and Solid Waste Disposal and Recycling, from here recycling of Sewage Water is also included.

Finally the specifications of the different Plumbing Fixtures for each room is included.

Each subject matter is accompanied immediately with the corresponding illustrations for clarity and the excerpts from the plumbing code is also included.

vii

Page 9: George Salvan Architectural Utilities 1 Plumbing and Sanitary
Page 10: George Salvan Architectural Utilities 1 Plumbing and Sanitary

TABLE OF CONTENTS

Chapter 1 WATER SUPPLY ....... .................. ............. ............ ............ ......... . Water, 2 Water Supply, Equipment, Pumps, 4 Water Tanks, 8 Household Water Supply, 14 Water Pipes and Fi~ings , 15 Size~ of Pipes, 26 Flanges, 29 Valve and Control, 30 Hot Water Design and Zoning, 35 Water Tank Capacities

Chapter 2 FIRE PROTECTION .. ...... ................................. ............ .. ........ ...... 43

Chapter 3

Planning, 44 High Rise Fire Safety, 44 Stand Pipes and Hoses. 46 Sprinklers, 49

STORM WATER SYSTEM Drainage, 54 Roof Leader, 59

Chapter 4 PLUMBING SYSTEM .... ..... ....... ......... .. ... ... ........... .... .. ...... ....... .. . Sanitary Drainage System, 64 Elements of the Sanitary System, 65 Pipes Fittings and Accessories, 68 National Plumbing Code, 73 Traps, 84 Vents, 90 Air Gaps and Vacuum Breakers, 87 Sanitary Drain, 100 House Sewer, 101 Inspection and Test, 101

53

63

Chapter 5 SEWAGE DISPOSAL SYSTEM ............ ......... .. ..... ....... ................ 103 Several Types, 104 Septic Tank, 106 Sewage Disposal, 110 Sewage Treatment, 113

ix

Page 11: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Chapter 6 REFUSE HANDLING AND SOLID WASTE ... ..... ................ .. ....... 117

Chapter 7

Management in Buildings, 118 Recycling Solid Waste, 121 Waste Disposal, 121 Solid Municipal Waste."123· Liquid Municipal Wastes, 128 Septic Tanks, 128 Industrial Waste,

RECYCLING OF WATER Sewage Treatment Works, 131 Recycling at N.Y. Institute of Technology, 134 Santee Water Reclamation Plant, 136 Biological Compost Toilet, 138

1~

Chapter 8 PLUMBING FIXTURES .. ....... .............. ,. .. . .. .. ..... .. .. ........... ............ 143 Water Closet, 144 Lavatories, 157 Bidets, 166 Urinals, 167 Bath Tube, 1® Bathroom Accessories, 171 Kitchen Sinks. 172

Chapter 9 SANITATION, INSECT, RODENT AND

X

VERMIN CONTROL ......... .......... ..... ......... ........... ..... ..... .. .. ,....... 177 Control Method Against the Mosquito, 17~ The field for drainage, 178 Ditching, 178 Filling. 179 Oil as a larvicide, 179 Oil used, 180 Application, 180 Rodent Control, 181 General Methocis of Control, 181 Poisoning, 181 Trapping: 181 Fumigation, 182 Ratproofing, 182 R~t stoppage, 183 Pest Control, What You Should Know, 1afi

APPENDICES ...... .. .. .. .. .. ... ........ .... .. ...... .... ... ... ..... , ... , .. ..... .. .... .. 191

BIBLIOGRAPHY .. .. . .. .. . . . . . . . . .. .. .. . . .... . . . . .. .. . . .. . . .. . . .. .. . . .. .... .. .. . .. . . . .. . 201

INDEX 0 0 0 0 0 0 0 I

0 0 0 0 0 0 0 0 0 ' I

0 ;

0 0 0 0 0 0 ' ' '

0 I

0 0 0 0 0 ' '

0 0 ' ' '

0 0 0 0 ' 0 ' o o ' 0 0 o • I • • • o • • • o o ~ I o I o o o o o o 1 , 0 o • o o , , 203

Page 12: George Salvan Architectural Utilities 1 Plumbing and Sanitary

,.,. .

! .···· W~U[ErR k --· ~lUJrP~L Y

- .

Page 13: George Salvan Architectural Utilities 1 Plumbing and Sanitary

WATER SUPPLY

WATER

Water is a combination of two elementary substances hydrogen and oxygen. It appears in its natural state as:

Liquid Solid Gas

Weight of water in Liquid form:

3.778 kg. per U.S Gallon 1.000 kg. per cubic meter

There are.three sources of water:

a. Rainfall

830 times heavier than air . ice vapor or steam .. . 133 times lighter than air

b. Natural Surface; water from streams, rivers and lakes, ponds. c. Underground water-deep and shallow wells

FROM THE RAINFALL

Advantages

Obtained from roofs and waterstleds. It is soft pure and good on places where there is an abundant rainfall.

Disadvantages

Hard to store for a long time as it will be a breeding place for mosquitoes, requires big containers for storing big quantities for long uses, roofs may not be clean, bad for places that receives a little amount of rain­fall.

FROM THE NATURAL SURFACE

Advantages

Obtained from ponds, lakes, rivers easiness of procurements and good for locality near such bodies of water.

Dissdvantages

Dangerous because it containes large a·mounts of bacterias, organic and inorgan­ic substances of varying quantities.

FROM UNDERGROUND

Advantages

Obtained from below ground surface by means of mechanical and manual equip­ments.

More water can be obtained depending by equipments used and locality.

Disadvantages

Because of various organic matter and chemical elements present, it requires treat· ment of various nature, such as sedimenta· tion, chemical, fi ltration, aerations.

Page 14: George Salvan Architectural Utilities 1 Plumbing and Sanitary

METHODS OF PURIFICATION AND TREATMENT OF WATER

1. Sedimentation -articles of matters that are suspended in the water are allowed to stay in a container so that they will settle in the bottom, then drawing the water out, leaving these sediments in the container.

SEDIMENTS

IN

6RAVI!L

INTeRMITTENT CONTINUOUS SEDIMENTATlDN

2. Chemical Treatments - water are given chemical treatments to kill the harmful bacterias present and to cure the turbid taste or mudtaste, remove clay, salts, iron etc. commonly used chemical is chlorine.

3. Filtration - water are filtered on various processes, so as to remove the particles of vegetable matter, mud, and other particles of matter present in the water, most commonly used materials are sand and gravel.

Two Processes

a. Slow Process ,-----SAND

'

b. Mechanical or rapid process

~NO

,. ,::~ .. .. . · · · GRAV!!L

OUT

BY. ffiES5URE BY: GRAVITY

Page 15: George Salvan Architectural Utilities 1 Plumbing and Sanitary

4

4. Aeration - r11w wet~r Is made to pass on plp88 of tlrw sieves and exposed to air of tiM mi8t.

, ..

f ·-~·

~~4 ·-' ~ L*; ..

BI!JA~_1 -.: .

...... ~

~"

WELLS

~

-~ ... ·---p.-~1"'·\t

PlpQ

~

... - I I S~lNE~ ~to eo

hOI's per ~· to d1

a. When excavated by hand are called dug wells-for shallow water.

b. When sunk by machine are called Deep Wells and are classified as Driven -when the water is obtained from loose formation above solid rock such as sand and gravel and drilled ·wells - when the water is tapped from the fis50res.

WATER SUPPLY EQUIPMENT

PUMPS: arr. used whenever the water supply at its natural pressure cannot be directly piped to a building, tank or reservoir.

3 Classes:

a. Lifting water by suction to the level of a pump situated above the source.

b. Raising the water by forcing it to an elevation above a pump situated in the source.

c. Both lifting the water to the pump by suction and in addition forcing the water to an elevation above the pump.

TYPES OF APPARATUS TO ACHIEVE THESE ENDS.

1. Lift pump 2. Force pump 3 Reciprocating 4. Rotary 5. Centrifugal 6. Hydraulic Rams

OTHER TYPES

a. Deep well reciprocating pump b . Turbine pump c. Deep well ejector d. Submersible pump

Page 16: George Salvan Architectural Utilities 1 Plumbing and Sanitary

b

Uft Pump-Consist of a piston traveling up and down within a cylinder which is connected with a pi~ extendinq down into the source. The piston and the bottom of the cylinder are each proviqed with a valve opening upward. UPOA the piston1

S upstroke,·valve a closes and valve b opens. Upon the piston's down· stroke valve a opens and b closes.

FORCE PUMP PLUNGER

Force Pump- used to deliver water at a point higher than the ~ition of the pump itself. when the plunger descends; the valve 8

is closed and the ·Nater in the cy­linder is forced out through the valve b and up to the storage. When the plunger is raised valve b is closed and 8 open to admit water to the cylinder.

1

5

Page 17: George Salvan Architectural Utilities 1 Plumbing and Sanitary

SUCTION

d~l1very

6

Reciprocating Pump - include that class of pumps in which the piston moves· to and fro. either horizontally or vertically.

~liv1.ry

1. Powt~r Pumps

a. Horizontal ReCiprocating Pumps­known as dottble or single acting piston pumps. Adapted to all pur­poses where the suction lift, is not over 22 ft. (6. 70 mts) at sea level.

...

b. Vertic<ll. Reciprocating Pump-for suc­tion lifts of less than 22 feet (6. 70 mts) are composed of 3 vertical cylinders placed side by side.

Page 18: George Salvan Architectural Utilities 1 Plumbing and Sanitary

DISCHARGE

sing

2. Direct Acting-Steam Pumps

Deep Well Plunger Pumps - are used when the water level of the source is more than 22 feet (6. 70 mts) below the ground, they consist of a cylinder in· stalled below the water level and connected to the driving mechanism at or near tf'le ground level by a wood or steel rod.

wat~r

,.b-or-'\l\11""- I mp~ll.er

l'il:llr::-/-1...-J- E y~

Centr~fugal Pumps - posses moving parts without valves, revolving around an axis and centrifugal action is utilized in delivering the water under pressure. The curved blades re· valve around an axis and traps the water that enters and hurls it outward by centrifugal force.

7

Page 19: George Salvan Architectural Utilities 1 Plumbing and Sanitary

8

Check valve

Hydraulic Rams-are au­tomatic and require no mo· tor since they depend for operation upon water ham­mer that is the surging back ~nd forth in a pipe when suddenly brought to rest.

Tanks - rnay be used either for the collection of water without consideration of pressure, or for storing water under air pressure or under a static HEAD for future distribution by pneu­matic or gravity means.

Materials Used

HeAD at- WATeR- v~rt1c.al dlstan~e from the. SOUYC4 to~ outlet.

wood, steel, galvanized iron I G .I. l reinforced concrete, polyvinyl chlo­ride (PVCl.

FIXTURE USED FOR TANK

1. Cylindrical G.l. Tank

2. Spherical PVC Tank

3. Rectangular Reinforced Concrete

4. Rectangular Steel Tank Riveted

5. Pneumatic Tank (pressurized)

6. Stainless Steel Tank

Page 20: George Salvan Architectural Utilities 1 Plumbing and Sanitary

6. Suction Tank - are constructed of riveted or welded steel plate; the larger tanks often being divided into two compartments. ·They should be large enough to contain at least one days' supply for the entire build­ing in case the City main is temporarily shut off.

The suction pipe from the pump to the tank should be across connected to the City main so that the water may be pumped directly from the main in case of Fire.

Suction Tanks are used so that the pneumatic tank or other pumps sucks the water f.torn this suction tank and not f rom the Public Main so that, it will not deprive. The neighbor of water due to pressure.

Suction II ne toftre PUmp

~ HOUSE SUPPLY

Nonnal pressure J Cross Conntd.Jon

SUCTION TANk

9

Page 21: George Salvan Architectural Utilities 1 Plumbing and Sanitary

t

Rt~r

10

THE THREE WAYS OF WATER DISTRIBUTION

1. Upfeed System-from normal water pressure from public water main for low rise buildings.

WATER MAIN

tneur

2. Pneumatic Tank -from air pressure from suction tank for tall buildings which cannot be reached by normal water pressure.

FLOAT ""LYE aduat~ng an automat1c SW\td1

PNI!UMATl' TANK pump

TO 8lJIWN6

~~MAl.. PflJ: ~IJRE

motor SUC:TIOI'f TA*

Page 22: George Salvan Architectural Utilities 1 Plumbing and Sanitary

valve plun_ger shuts ofT wh112n float arm rc; honzontal

~ marker ~====:!I

I

--...___ ------.....;....

.__,.

--

- . ~fdl'i 1,1100

2,0011

~.oao

~.oan

5,001l

flo,OOO

This is usualty bek>w the fixtures to be supplied. When water is called for by the opening of any device like a faucet, air pressure in the top portion of the tank de­liver water into the system. A FLOAT VALVE operates the pump to make up this water when the level has become low enough to actuate the starting switch. A high level switch turns it off when ttw water is up to level. In big water tanks, the water level is seen on a marker as made by the f loat valve which rise or descends.

11

Page 23: George Salvan Architectural Utilities 1 Plumbing and Sanitary

12

3. Downfeed System-by gravity from overhead tanks and are sup­ported either by structural frames or on the roof decks. Fixtures are below the gravity Tank. These elevated Tanks are installed when normal supply of water from main public service pipes is not frequent. It is also used when normal pressure from the City main is not enough to force the water to the h;ghest fixtures.

Ov~rflow Plptt

float

·to ,th floa­

to 1-th floor

to 3 rd floor

to znd floor

UP

Pump

gatevalw

~ from City MAIO

Page 24: George Salvan Architectural Utilities 1 Plumbing and Sanitary

~ReLIEF HOT

lWA~R HEATER

SUPPl. Y' PtPE FROM 'iOOSE

PUMP] • OVERFLOW

~Pe ~t:~mc~~--------~~L_~•r-----~H~----Tt~

CLE;ANOUT

TO DRAIN

, I I f I I I I I I I 1 I I I I I I . It I I I I I I

'• :I I

l I

11 ' I II l I I l I I,. I I

I 1 :I I I I I :I I I :I

t t

P PAN

HOUSE TANK IN ELEVATED POSITION FOR DOWNFEED IN GRAVITY

A . Sediment in Tank is drawn off through clean-out pipe and is prevented from enter­ing house supply by pipe projection.

B. Humidity on the air condenses on the cold sides and bottom of metal tanks and must be caught in a copper drip pan.

ADVANTAGES and DISADVANTAGES:

A . Normal Water pressure

Advantages

1. Eliminates extra cost of pumps and tanks.

B. Air Pre••ure (Pneumatic)

1. Compact pumping unit requires limited space.

DiSIIdvantages

1. Pressure from water main is inadequate to supply tall buildings.

2. Water supply is affected during peak load hour.

1. In case of power interruption, water sup­ply is greatly affected by the loss of pressure inside the tank.

13

Page 25: George Salvan Architectural Utilities 1 Plumbing and Sanitary

14

2. Water chamber being air tight makes the system a sanitary one.

3. Compressed oxygen air tend to purify the water and make it more palatable.

4. The system is efficient and economical as it requires smaller diameter pipe and has few working parts.

5. less initial construction cost and main­tenance.

6. It is adoptable to all types of buildings.

C. Overhead Feed System

1. Because of the water stored inside the tank, water supply is not affected by the peak load hour even if the pressure at the water main becomes considerably low.

2. Power interruption does not affect the water supply inside the building.

3. When the pumping unit breaks down, the time involved to replace the parts does not affect the water supply of water.

HOUSEHOLD WATER SUPPLY

" In large tall buildings. a standby gene­rator is installed to operate in case of power failure.

1. Water inside the tank exposed to the at­mosphere is subject to contamination.

2. The water distribution unit is very expen­sive because it has so many working parts thus increasing maintenance cost.

3 The pumping unit including the entire installation throughout the building oc­cupies valuable space.

4, It requires stronger Foundation and other structures to sustain the heavy load of the tank and water.

Water is conveyed to the plumb­ing tixtures by means of PIPES.

Materials commonly used are gal­vanized iron (G.I.I and Plastic pipes, IPVC) or polyvinyl chlo­ride. Others are brass, copper, wrought and cast iron.

The pipe from the public water main or source of water supply to the building served is called HOUSE SERVICE or SERVICE PIPE. The vertical supply pipe which extends upward from one floor to the next is called a riser and the horizontal pipes that serves the faucets or fixtures are called BRANCHES.

Page 26: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Water Main refers to the public water system laid undernround along the streets where house service is connected. ·

(Orpor.atlon Stop (Coc.!c)

GOOSENECK -one end is 0.30 and the other end is 0.90 long this prevent the pipe from ·snapping when the soil set­tles.

Galt. valve c::.h·~kvalve

CORPORATION COCK -a stop valve placed in a service pipe close to its connec­tion with a water main.

PIPE FITTINGS -include the equipment required for the joining of the various lengths of pipe, such as couplings for connections in a straightline, elbows for connections at 90° or 45°; Tees for 45° or 90° branches from one side, and crosses for 90° branches opposite each other.

Five Types of Fittings:

1. Threaded or screw connection 2. Flanged 3. Soldered or welded 4. Compression 5. Glued or cement­

(adhesive)

Kinds of Malleable Fittings

) )G.I.

:copper or brass

for PVC

Commonly in G.l. (Galvanized iron pipe Fittings)

•• -~----------------~)W

ZS TO ·IS' rmt

15

Page 27: George Salvan Architectural Utilities 1 Plumbing and Sanitary

~LVANIIeD IRON PIPE up to 6 -0 Mt~TS (zof\) lDng

~ STRA16Hi C.OUPI.INc; ./"? -to JQ&n two pipes to~ V mshlled

0~ .

., .

·· .. I '

-CROSS ~E: lreDU,IN6 SOCKET

RETURN BEND

16

. ~-.•

Page 28: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Thia C.I!JmpjA~ ~le~ent is ad;~~qle and disengage& by tYfAi~tg and tJlen sliding away to permit uncouping of pipes.

Y:/'~T

Use for Ordinary shower head.

UNION-used when a pipe has already been installed but dismantling is dif­ficult.

BU$H !f:.!G ::-:-u~~ ~$ r~d.IJCef if ?.14" tQ l /2" fau~~t pip@.

Connections of galvanized iron pipe are done by placing TEFLON tape on the threads or white lead liquid.

TO C.l..OSE A PIPE

17

Page 29: George Salvan Architectural Utilities 1 Plumbing and Sanitary

18

PLASTIC PIPES AND FITTINGS

Fittings:

There are three Types:

1. Polybutylene or IPB)

size 16 mme (5/8") to 63 mm0 (2 1/2") lengths from 30m for a (2"'0) to 300m for a (1 /2"'0) comes in coils used for HOT and COLD in-House water piping systems.

2. Polyethylene {PE)

Used for service connections, in-house plumbing, distribution mains, sewer, waste disposal.

3. Polyvinyl Chloride (uPVC) ... " \

' ' \ . .I \ ,,

. '..\

'· ' 'r f '• '· . \, ~ ,,

a. uPVC pressure mains-used for waterworks and irrigations.

Nominal Sizes: in mm 50 (2"), 63 (2 1/2") 75 (3")

100 (4"'), 150 (6") 200 (8")

zz.s• BEND

Page 30: George Salvan Architectural Utilities 1 Plumbing and Sanitary

b. uPVC potable water pipes and fittings.

Nominal Size mm Equivalent Thickness Length Outside Diam in inch (mm) (mm)

20 112" 2.0 3000 25 3/4" 2.5 3000 32 1" 2.5 3000 3.00 m 40 1 1/4" 2.5 3000 length 50 1 1 /2" 2:7 3000 63 2 .. 3.4 · 3000 ,...

Connections of Joints are done by using SOLVENT CEMENT.

( ~ONNE:CTION WITH 6.1· PlPE6)

MAL.E. TltR'EADE.D ADAPTOR C.AP ELBOW '30• eQ.JAL..

SOCKET FE MALE n+Fn!AOJ::O ADAPTOR

(~ONNEcn·0!-4 WITH G-1. 'FIXTIJ~)

19·

Page 31: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Dram

20

W4TER Ct..OS!:.T

l{;Hrt:I!!Ar:ETJ ELSIJW n,r':}:#;:~~:{) { I G . l. N I PPL..C --~--¥" G. I. 8l.ISHINGr Ji'JSDU<I:R

P.UMPING CIRCUIT SYSTEM

This is the process of circulating hot water to the plumbing fixtures by means of a mechanical device. This type is generally adopted on large buildings where difticulti~s 0f provirlin!=J natural circulation of hot water is impossible.

c~ntrrfugal PUm

Heater ~ Hol Wllto" StorZJge 16nk

Page 32: George Salvan Architectural Utilities 1 Plumbing and Sanitary

1. The pump is installed to the circulating return main pipe closer to the Mating unit. This type of hot water circulation is dependable it having few~r J)&tt• to function and maintain.

2. The circulating return pipe is connected to the inlet side Of the j)ump and the outlet side of the pump is connected into the return pipe to the heater.

3. A gate valve is installed on each side of the pump.

4. The. pump is provided w ith a by-pass line and a valve. In case of trouble the control valve is closed and the hot water circulate around the pump Into the return of the heater.

HOT WATER TANK

This is one of the essential requirements for a domestic hot water ·system. It ·should be strong enough to resist the high pressure of boiling water stored in it :

Two Types:

Ul .,. .

1. Range boiler - small h'ot water tank. 2. Storage Tank - large hot water tank .

D

1 The Range Boiler is made of galvani1ed sheet, steel or capper, built into cylinder shape with con­cave ends either welded or riveted. The range boiler varies in size from 0.3(>-to 0.60 meter india­meter with a length of not more than 1.80 meters.

Standard Press Extra Heavy Tapping

SIZE COMPUTATION OF HOT WATER TANK

"DEPENDS ON"

1. Kind of building served

2. The expected number of occupants

3. The heating capacity of the supply devices.

The water heater must be of sufficient capacity to replace the discharged water in a reasonable inter­val. If a Tank installed is required to serve 50 gal­lons of hot water in any one hour of the day, the heater must be able to replace this quantity in one hour. The rating or capacity of water heater is specified by the manufacturers.

= 378 Newtons (85 Psi) = 6fi7 Newtons (150 Psi) = 25 nvn or 38 mm

(1'" or 11/2'")

21

Page 33: George Salvan Architectural Utilities 1 Plumbing and Sanitary

22

Problem:

Determine the size of a residential boiler tank to serve 6 persons in the family: refer to the Tables below.

f<IND OF BUILDING GALLONS PER PERSON PER HOUR

OFFI(E. BUILDING 410 5

SCHOOL 2 to 3 _ ..... . ·- . ...

APARTMENT 8 --~·

.....

HOTEL 8 to 10 8to \O -- - .. .

FACTORIES 4 to 6 4 to6

---- - ... ·-···- ·-.--.

RESIDENCES

KIND OF Bw.DING

OFFICE, SCHOOL

INDUSTRIAL TYPE

4PARTNENTS

.. --REStO ENCE S

HOTELS ,RESTAURANTS

Solution:

6 person x 10 gals. 35% X 60 or .35 X 6()

AVERAGE

"

60 gallons 21 gallons working load

lO ..

WORKIMG L.OAD

25%

3!5%

50%

.,.

Since 1 cu. m. of water ,\s 264 U.S. gallons 21 + 264 = .08 cu. m. volume.

The formula for finding the size of a Cylindrical Tank is

d2 x 0.784 x height == Volume d2 X. 0.784 X 1.00 M = .08

height is assumed as 1.00 m.

d2 = ---~~----0.784 X 100

d =..f.l02 = 0.32 m or 32 cnl.

Page 34: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Size of Tank is referred in Table below which is 18 gallons or if you wish a 25 gal.

GAlLONS

TOR DIAMETER IN METER H (M) .30 ~-;: 1 AO . 45 -~0 . 60

-- --- -- - - · -- -- -· 0 18 33 42 52 74

-· I -0 22 lO I 40 I so 62 89

··- - 1--·- ! 1.4 0 I 2& 35 1 46 58 72 ! 104

I - --··t-

0 .l--- 30_ .. ~ 40 Sl 67 83 i 119 i I I I I. 6

~-~ '· 80 __ . __ _! _._~ __ l 45 60 j 75 I 93 I 134 I L__ ___ ..

The Storage ~ank is made of heavy duty metal sheets w ith rust proof paint. The size also varies from 0.60 to 1.30 meters diameter and its length is up to 5.00 meters long.

manhole - 275 mm x 375 mm Standard Press = 289 newtons (65 psi) Extra - Heavy :::o 49 newtons ( 100 psi) Tapping in each Tank = 6 pes.

HOT MTriR S'R>U.I! TANK (A""lTY tM U.S. ~LON&.

~:~~~~ c~~ D~~!~!~fR __ !~f~E!~~ ~l--.7o · . eo .90 1.00 1.10 1 1.2oj: 1.30

- - --~--- -+--1-----·--+----i ____ 2_·-~--·--r-2~-- 265 335 414 1 501 1 597 1 100

2.50 254 331 419 ; 51& l 627 l 7461 876

·--:-~~- ----- ~-~~~ ::: -7,: +~-~ ::~-,:: ' :::: - . ·- - ·--+-- ----+

4.00 406 530 671 829 1003 P94 1401

4.50 457 597 77& 933 1128 1343 1:,7& t----- - - --+-- --- - --f------+--,1---+--~

5 .oo soe 6&3 139 to:ss 1254 t492 17&2 - -- ____ __._ __ __.

2.3

Page 35: George Salvan Architectural Utilities 1 Plumbing and Sanitary

24

TANK TAPP1N6 S'll! Of= HOT WATER STORA(;E. TANK

TANK OlAMETn (•) TAPPIN8 DIAMETER ti'NI)

o.so 33mm 11,.2

0.80 38mm --

0.7!5 50•• (2 .. )

---- - - - ·-· o.eo !SOmm

f-.-·-----~

1.00 so .... ....

1.20 751nll'l ( 3 .. )

MATERIALS AVAILABLE FOR PLUMBING INSTALLATIONS

1. Galvanized iron (G.U or Steel Pipes made out of a Mild Steel drawn through a die and welded cast into 6.00 meters long. Its usual life span is from 15 to 20years. However steel pipe is subject to deposits of salts and lime which gradually accumulate and even­tually choke the flow of water. This type of pipe is corroded by alkaline and acid water. That is why when used fot hot water line, it deteriorates faster than cold water supply pipe.

2. Plastic or Synthetic Pipe

There are two types a. Rigid Type b. Flexible Type

Rigid Type can be: 1. Polyvinyl chloride (PVC) 2. Chlorinated Polyvinyl Chloride (cPVC) 3. Unplasticized Polyvinyl Chloride (uPVCI 4. Polypropylene (PPl 5. Acrylonitrile Butadiene Styrene (ABSI 6. Styrene Rubber Plastic (SR)

Flexible Types are: 1. Polyethylene (PEl - Coil Form at 30 meters 2. Polybutylene (PB) up to 150 meters long in coil Form

3. Cast Iron Pipe-This is durable and is conveniently installed in most of the plumbing needs in building which are less than 25 storeys high because water usually leaks at joints due to vibrations.

Cast Iron is also affected to a certain extent by corrosion caused by the action of carbon dioxide, sulphur oxide and methane gases forming a solution of carbonic acid and sul­phuric acid which attack the metallic materials, causing a slow chemical reaction or oxidation to take place forming ferrous oxide, called rusts.

Two Types: 1. SV- For building installations. 2. XV -For underground installations this are extra heavy.

Page 36: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Spigot. -z..t[ _____ q 1. STANDARD

2. DOUBLE HUB

[J.._i ___ ___. 3. SINGLE HUB

~. HUBLE:SS P\PE

4. Acid Resistant Cast Iron Pipe-Made of an alloy of cast iron and silicon. It is com­monly installed in chemical laboratories where acid waste are being discharged.

5. Asb~stos Pipe - made of asbestos fibers and portland cement. The thickness is twice that of standard cast iron. Most suited for embedment on concrete structures.

6. Bituminous Fiber Sewer Pipe - Cheapest light in·weight, recommended for house sewer and septic tank installation. It could take slight soil movement without danger of cracking or pulling out of its joint. ~.

7. Vitrified Clay Pipe- made from clay and with· a length of 0. 75 n:aeter treated with gla~ ed compound. This is highly resistant to most acids and is well suited in underground installations working either as public or house ~wer, or storm in drain. Being made of clay. The physical property of this pipe is brittle. It easily cracks when laid on unstable ground or base.

8. Lead Pipe-one of the oldest plumbing materials. Lead is highly resistant and is very suitable to underground installation. But because it is poisonous and injurious to human health, it is never recommended to convey water for human consumption .

9. Gatvanized Wrought Iron Pipes - this is better than steel pipe for plumbing installa­tion, because it is more resistant. to acid waste than the steel pipe. ·

10. Brass Pipe - The most expensive of all types of pipe. Made of an alloy of zinc and cop­per mixed at a proportion of 15% and 85% respectively. The brass pipe is a superior material for waste and water installation because ot'its smooth surface aside from its high resistanc.e to acids.

11 . Copper Pipes-A durable material which is extremely corrosive resjstant-easiestto in-stall. -_ .. -·

Type K - heaviest for underground installations Type L - Lighter than type k comes in flexible and rigid type Type M ...:. thinner and available only in rigid form.

25

Page 37: George Salvan Architectural Utilities 1 Plumbing and Sanitary

26

SIZE OF PIPE:

The size of the service pipe connecting the main and the house being served is governed by the:

a) maximum demand and the

b) probable demand or peak load

MAXIMUM DEMAND-refers to the maximum water discharge for plumbing fixtures in terms of unit. The maximum demand of water supply is equal to the total fixture units in the plumbing system wherein one unit is approximately'valued at 8 gallons of water discharge per minute.

Example:

One urinal has 5 Fixtures Units {See Table Below)

5 x 8 gals = 40 gallons-the maximum demand of water supply per minute.

FIXTURE UNIT VALUES

Kind of Fixture Fixture Unit

15 sq. m roof drain 1 Lavatory or Wash Basin 2 Floor Drain Residential Sink 1 % ~~~ 2 Kitchen Sink 2 Laundry Tub 2 Shower Bath 2 Sink, Hotel or Public 2 Slop Sink 3 Combination Fixture 3 u~ 5 Water Closet 6 One bathroom group consisting of Water Closet, Lavatory. BathTub and Overhead Shower 8

PROBABlE DEMAND OR PEAK LOAD

Is another factor considered in determining the size of the water service pipe. The question of how many fixtures will be used simultaneously is difficult to ascertain. but according to survey.

a. The Fewer the number of Fixtures installed the higher the percentage or probability of their simultaneous use.

b. The greater the number of'Fixtures installed, the lesser the percentage or possibility of simultaneous use.

Page 38: George Salvan Architectural Utilities 1 Plumbing and Sanitary

ON tOm•

1/a ..

PROBABILI,TY OF SIMULTANEOUS USE Of FIXTURES

Number of Fixture Units

1 to 5 6 to 50

51 or more

EXAMPLE PROBLEM

Percentage of Simultaneous Use

50 to 100% 26 to 50% 10 to 25%

Determine the maximum and the probable demand of water' for the f.QIIowing fixtures in- . stalled:

3 water closets; 3 lavatories; 1 kitchen sink; and 3 shower baths .' What size of the servrce pipe is required to serve the above fixtures?

SOLUTION·:

Solving for the total fixture units as based on the Table above.

6 x 3 Waterclosets = 18 units 2 x 3 Lavatories 2 x 1 Kitchen Sink 2 x 3 Shower

Total .. ....... ........ .. .... ...... .. .... ........ ... ... . .

Solve for the Maximum demand

32 units x 8 Gallons = 256 Gallons

Refering to the Table of Probable Use .

= 6 units = 2 units = 6. units

32 Fixture Units

32 is between 6 to 50 Fixture Units and between 25 to 50%.

Assume that 30% is safe for 32 units

0.30 x 256 gallons = 76.80 say 77 gals, per minute.

Refer to the Tables below. particularly the

Table for 25 mm under 6 r:n length with 178 newtons pressure, the size of pipe is 25 mm (1"} and could supply 80 gallons per minute.

GALLON'S OF WATER PER MINUTE GALVANIZED IRON OR PLASTIC PIPE

PRESSURE OF WATER LENGTH

AT MAIN OR TANK OF PIPE IN METERS

POUNDS NEWTONS e l l 2 •• I 2.4 30 16 42 48 84

10 44.5

~ .: I e 1 4 : 1 J 3 2 2 2 I .-n--·~-4 --1---- '--- l !

20 ... 0 i 4 i ! I 3 i 3 3 I

r-;T 4 I I 30 133.4 10 e e 1 5 4 I 3 I 3 - I

40 171.0 10 I • 7 I e 5 J 4 4 I 4 3

•ol !

eo 222.4 • 7 I

6 6 s I 5 4 4

27

eo 2

2

3

J

4

Page 39: George Salvan Architectural Utilities 1 Plumbing and Sanitary

ONISmm PRESSURE OF WATER

LENGtH OFPPE 14 METERS AT MAIN OR TANk

~---:- f-

1/2 .. POUNDS· NEWTONS 8 12 18 24 ~ 36 42 46 54 60 ..

lO 44.5 10 8 5 5 4 3 :5 3 3 3

20 89.0 14 10 8 6 .' 6 5 5 4 4 4

30 133.4 18 12 10 8 7 7 0 6 5 5 40' 1.78.0 20 14 II 10 8 8 7 .7 6 6 50 222.4 20 16 13 ll -

..... 10 9 8 7 1 1

ott 20inlll PRESSURE OF WA,-ER

AT MAIN OR 1MK L!N8TH OF PIPE IN METERS

:s;. PQJNDS NEWTONS 6 12 18 24 30 :56 42 • 54 60

10 44.5 22 l4 12 10 8 8 7 6 6 6 r

20 89.0 30 22. 18 14 12 12 10 lO 10 ·e 30 133.4 38 26 22 18 16 14 t4 12 12 10

. 40 r71.o 38 30 24 22 19 t7 18 18 15 13 ..

50 2a,2.4 38 34 28 24 22 .. 18 ,., 18 15

ONZBIM PIESSURE OF WATER

LENGTH OF PIPE IN METERS AT MAIN ORi TAIIK

I" PeutDS NEW TOM 6 t2 18 24 30 38 42 4.8 54 4$0

10 44.5 40 28 22 18 ,. 15 14 IS &2 .. 20 89.0 55 40 32 27 24 22 20 ,, 18 18

30 133.4 10 eo 40 34 3Cl 27 25 23 22 20 /

40 178.0 80 sa 45 40 • • 29 27 215 24

50 222.4 60 65 51 45 40 • 33 a 29 Z1

I

PRESSURE OF WATEJ ··"'·

ON 52• AT MAIN OR TANK LENGTH OF PIPE IN METERS

' '" POUNDS NEW'R>NS 6 12 18 24 30 '36 4~ 48 54 60

10 44.5 80 55 45 :57 35 30 27 28 2& 24

20 89.0 no 80 65 55 50 45 41 38 36 34 '•

30 133. 110 100 80 10 60 5$ so 47 45 43 -

40 178.0 no no 95 80 72 815 60 56 52 50

50 222.4 1.10 110 107 92 82 73 88 83 80 .58 2S

Page 40: George Salvan Architectural Utilities 1 Plumbing and Sanitary

ON ··-t 1h

ON ·a·o-2.

.

PRESSURE OF WATER

AT MAIN OR TANK LEfteTH Of' PIPE · 1 N N!TERS

POUNDS NEWTONS 6 12 18 2-4 30 36 . 42 4e ~4

10 44 .5 120 90 70 60 ~5 ~0 45 «) 40

20 ee.o '

170 130 100 90 75 70 6S 80 ~s

30 133.4 170 l80 IS) 110 100 to eo 7S 70

40 178 .. 0 170 170 ISO 1!0 Ito 100 90 80 ., ' •

so 222.4 170 170 170 140 130 120 110 100 90 I

PRESSURE OF WATER

AT t.tAIII OR TANK LEN 8TH OP PIP~ '" MBTERS

POUNDS NEW TONI 6 12 18 24 30 36 42 48 54

10 44 .5 240 160 130 110 100 80 eo 80 80

20 89. 0 300 240 200 1~0 ISO 140 130 120 uo 30 133 . 4 300 30o 240 200 l8l 180 ISO 't«) MO.

40 178.0 300 300 210 240 220 200· 180 180 180

so 222.4 300 300 '!00 280 240 220 200 20( 180 ~

NOTES

a. Doubling the diameter of a pipe line increases its capacity up to ·4 times.

b. A 20 mm service pipe can supply 2 branches at 13 mm diameter each it could deliver up to 10 gals/ min. Sufficient enough to serve UJ> to 10 fixtures.

c. A 25 mm service pipe can supply 2 branches at 20 mm diameter . It can deiiver up to 18 gals/ min and serve 20 fixtures.

FLANGES

Consists of Fitting$ _provided with projecting rims or flanges wFiich are screwed over the two pipe;! .ends to be joined. {The Ranges are then bolted together with a gasket of rubber, metal or cork between the Fla'nges.

GASKET

Usually used for pipes bigger then s·0 (0.15 m).

29

60

3S

ss

65

eo

80

eo

70

100

1!0

150

180

Page 41: George Salvan Architectural Utilities 1 Plumbing and Sanitary

SC~EW Fl...ANGE.

SLIP FLANGE .... .

VALVES AND CONTROLS:

a. GATE VALVES-- Consists of a weclge-shapefl plug which is screweci flown to sea t between two brass nngs surrounrling the in let pipe so that a double seal1s obtainerl. The inlet and outlet are in a straight line. This valve is used when a normal fully open or closefl pos1110n IS rlesirerl. E1ther end may be userl as inlet.

tt

BRASS RING

b. GLOBE VALVE - are operated by screwing down a disk with soft packing until it presses tightly upon a metal seat. When the disk is raised and the valve is open, the course of water is deflected up through the opening in the seat and the Flow is restricted. Used when it is desired to throttle the water supply. Same end must always be used as inlet.

30

Page 42: George Salvan Architectural Utilities 1 Plumbing and Sanitary

SWING CHECK VAlVE -has a pivoted flap which is readily pushed open by the pressure of water from one side but is tightly closed by the force of a reverse flow.

~· CHECK VALYES-are used when it is desired that the flow ·through a pipe be always in one di­recti~n arid there is a possibility of a flow taking place in the opposite direction.

a.ose.o POSITI~

HORIZONTAL~

LIFT C.HEGK VALYE

Consist of a loose disk wh ich closes by gravity when the pressures on both sides are equal.

~1

Page 43: George Salvan Architectural Utilities 1 Plumbing and Sanitary

~ .

d. ANGLE VALVE-changes the direction of the flow of water as well as control it. Acts somewhat lik& globe valve but are usually used for a right angle turn.

FAUCETS

. b. COMPRESSION COCK-operate by the oompre~~Jion of eoft packi~ upon a metat aeet. Thctv close agaii11t the flow of w•tr tnd c:an be U8ed uPOn high"· pressure pipes without cauling water hammer.

e. KEY COCK - operate by means of a round, tapering plug, perforated in one direction perpendicular to its axis and ground to fit a metal seat. The faueet it open when the perforation is in line with the pipe and is quickly clos· ed by turning the plug so that the per· foration is across the line of flow •

Page 44: George Salvan Architectural Utilities 1 Plumbing and Sanitary

PRESSURE REGULATORS:

c. HOSE BIBB -similar to a compres· lion cock but has a screw outside for connection of water hose.

d. $ELF CLOSING FAUCETS-arranged to discharge water while they are held open by the hand and to close by a spring inside the Faucet~s soon ftS the pressure of the hand i$ ·181'Tloved.

Devices for limiting the pressure of the water discharged frQm o pipe to • fpttd tmount , · whatever may be the pressure of the water suppiMtd to the pipe. Usod to reduce the ~~- · upon the piping wfthin a building when the prttsure In the street mains is too high and to dliCrease the preuure upon the eranch piping to fixtures on the lower floors of tall buildl.,gs using a down t.d H~ system. ·

33

Page 45: George Salvan Architectural Utilities 1 Plumbing and Sanitary

CAP

34

l AIR 0.90 CHAM BE.~ STAGK

ltz.O SUPPLY LlHE.

Excessive pressure produces a rumbling sound called the Water Hammer and to reduce. this, an additional 0.30 to 0.90 m length of pipe is added to the riser to give air pressure which absorb it.

The normal water pressure for residential houses ranges f rom 133 to 178 newtons 130 to 40 psi). Lower than this value may resu lt in insufficient flow of water particularly during simultaneous use of fixtures. Likewise, water pressure higher than 222 Newtons (50 psi) may cause pipe hammering or even bursting of the pipe connection.

Page 46: George Salvan Architectural Utilities 1 Plumbing and Sanitary

HOT WATER DESIGN AND EQUIPMENT INSTALLATION OF WATER SUPPLY

HOT WATER SUPPLY

Consist of a heater with or without a storage tank, piping to carry the heated water to the farthest fixture and a continuation of this piping to return the unused cooled water back to the heater. Brass or copper pipe should always be used although G.l. pipe is commonly used.

Two Methods of Distributing Hot Water Supply and Return Circulation Line.

MINIMUM OF

0-15 MT$

a- o

I I D I

' • • D

RcTI.JRN SUPPLY

1. An Upfeed supply riser with the return circulation taken off at a point just below the highest fix­ture connection. For building of moderate height.

-2. For high structures, consist of a main up-feed supply to a distri­bution line (Over head) at the top o.f the building from which Down­feed risers are taken off to feed the several stacks of fixtures.

35

Page 47: George Salvan Architectural Utilities 1 Plumbing and Sanitary

' 36

Relief valv~

THI! UPFEED AND GRAVITY RETURN SYSTEM

This is commonly used in sman residential and industrial installations. The main objectives are:

1. to provide constant circulation of hot water.

2. to draw hot water immediately from the fix­ture at a~y time.

3. to provide • circulating return for economy.

4. to eliminate waste of water.

To Oram

Page 48: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Draw Traps

Return ~

'1211Ye c.-,

HOI WAT'I!R SUPPLY

(Ro.turn

~ r t SJ

il z ~ 0

~ Si1 ., 0..

~ .... :.'" i i ~ a

3 s

i ::s ::1 0

~ 0 ::l "'

Valw~ tvalw

~

1-tot wattr· ~Q Ta.nk

l>AAIN

VtJive

Return

D.•'laal•••

THE OVERHEAD PfED AND GRAVITY RETURN SYSTEM

1. Water distribution is dependent on the expansion of hot water and gravity. In a cloeed pipe system water rises to the highest point of the installation when heated and the natural force of gravity retum it to .the ~orage tank.

2. Water will circulate even if there may be defect in its. mechanicaJ construction.

37

Page 49: George Salvan Architectural Utilities 1 Plumbing and Sanitary

- - ---- ··---'11--

: HaJSe HEAPt=l?

F~ HCAPER ~- ---=~~~~EADEff r--+-1- ------ _!I~T ~TER HeADER

-~- --- I t--- -------:--. --------~ -. 1-t:' ---··t-+--- ~ II OOWN PEEO RIS~RS I -----.-·- ·-

1 · I

et.h floor 1-- -0 · l 1 r---~-~U---------1'- I I : I I

-~-~---! I ~=~~~~14 : ~B~N4iH I : : I r-- WATER I l

1

--- I I LINE'S I I l ---r-1 - -aPANsiON LooP-sri r---.~ I 1~ OR .JOINTS .:/'< 1

·-t 't11 .:::~; ~- i ·-1-l 1 _ _ ~ FEEtl TO 1 HOT UPFE..ED 'Tt> I

1

i I HoT WATER 1--.x_~ ·-· ---.----~r wA"':' VHEADe:l< ±----r

3rd flea--..+-+----- ~-~ HEAT>!R U-' ! -·- -- f-L IE - I I ~-- ~ ~ ......... Th'l I I I ·- --o

~--v-t--....._::_----:..• --r--i-' - I l : I

~=t;: ! f=b· - ..... ..0 I I I : I . I : j I C::IRt::ULATION I

~ -~~;;.~;;~--~ ~-+ -~- -~--.:£;.~ I !'I 0 ~ fi:; l a ~~~~~ H£AnN6

I I . . ~ > I ti()T WA~~ STORA"E \.-- -*- --.:....~ J . HEATl:R

10'\.h f1 CQ"

9i..h f\ar

4th floor

.__--~----..;;;:;;;=: ..... r- CHEQ( VALVE

I sLJC.i10)J TA-NK_ Of1tn · HOuse PumP desirable when pump tnl4!t IS ~" ( -•o odarg4.r)

38

Page 50: George Salvan Architectural Utilities 1 Plumbing and Sanitary

CAPACITY OF CYLINDRICAL WATER TANKS-TOTAL GALLONS ·····-·· · ... ···- ·····

DEPTH DIAMETER OF

LfNGlH 12" 18" 24" 30" 36" 42~ 48" !S4" &Cf 66" 72"

0 .30 0 .4!S 0.60 . 0.7!5 , 0.90 I. OS 1.20 1.35 U50 1.65 1.80

ozs ... 0 -49 1.10 LH 3 .06 4.41 !5.98 'ZU 8 .91 12.24 t4.11 f'.U

0.30 t"O" 5.88 13.22 23.50 36.72 52.88 71.37 84.00 118.97 146.18 IT7.7'2 ,,,_,, 0 ."5 1! a" 8 20 35 S:U)I 71 108 I-A 178 220 287 $17

o.eo 2'·0" 12 2e 47 73 106 144 •• 238 214 S58 423

0 .75 2'-8" 15 33 58 92 t32 180 23!5 297 H7 444 "529

0.80 3'-o" 18 40 7t ItO 159 218 282 357 441 533 ess !

1.05 3!.6" 21 ... 82 128 185 i 2!2 329 418 1514 82.2 74)

1.20 4'..0" 24 55 94 1~7 212 288 378 476 588 711 848

1.35 4'-6" 27 60 •oe ~ ~ 238 324 423 535 661 800 852 ---.

I .SO 5'-0" 29 66 ~te 184 264 380 470 51!5 734 889 10.58

1·6&- !5'-8" 32 '73 !29 202 291 I 396 511 854 801 871 1183

1.80 1'-0 35 78 • 4~ 220 317 [ 432 564 714 ... 1066 l289 ..

2.10 7'-D"' 4! 93 ! 6 e 2157 370 !504 4158 833 1028 1244 1481

2 .4(1 8'-Ci' -47 106 ' 88 2H 423 sn. 7!52 eaz 117!5 1422 ltl2.

2 . 70 g'.;.o" 53 ll9 212 331 476 648 846 107! ! 522 1600 1804

3 . oc !O!.O' 58 132 23~ 367 529 720 MO 1190 ' 148e 1717 au a 3.60 12' -0" ?: !59 282 44! 635 884 '12e 1428 !763 2133 2838 ~-·

-4.20 14"-0" 82 185 329 514 740 1008 1316 !888 2058 2481 2M I ---1--

480 18!..0" 94 212 376 588 !346 ~152 !504 l l9_04 2350 2844 1114 - -· 5 .40 ll'..o" !06 238 423 &61 9!52 1269 18~2 2!42 2Q44 31W ll07

----- r-· ·-- · ··- -- --- ··-1--- ·-6 .00 20'-0 118 2 .. 470 734 !058 14!9 ' 1880 2!80 21!1 155!5 4l10

-- - - - ·-.--·-· .. --. '---·· _ __.J.._.,

39

Page 51: George Salvan Architectural Utilities 1 Plumbing and Sanitary

"'" .0 CAPACITY

WIDTH OF

TANK 2'-0" 2'-6"

a•. o•. a.t2 37.40

2'- ... 445.75

3 1- 0

3' • 6"

4' - 0"

4'- 6"

~... t;i'

l5.- 6"

6'- 0"

6'- 6"

7'- oi•

7 ~ 6

8' ~ 0

8'- 6"

~·. 0"

9' - 6"

10'- 0"

10'· 6"

II' • 0"

II • fr -·

12' -0"

OF

3'-d'

........ 58.10

67. 32

RECTANGULAR WATER TANJ<S- GALLONS per ft. of IMnght

LEMe·TM 0, TANK

:S!.I" 4'·0" 4'- fll' 5'-.0" ...... e•.o• ··-·· 1:..o" 7'-8" •• - Cl' 8'-8" fl-o· t!-.8" 10'-4" 10'-8 '

52.341 sta4 67.32 74•• 8Ut ••. 7'1 t7.25 04.73 112.21 ...... 127.17 134.'5 142.11 ........ 157.ot

85.45 74.eO 14·18 e&SI 102.881t2~ 121.54 130.11 1«).28 ••. 81 usa ... let.. II 177 ... 187.01 .....

78.54 8t.77 oo.tt lt2.2t 123.43134.85 4S.8, 15 7.<» f8S.31 '"·" to.75 il!Q( .. 7 ll!.lt 2M41~S.U

91.64 104.73 117.82 130.91 144.0 57.09 70.18 18!.27 '19fU6 209A5 222.$4 235.63 2-48.73 26L82 214.90

119.69 1!4.65 149.81 184.!57 179.53 94.!f9 208.-45 22•US4 2Stt.37 254.34 26t.30 284.26 2tt.22 1314.18

1151.48 168.31 ••u4 ~·7 .ta.aa 23:\63 ~~2.47 289.30 !l88J3 502$6 ~19.7'1 331S2 353M

182.()1 2(15.71 224~ aeu 2e1aa 210.5 218.22 317.t2 ~3U2 35»2 574.0: 392.7~

226.2t 246.84 287. .. 288.CX 1()8.51 328.!4 .4t.71 ~70.21 ~ 411.43 432DC

2.3( 2tl.74 JI4J8 33U2 35t~ 381..50 f4o1M ~-3t 44883 471.27

311.05 3..0341 ,..., saa.te i4t3.JO ~teo 4et.t2 488.2'! 510.14

338.5<4 D27:1 ...... ~-at ~71.27 487.45 !23.&4 548.11

420.78 448..1! 47$ .. 1504~ SS2M Hl.04 18841

.78.75 ~ AUt !lUI I~ 1 ...

~- 17225 604.0! 635.&4 E67.63

I&C5.92 63958 6732~ 706.8C

I 6115.11 710.65 74&17

~.(15 78S.«!

824.-n

~ I

- --- - - ---.___ __ j

u•-o• tl~8" t2~d'

184.57 '72.0! 179.53

20&.71 215.06 224.41

~-- a or -.10 ~8800 ~Loa. ~14.11

329.14 544.10 iJst.oe

37021 M7.11 f4as.M 411.43 430.13 foMUS 452.57 473J4 ~71

48J:n 514S.B ---SM.as 5Sel6 581A7

~~·· eo2J8 828.!. 117.14 MS. en.24

t5821 888.1CI 7ll.t2

689~ 75.21 183.00

71M)!J6 774.2! 807.8t

78t71 817.24 852.71

822.8e aoo.a ~tu. 884.00 to'5a ~-905.14 !946.27 18'Z43

9ft2t t032.3

~7'l2

Page 52: George Salvan Architectural Utilities 1 Plumbing and Sanitary

PRIMER

DRAIN "'»

BOOSTER PUMP- PRESSURE TANK ( Wben .teroo• water 11 uftclerorounct >

INSTALLATION tN TALL BUILDINGS:

In buildings of more than 20 stories, zoning is generally more ----- -24ttl

economical for hot and cold water supply and for fire lines. The roof __ --- __ 2!rd and intermediate tanks are situated on the top floors of their respec-tive zones and are fiHed by pumps in the basement.~.The hot water _ _____ ztnd

heaters are located at the bottom of their respective zones and are supplied from the zone tanks. .------211t

The cold water distribution line of each zone is carried in a loop Heater

around the building concealed In hung ceilings, the down-feed risers .___ -being taken off the loop as required. Each loop is just below its cor­responding tank.

The hot water system is arranged in the same manner with distribu­tion loops and down feed risers, but the ends of the risers in each zone are connected back to the heaters at the bottom of the zone are con­nected back to the heaters at the bottom of the zone thus providing complete circulation for the hot water required for flow.

41

Page 53: George Salvan Architectural Utilities 1 Plumbing and Sanitary

,."_ .. -····

ZONING

When the water supply of very tall buildings is designed as a unit, the required capacities 01

tanks, pumps and pipings become unduly large and excessive pressures are developed ir'l iower portions of tne downfeed risers. Tfie bUild ings therefore is divided 1nto horizontal sec­tions or zones and to design the hot and cold water supply systems separately for each zone.

VAF\:)ft

RE.Lil!F

---.... -···-.

TA

c.o

.s~

40

.so

.ao

.. .

t 2~111 --

-+ -+z 3

+:S. - -··- -· ··,._...:,..::::;.:.:......,,...=;tdrT----' •b l 2 0NE.. i.

~---· -r=~:::;;--=r4;;;;;31~==:Jt-

a~--- -J..L---1H--+t ·-+++---~

42

C.IRCULATION

C::::O~D WATER

------ 1-\DT WATER

Page 54: George Salvan Architectural Utilities 1 Plumbing and Sanitary

,.,.. .

Page 55: George Salvan Architectural Utilities 1 Plumbing and Sanitary

FIRE PROTECTION

PLANNING

The preservation of the structure and its contents against fire damage or :destruction, though secondary in importance, is nonetheless, of serious concern to ownei'S and others having a financial interest in property.

Although th~ inclusion of Fire-fighting equipment in buildings is always desirable and in­creasingly mandatory, good practice begins with the design of the structure. This is neces­sarily affected by the permitted, building density in the locality and by the. flammability of the building and its expected contents.

Some of the materials and equipment that must be considered are:

a. Fire resistance of the selected structural type and material and the contents of the building.

b. Limitations of Volumes within Fire-resistant barriers in otherwise vulnerable build -ings.

c. Precautions against perforations of approved and required barriers.

d. Exits and Fire Tower Stairs.

e. Protection against fires caused by d~fective electrical systems.

f . Protection against fires caused by lightning.

g. Detection and alarm system.

h. Standpipe and hose systems within and near buildings.

i. Automatic sprinkler systems.

j. Automatic smoke and heat venting.

k. Smoke <md heat shafts.

I. Control of air-conditioning ducts.

m. Communication in high-rise buildings.

n. Elevator Control.

o. Fire command station in high-rise buildings.

HIGH-RISE Fl RE SAFETY

Definition of a high-rise building in terms of Fire Protection.

1. Too tall to be completely accessible to fire-fighting equipment from the ground. This prot»em occurs anywhere from 6 to 12 stories. but usually 8 to 10 stories. depending upon the reach of aerial ladder equipment available. It means that the fire must be fought internally above the levels.

2. Too tall to make complete evacuation of occupants feasible. This occurs at about 25 stories, where complete evacuation would take five minutes theoretically and about 50 to 150 percent longer than this· in reality . It means that provision for safety and life, support for the occupants must be made within the building.

3. Tall enough to make possible chimney or stack effects for air and smoke flow. This is to some extent true in all buildings, but it becomes especially pronounced in build­ings about 8 stories high. This means that provision must be made for the control of air flow and products of combustion.

Page 56: George Salvan Architectural Utilities 1 Plumbing and Sanitary

For all office Buildings occupied by 100 persons above or below street level or more than a total of 500 persons in the entire I building: ·

FIRE SAFETY PLAN

1. Plan for Fire Drill and evacuation procedures~ including appointment of Fire Safety Director, Fire brigade and Floor Wardens.

2. Signs required at elevators and stairs.

For buildings 100 feet (30 meters) or more in height:

FIRE STAIR DOORS

Door to interior stairs shall not be locked except: 1. On street floor to prevent access to stairs.

2. On stair side if every four stories or less, door is openable.

3. Where failsafe electric door lock, activated by any detector, is provided.

CLASS E FIRE ALARM SYSTEM

1 . Combination Fire Alarm signal system consisting of fire alarm and two-way voice communication system (direct wire radio, or carrier current). With at least one sta­tion per floor. Activation of alarm station will identify its floor location at the Fire command station, mechanical control center, and the regularly assigned location of the Fire safety director, sound alarm and notify automatically Fire department.

2. Fire Command Station, located in lobby of building containing communication capa­bility (two-way voice) between Fire command station and floor warden stations, me­chanical control center elevators, air handling control rooms. Audible alarm signal, visual display system to indicate activation location on each floor.

DETECTORS

1. On each elevator landing. Activation shall stop all fans, activate smoke exhaust or stair pressurization fans, return affected elevators to terminal landing, and automa­tically_ sound alarm and notify fire department.

2. At the return air shafts at each floor.

COMPARTMENTATION

(Applies to Floors located more than 12 meters above grade served by multi·floor air condi­tioning system)

1. Areas to be compartmented by one hour separations, into spaces not to exceed 750 sq. m.

2. Sub-division of area may be increased to 1500 sq. m., provided such area is com­pletely protected with space detectors.

3. Where total area exceeds 1,000 sq . m. at least one fire separation _shall be two hour rated and create areas of refuge.

45

Page 57: George Salvan Architectural Utilities 1 Plumbing and Sanitary

46

SMOKE AND HEAT CONTROL

(Applies to buildings served by multi-floor air conditioning system).

1. Smoke shaft to exhaust heat and smoke to outdoors.

2. Systems to be activated automatically upon activation ot any detectors.

ELEVATORS

1. Elevators serving fire floor to be recalled and retained at terminal floor by activation of landing detectors or command station control.

2. Three elevators servicing each floor shall be equipped with Firemen's service.

3. Interlock wiring for elevator hoistway doors will be required to be resistant to high temperatures .

... SPRINKLERS

1. For show rooms exceeding 750 sq. m. located more than 12m. above grade shall be sprinklered. Use of domestic water permitted.

2. When floor is completely sprinklered, compartmentation and smoke shaft and stair pressurization is exempted.

WATER AND STANDBY POWER

A very large industrial plant may settle in a suburb or in a small community where the local company cannot entirely cope. In such cases a reserve underground storage of several hundred thousand of gallons or an adjacent artificial lake would not be unusual.

When such reserves must be delivered by pumping during a fire, and electrical power outage could be a tragedy; then standby power must cut in. Diesel-powered pumps take over. These units and their fuel storage should be separately housed in fire-resistant enclosures. remote from the possible locations of fire in the main buildings.

A. STANDPIPES AND HOSES

Fire companies with their apparatus find difficulty in fighting fires from the street in tall struc­tures. Standpipes and hoses with a separate water reserve or upfeed pumping are extremely valuable in any building but become highly essential in tall buildings. The figure drawn here shows such a ·system, which is intended for use b\ !building personnel until the fire engines arrive and thereafter by the trained staff of the fire department.

It is not practioal to store enough water on the roof for a protracted fire-fighting period and it is usually assumed that a half-hour's supply will be more than enough to provide for the short period it takes the fire engines to arrive.

Page 58: George Salvan Architectural Utilities 1 Plumbing and Sanitary

PENTIWU.sf

·zs -ro :>7 FT

ero IS M

I 1

·cttr=CK VALVE:

NO~ HI:AOER

F----._ FIRE HEADER

~~~--------~--~~----------~--------------~~--------~

~k ~------~----~~---------~~-----------+~--------~

4th

I 3rd

zna

1st

50-100FT (lwX3~ M) 200 G PM FLON UNDER Pf!E~~

~ S'( FIRE e:;N~Nt:S. rn . I

I~ OROFic..e WHa-t ~~SURE: rE IS EXG.E.$61 YE

~--------~.~---T----

l 1 S:UCTION TANK

SlAME.sl: <: p~T­

IDN R>R U.s.!~ BY Fl~E fiE A PPAJC:b. TllS _t-~ MPS

f F ·""- J CAN D£L.-.__ ______ ----,L.or---------L--- ; ~ ~ , IVER MAXIMUM aEt.K V~UTO~ IOO PRI::5SURc BALL PI? 9PM. eo f'S\ . IP

J13rit LOWesT HOSE

a· . J . -PUMP..S

When· the system is used by the Fire department its pumps are attached to the street siamese to deliver water from street hydrants or the building's 'secondary source' .

47

Page 59: George Salvan Architectural Utilities 1 Plumbing and Sanitary

SIAME'..sJ:! CDNNECTJON

SIAMES"E CONNeCTll>N

11 (·10M) tiALVAN12EP

n~oN Pl.PE'

t=~ liE gy r-:liZE OEPAfl.iMENT

PIN\SKeP A.OOJit. '--------

r~--. ,.. .......... e ~

\

HOSE ~~) FIRF.: SXTINGULUU:Ff lN. CABlNE,- Ft>R U~ SY pure DJ:PARrME •

, NT ..

Page 60: George Salvan Architectural Utilities 1 Plumbing and Sanitary

The cbew;k valve closest to the &iamese In use opens and the check valves at the tank closes to prevent the Wl!Jter from rising in the tank to no avail.

TANK

CHEC.W VALVE. GLOSS POSITION

~1-l~K VALVE OPeN PO S')TION ~

After the engines are disconnected from the Siamese, the water between the siamese and the adjacent check valve drains out through the ball drip. ·

The overhead tank is considered a most dependable source, but it sometimes requires a height that is architecturally undesirable. In this case upfeed fire pumps operating automa­tically to deliver water to higher stories from lower suction reserve tanks may be used.

Another alternate in this case is a pneumatic tank used to deliver water by the power of the air that is compressed in the upper portion of the tank.

The water zones as shown in the Figure of Hot and cold water Zoning are also generally fol­lowed in planning for fire protection. Fire standpipes, and their hoses are usually located at or near fire stairs from which personnel or Fire Fighters can approach a Fire.

B. SPRINKLERS

Automatic sprinkler systems consist of a horizontal pattern of pipes placed near the ceilings of industrial buildings, warehouses JtQr88, theatres, and other st(_uctures where the Fire hazard requires their use. These pipes are provided with outlets and sprinkler heads so con­str~cted that temPeratures of 135-to 160°F--(55°to.Jo°Cf'ceiSius Wiil cause· them to open automatically and emit a series of fine water sprays.

Two Systems of Sprinklers:

1. Wet Pi~ System -ordinarily with water constantly filling both mains and distribu­tion pipes.

2. Dry Pipe Systsm -gene_r.ally confined to unheated buildings. There is no water in the distributing pipes of the dry-pipe system except during a fire. Remote valves, may be actuated by sensitive elements to admit water to sprinklers heads.

Page 61: George Salvan Architectural Utilities 1 Plumbing and Sanitary

50

:HEAT SEN.Stn'-l't: BR'EA KABLE BUl-B

1 1

Spacing of Sprinkler Heads

Is governed by several factors:

r

a. Type of occupancy and total area.

b. Fire rating of the building 11 or 2 hrsl.

c. Construction of the Ceiling.

d. Spacing of Joists

·sprinkler Heads-These are of the quanzoid bulb type. The bulb is transpa­rent and contains a colored liquid. At 136°F the bulb breaks and releases a water stream.

Two Types:

1. Upright-This type is used above pip­ing when piping is exposed. It is safer against damage by workers.

2. Pendent-This type projects through a finished ceiling when piping is con­cealed.

The coverage of one sprinkler head varies from about 20 sq. m. (200 sq. ft.) per sprinkler for light hazard occupancy (like hospital, residences) to about 9 or 10 sq. m. {90 sq. ft.} for extra hazard conditions (like chemical, woodworking, aircraft hangars)

Nozzles are set about 8 to 12 feet 2.40 m to 3.60 apart on the supply pipes that, in turn, are spaced about 10 to 14ft. apart (3.00-4.20 ml and are usually run at right angles exposed beams or panels.

Special Installation Requirements:

a. At least one fire department connection on each frontage.

b. A master alarm valve control for all water supplies other than the department con­nections .

. c .. Special fire walls between protected areas and unprotected areas.

d .. Sloping waterproof floors with drains or scuppers to carry away waste water.

Page 62: George Salvan Architectural Utilities 1 Plumbing and Sanitary

3.oo

! t + l

I

REFLECTED SPRINKLER PLAN

51

Page 63: George Salvan Architectural Utilities 1 Plumbing and Sanitary

NOTES

Page 64: George Salvan Architectural Utilities 1 Plumbing and Sanitary
Page 65: George Salvan Architectural Utilities 1 Plumbing and Sanitary

STORM WATER SYSTEM

54

REASONS FOR DRAINAGt:

I

I

Rainwater collecting on roofs, if not diverted, will run down walls and can cause wall and window leaks, spill on people who are ap- ... preaching entry doors, cause settlement by washing the soil away from under foundations, subject basement walls to unnecessary groundwater pressure and possible leakage, and erode surrounding ground, often disfiguring landscap~d areas.

For buildings and houses with flat roofs, leaders can be interior and concealed by the structure or partitions. Sloping roofs usually re­quire gutters and leaders. Functionally, they can be omitted some­times in low, basementless, one-story structures with wide over­hanging roofs. A gri)vel-filled trench skirting the perimeter and di­rectly below the edge of the eaves catches the water flowing off the roof.

I

FL.AT RooF PlTCHE:O ROOF

Reasons for keeping paved areas clear of water are obvious. Pud­dles are avoided and contiguous areas of earth and grass are not subjected . to erosion and a soft saturated condition. Areas to be · drained- including roofs, balconies, terraces, and pavements-are usually connected into a storm drainage system and the water dis­charged to a stream, dry well, nearby gravel bed, recharge basin, or storm sewer.

Page 66: George Salvan Architectural Utilities 1 Plumbing and Sanitary

NO GUTTER

Glil"AYEL

...:~~m•f-t ------~t-

~RATED PI

STORM DRAIN

WITH GUTTER BUT WITHOUr LEADER

GRAVEL F ILLED TRENCH WHEN SOIL 15 AB.SORPTIVE

PeRFO~TED PIPE IS USED vv;.tEN THE SOIL

I.S NOT PERMEABLE. AND NEEDS

PREVENTION OF WATER E NTERING THE ~seMt=NT WITHOUT use: OF ANY WATERPROOFING.

This is that portion of the plumbing system which cpnveys rain or storrr water to a SUitable terminal. This is usually discharged into a street gutter conveyed by a public drain system and carried to some natural drainage terminal such as lakes or rivers.

55

Page 67: George Salvan Architectural Utilities 1 Plumbing and Sanitary

56

Three Locations:

tNSICE OUTSIDe ... .

OVeRHEAD

SIZE OF A STORM DRAIN

The following factors should be considered when determining the size ·of a storm drain.

1. Gauging the rainfall, constant, short duration or heavy shower.

2. The varying roof area and its slope including the dis­t<fnce of water travel before it reaches the conduc­tors or downspouts of the roof.

3. Water drain is faster on higher pitched roof hence, requires a larger drainage pipe than that of a flat roof.

Page 68: George Salvan Architectural Utilities 1 Plumbing and Sanitary

4. The height of the-building contributes to the high ve­locity of water in the vertical condus;tor (pipe) and accelerate the flow of water entering the storm drain.

Sl-ORT

NOT RECOMME.NIED

5. Short offsets and indiscriminate use of fittings affect the flow of water.

Page 69: George Salvan Architectural Utilities 1 Plumbing and Sanitary

As per safe estimate the maximum rainfall in the Philippines is about 20 mm in a 5 minute in­terval. Using this data an estimate of the approximate volume of water that will be ac­cumulated on the roof in one minute can be computed.

SIZE OF STORM DRAIN

DIAMETER OF PIPE MAXIMUM OBTAINED ROOF AREA (SQ. M. I

(mm) inches 2% Slope 3% Slope

75 3"' 114 100 4'" 242 125 5" 438 150 6'" 700

200 8" 1,463 250 10"' 2,563 300 12" 4,100 350 14" 5,576

PROBLEM:

Determine the size of a storm drain necessary to drain a roof graded 2% ~lope with a general di­.mension'of 20.00 x 30.00 meters.

142 315 566 903

1,888 3,309 ··5,290

7,203

4'16 Slope

170 388 694

1,105 2,313 4,055 6,480

8,830

Page 70: George Salvan Architectural Utilities 1 Plumbing and Sanitary

.------------

ROOF LEADER

20 x 30 = 600 sq. m. roof area refer to tabht above under 2% slope 600 is near 700 roof area which is served by a 150 mm (6'") pipe.

size - 150 mm (6"')

This is commonly known as conductor or downspout. It connects the roof terminal to the storm drain either insider or outside leader.

SIZE OF ROOF LEADER AND GUTTER

Area of Roof Gutter Top Downspout or sq. m: Dimension Roof IHder

(mm) Diameter (mm)

1 to 10 75 38 11 to 25 100 50 26 to 75 100 75 76 to 166 125 90

166 to 335 150 100 336 to 510 D) 125 511 to 900 250 150

59

Page 71: George Salvan Architectural Utilities 1 Plumbing and Sanitary

60

Area of roof 10 x 20 = 200 sq. m. refer to table above,

200 is within 166 to 335 Therefore specify 100 mm W'l downspout However si11ce water is to travel20.00 m. The gutter might over load and there might be a danger of clogging with dirt and

leaves and so divide 2<f = 100

100 is within the limit of 76 to 165 sq. m. therefore specify 2 pes of 75 mm (3") pipe

The gutter top dimension is 150 mm (0.15 m)

Page 72: George Salvan Architectural Utilities 1 Plumbing and Sanitary

C::ONCRETE FLOOR SLAB ...

" ~ ___ ____ __.

AI ROOF ORAlN (STEEL)

SOME PLAIN GALVANIZED STEEL GUTTER DESIGNS:

61

Page 73: George Salvan Architectural Utilities 1 Plumbing and Sanitary

PLUMBING LAYOUT

ISOMETR~C

WC WA"reR CLOSET pro FLOOR ORA'N L.AV LAVATORY SD SHOWER DRAIN kSK t<IT,HEN SINK ('.() C L,.J!!!AN OUT L T LAUNDRY TUIS WH WATl!R HI!.ATER WM W~TI!R MeTER

62

GV GA.'fE VAl-ve' C V 'HECK VALVE VSTie VENTS~ 1lfRU ROOF 5tt0 SHoWeR HeAD

----HOT WATI!R SUPPLV ---C:OLD WATI!'R SUPPLY

Page 74: George Salvan Architectural Utilities 1 Plumbing and Sanitary
Page 75: George Salvan Architectural Utilities 1 Plumbing and Sanitary

PLUMBING SYSTEMS

There are three degress or grades of WASTE WATER

1. Storm Water - from the rain.

2. Grey Water - wastes from laundries, wash basins, sinks, showers, bath tubs).

3. Black Water - water plus human waste solid and liquid, urine, that is flushed out of toilets and urinals.

SANITARY DRAINAGE SYSTEM

sotl stacl:

nt st~~

Page 76: George Salvan Architectural Utilities 1 Plumbing and Sanitary

ELEMENTS OF THE SANITARY SYSTEM

1. Soil Pipe- any pipe which conveys the discharge of water closets, urinals, or fixtures having similar functions.

2. Stack- a general term used for any vertical line of soil, waste, or vent piping.

3. Soli Stack Pipe-a vertical soil pipe conveying fecal matter and liquid waste.

4. Stack Vent-an extension of a soil or waste stack above the highest horizontal drain connected to the stack.

5. Vent - a pipe or opening used for ensuring the circulation of air in a plumbing system and for reducing to pressure exerted on trap seals .

6. Unit Vent-an arrangement of venting so installed that one vent pipe will serve two 12) traps.

7. Wet Vent-that portion of a vent pipe through which liquid waste flow.

8. Branch -any part of a piping system other than the main_, riser or stack.

9. Main - the main of any system of continuous piping is the principal artery of the system to which branches may be connected. ·

10. Branch Vent - a vent pipe connecting from a branch of the drainage system to a vent stack.

11 . Waste Pipe '-a pipe which conveys only liquid wastes free ~f ! fecal matter.

12. Drain-a sewer or other pipe or conduit used for conveying ground water, surface water, waste waier~"or sewage.

,-'

13. Sewer-A pipe or' conduit for carrying sewage and waste liquids.

14. Sewage- the liquid wastes conducted away from buildings/structures, also of the storm water.

15. Sewerage-a comprehensive t&rm, including all construction for collection, transpor­tation, pumping, treatment and final dispOsition of waste.

65

Page 77: George Salvan Architectural Utilities 1 Plumbing and Sanitary

66

16. Cteanout Ferrule - a metallic sleeve, calked or otherwise, joined to. an opening in a pipe, ir.to which a plug is screwed that can be removed for the purpose of cleaning or examining the interior of the pipe. - .

17. frap - A fitting or device so constructed as to prevent the passage of air, gas, and some vermin through a pipe without materially affecting the flow of sewage or waste water through it.

18. House Drain -that part of the lowest horizontal piping of a plumbing system which receives the discharge from soil, waste and other drainage pipes inside of a building and conveys it to the house sewer. It should have a slope of at least 1/4" to a foot or .006 for every .30 meter . . (6 mm for every 300 nvn).

19. House Sewer-the house sewer is that part of a plumbing system extending from a point about four (4) or five t5l feet from the inner face of the foundation wall of a building to the junction with another sewer.

20. House Trap - a trap connected to loyvest horizontal piping or House Drain.

21. Relief Vent - a vent the primary (Fresh Air Inlet) functiOn of whrch is to. provide circula­tion of air between drainage and vent system.

22. Public Sewer-a common sewer directly controlled by public authority to which all abutters have equal rights .of connection .

23. Slpitonage- a suction caused by the flow of liquids in pipes.

Page 78: George Salvan Architectural Utilities 1 Plumbing and Sanitary

24. Spigot-The end of a pipe 'Nhich fits into a bell. Also a word synonymously with faucet.

25. Seql-The vertical distance between the dip and crown wire of a trap.

26. Roughing-In-The installation of all pipes in the plumbing system that are in partitions and under floors .

27. Finishing - The setting of Fixtures.

'28. Sump-a pit or receptacle at a low point to which the liquid wastes are drained.

29. Shaft-a vertical opening through a building for elevators, dumbwaiters, light, ventila­tion, etc.

30. Sleeve-a sheet metal placed when concrete is poured to accomodate future plumb­ing pipes.

31 . Pipe Chase-an opening or space to accomodate a group of pipes .

.-r-- PIPE CHASE

PIPE sLEEVES.

fjOUCT

32. Duct -Opening for ventillation circulation of air.

67

Page 79: George Salvan Architectural Utilities 1 Plumbing and Sanitary

68

PIPING. FITTINGS AND ACCESSORIES

The principal materials used for soil and waste piping and for venting are cast iron, copper and plastic. For vents galvanized iron (G.I.) pipes is sometimes chosen.

CAST 1RON FITTINGS:

[J WASTE ~SOIL PI!'!! (QlUBU! HUe) 0 (1"xsLd) .~oxa.so

-~SOIL

(z.,x s!..o") .l;&xa.so • r'Or' WAS 1"E

:...,•)( '1-qY (.•ox.10) 2"X Z" Y (.OSX-05)

~SEND 'f (-10) 2." ( .05)

4"X 2 (-IOX.OS) y

4 12.5

HUS(BeLL)

4"'A.f {-IOX.IO) :zull2"' ( .CSIC.o5)

"+"I< z~ (.aox.os) ~NITAAY' Tef!.

Page 80: George Salvan Architectural Utilities 1 Plumbing and Sanitary

TAP~OTEE "'t.,X 2"

TAPPI!O Tl!E 2"'X2H

CROSS TE'E (SANITARY) DOUBLe WYE BRANCH 4"X ..... +"X~''

CROSS TeE (TAPPED) :z"'xz"

S-'TRAP

t:::ROSS TEE (SANITAR~

4"'x z''

GL~NOUT FSRRUL...E

l-EAD P TRAP

GROSS TEE (TAPPEq 4"'X 2'"

OOUBLE W.'<E BR'ANCH --.i(:11 XZ"

, . INVERTED WYe

~"'x.z''

BRASS P. TRAP

69

Page 81: George Salvan Architectural Utilities 1 Plumbing and Sanitary

70

RUNNIN6 TRAP 5 • TRAP WITH Vi:.NT ~p'' TRAP

LEAO FE~L.E muM TRAP

STRAINER (n.c:kll ptlt-.4} ( '&r~s~) . ( st~ctl)

Cf?aNF'OOT

CUTTING OF PIPES AND CALKING OF JOINTS

Is done by marking with a chalk then with a cold chisel and hammer, strike all around the scored line.

OAKUM -Hemp or old hemp rope soaked in oil to make it water proof.

This is drived around the hub connection,, compressed to at least 3/4" (20 mm) to 25 mm ( 1 "J clearance then the joint is sealed with molten lead.

CALK lN6 -· pl~mq an O~nln~ w1th oakum, Llad a~th.n­matAr~ats thc:~t a~ pounded 1nto plaa.

Page 82: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Another method of calking fcaulkingl is to use an EPOXY ADHESIVE.

Wh2n pounn~ a honzontJSL l~<3.ded Jo1nt., an a.s~os Jomt runner IS used to KHp tM lcPad from runntn~ outof tht hub.

M42thod of Jo 1mnc; no hub 1rcn ptpe.

71

Page 83: George Salvan Architectural Utilities 1 Plumbing and Sanitary

72

This pipe jointing epoxy adhesive is an epoxy based fonnulation which will work wonders when trowelled into pipe joints of cast iron, concrete clay. Asbestos, ceramics ancfrigid PVC pipes. This adhesive comes in two 121 components. The GRAY resin compound and the BEIGE colored hardener component B which combined forms a highly infusib4e materials and highly resistant to water, acids, alkalis,· fuel oil, sewer gases and other solv8f'lt when cured. (Advantage is that it eliminates the expensive and hazardous melting of lead).

.... -

~ + @ •.·

PLASTIC PIPES AND FITTINGS

Color Coding PotatHe Water Electric Conduit Industrial System Communicatin Cabfe Sewage System

0 SO<::KET

I'Ft-\Nl:.H SIN&Le .:t•• WYE 3"X.z", 4-4'X.2: 4f"')C J""

-Blue - Orange or light Gray -Gray -Yellow - Orange brown

Page 84: George Salvan Architectural Utilities 1 Plumbing and Sanitary

P TRAP WITH FlJ.J(1

REDUGeR 3..,)(2"

1-'x z" .... )(.a*

~H -'INQ.e ta7.SO TEe

TH~D TeE 2 111 X IY4N

2" x ' Yl' -nt; ,.. .. )(z•x ... ·x3•

Q ___ ____.l DIAMEre~ - so,75 an4 uomm L~N(;TH z .ooN and aooro

NATIONAL PLUMBING CODE

GENERAL REGULATION:

SECTION 164. GRADES OF HORIZONTAL PIPING

All horizontal piping shall be run in practical alignment and at a uniform grade of not less than twO 12%1 percent 20 mm rise per meter length, and shaN be supported or anchored at intervals not exceeamg 3.000 m 110 feet). All stacks shall be properly supported at · their bases and all pipes shall be rigidly secured. Two (2 inches) rise per every one hundred (100 inches) length.

I (.02ml (2 em)

--=========-~~~~~~~~--------~ (~mm} l.OOm or 100cm or 1;000 mm 1

73

Page 85: George Salvan Architectural Utilities 1 Plumbing and Sanitary

74

A soil branch having a pitch of more than 2% has the tendency of waste separation. The water flow faster and the heavy suspended materials are left and deposited at the bottom of the pipe.

SOLID WA5TE

EXCESSIVE PITCH WASTf:.

IS LE.FT AT THE PIPE.

NORMAL PITCH Zfr

SECTION 157. CHANGE IN DIRECTIONS

All changes in direction shall be made by the appropriate use of forty-five (45° ) degree wyes, half wyes, long sweep quarter bends, except that single sanitary tees may be us­ed on vertical stacks, and short quarter bends may be used in $Oil and waste lines where the change in the direction of flow is from the horizontal to the vertical. Tees and crosses may be used in vent pipes.

LON6S~P

)4. BEND

sHORT RADIUS (PROHl 6 JTED}

Page 86: George Salvan Architectural Utilities 1 Plumbing and Sanitary

SECTION 158. PROHIBITED FITIINGS

No double hub, double T branch shall be used on horizontal soil or waste line. The drill­ing and tapJ)ing of house drains, soil waste, or vent pipes and the use of saddle hubs and bends are prohibited.

OOUBLE TEE

SECTION '\59. DEAD ENDS AVOIDED on all drainage system installation

SECTION 1/3. LEAD PIPE

Joints in lead pipes between lead pipes and brass or copper pipes, ferrules, soldering nipples, bushings or traps, in all cases on the sewer side of tne trap and in concealed joints or the inlet side of the trap, shall be full wiped joints, w ith an exposed surface of the solder to _each side of the thickness at the thickest ;>art of the joint of not less than one fourth( Y. " ) of an inch.

BRASS ~ERRULE.

LeAD WI~ .JaN'[

SECTION 174. LEAD TO CAST IRON, STEEL OR W.l .

(Wrought Iron) - The joints shall be made water tight by the use of copper, lead, or galvanized iron plates on flashings.

SECTION 175. ROOF JOINTS -

The joints of protruding pipes thru roofs shall be made water tight by the use of copper, lead or glavanized iron plates or flashings.

75

Page 87: George Salvan Architectural Utilities 1 Plumbing and Sanitary

76

r<= ---+-

I

I rcirllt- iF1 ot~~ 1 .._._ j1m~amu~~!tdli!ilt ,"lr . I l

I I l I I I

~~

~~~~l========- ~==(=~==~====~=N=T===·========~~~X~~~~~T ~ ~ 4~ ~

W ·' ·

\) \)

~-]-1· --,.,....l..A~... Jl~"'f"1~gt-----t'J1~"'~ ;:."j'i -L .. • SOIL PJPI! ~ SloPe

...,. l~ LOOP "I'ISNT lot ~ ~~1u.,[l:"';l]::====t ... t===:::tl..-t~"lJ:==:=:==::::l~l)l I"~TJI."rrjA_f!::: ..,.

~~liN }'INK r ]

W<. W ·G

,..

-

'

VENT STA:JC

Page 88: George Salvan Architectural Utilities 1 Plumbing and Sanitary

SECTION 176. SliP JOINTS AND UNIONS

Sltp Joints will be permitted only in tJap seats,or in the inlet side of the trap. Unions on the sewer side of me trap shall be ground faced, and shall not be concealed or enclosed.

SECTION 182. TRAPS WHERE REQUIRED

Each fixture shall be separately trapped by a water-seal trap placed as near to the fixture as possible except that a set of similar fixtures consisting of not more than three (3) wash basins, or a set of three 131 sinks may connect with a single one and one hatf ( l 1 / 21 inches trap. In no case shall the waste from a bath tub or other fixtufJ discharge in­to a wat8f closet trap. No fixture shall be double trapped.

.t..AVA TORY S~ T ------SUP JOINT

SECTION 184. TRAP CLEAN OUTS

Etch trap, except those in combination with fixtures in which the trap seal is plainly visi­ble and inaccessible, shall be provided with an accessible brass tap screw of ample size.

' n Cw:ANOUT SOIL ~~STS ( Q FERRI.t.E

CLEAN OUT SHALL. ee Qll HEAvy RE.O BRASS

SECTIOH 187. PIPE CLEANOUTS WHERE REQUIRED

A clean out easily accessible shall be provided at the upper end of every horizontal waste or sot! pipe . Also at every change of horizontal direction, unless said change of directiOn iS made at an angle of not more 1f'lan twenty twCl An~') half (-22 l/2°) degreeS and Is ·e8iifv r88ch8d eonveniendy with sewer rod Wire.

There shall be a clean out within five (~) feet inside the property line before the house .....,... connection, connected from a fullized branch, except for lhe l~r. clean-outs shall be of the same nominal siZe as the pipes. The distance be"t'Ween-clean out in hori­zontal waste or soil lines shall not exceed, fifty (50t feet. ·

77

Page 89: George Salvan Architectural Utilities 1 Plumbing and Sanitary

I.SOm

I ,.J. Pl'fOF'eRTY' 41 L.INf!

I I

GROUND

zz)l• C::HANGE OF OfREC..TtON C.O IS NOT NECESSA:RY.

PLAN VIEW

4S~' ~HANG!: OF DIREX:llON c.o IS NEEDED

SECTION 189. GREASE TRAPS

.!SINK

78

Grease traps of adequate capacity must be installed wherever greasy wastes from hotels, restaurants, club houses,. or similar public eating places are discharged into the sewer, or septic vault said grease traps shall be placed as near as possible to the fixture from which it receives the discharge and sl:lall have an air-tight cover, easily removable to permit its cleaning .

VEI-4r PIPE

~TE PIPE

Page 90: George Salvan Architectural Utilities 1 Plumbing and Sanitary

SECTION .190. GARAGE TRAPS . i

Garages, auto repair shops and greasing rack drains shall be intercepted, fo;ce entering the sewer or septic vault by a suitable garage trap. Similar establishment -shall also be provided with such trap, when so required by the proper authority.

VSNf . '

WASTE

79

Page 91: George Salvan Architectural Utilities 1 Plumbing and Sanitary

80

IECTION 11/1. FIXTURES PROHIBITED

Pen and Vllw plunger, offlet Wllhout end~ M'-.r1S'-* ,.vinl·inYiMit Nil or unvtntilt*IIPIC41 or Mtle not thoraughty wuhect ~l t.lt!h fty~ lflll' not M ueed. ~Of\l t,opper wattr~loeett Qf elm"'-r @-~~ !htlll Jmt M i~:

s~c.-r,gN 211· §P~~ ANP WAIT'- §lA@-§ "rnlftl OONNitmftNI Allaofl and waste stacks and branches ah~ll tat pr9Vi~ witt. G@R'ttltly ftetd inletl for fixture connections.

Page 92: George Salvan Architectural Utilities 1 Plumbing and Sanitary

§@~fi8N lll~ HP9F ~~TINIIONI ~t reef ~@R~! gf fRII ~R~ W""' ,ucb shtlt be run full size at lea•t ont fpot a~ve th~t roof: If #tt. r~ ~ H~ fer ~~ Rmtn' l~to wetthetr prmec:tfQn, sueh axtena•on

lhalt not be 1111 tNr f'i~N 1m f~ ~~~~ ~ r~ !evel.

... .

~~~9~ m~ Tf'API P"9~fJT~R~ V~NT!» ~@f¥ fl*"'FI na !ffl!lt ~ ere~ ~W!iA!t. !i~ ~ ~~Jf~f!~ ~ tif F.ff· S418li~n IHW~ ~ l'nPttn~ 9f ~ ~mf3Pr ~'.!1tiP.~~ t1° cr~ ~~~II 00 ~"J.f~!!~~;

~~§fi@N §l: Dt~~,.CE ~F V~NT FRQM T~&.P ~EA~ Net tr~ ~ ~ ~ m9f8 ttw1 five (5) feet, (horizontally developed length) from i1s

V@n!~

~NT Of!@NIN6 "16MB" 'llii\N PtP· Clfl 'T"RAP

LSO(S'Ft)

. ·-~I~IJM l:!fST~ PR:lw TRAP

§-~·TI()N Ul, CIRCUIT AND LOOPVENTS

~ f.ir~it ctr lo9p vant wfM be permitted IS follows: A branch soil or waste pipe to which flW. fit J.fl~ flOt more than eight {8) of the following fixtures: Water cloeets, pedestal yfin~ll, standard trap. slop sinks or shower stalls are connected in series, may be vented tJv ~ FiFF!-lit er !pop vent, which shall be taken of, in front of the first fixture connection.

IIOfiON ~~ §~¥P AND RECEIVING TANKS

Afl §tl~ hQYH ~Ril;n~ §hell ~j~rge ;mo an •ir-tight sump or receiving tank so located "@ t{) rtP-8iW ttl@~ by ~vitv, from which sump or~~ tank the sewage shaH bt ftftld ~tnft -'itffihtrge ints th@ t,~ ....- by pump: ejector, 01 any equaltv ·efficient mothld, 3utth tMmpa Nil M! ~er !Ut~~ ~and be of sufficient MPteity to rwMt thiJ mN!@ ~'. ~~~ ~ for not less than twenty four (24)

. hourt t,~N..

81

Page 93: George Salvan Architectural Utilities 1 Plumbing and Sanitary

SECTION 243. DRAINAGE BELOW SEWER LEVEL

5EC.OND FI.CC>R

AUTOMA"J"It.:. S::..J Ec. 1t"'R

.$VVITC..H

.,

82

In all building's in which the whole or part of the house drainage and plumbing system. Thereof is locateq be~ow the crown level of the main sewer, sewage pr have wastes shall be lifted by an approved artificial means and discharged into the house sewer.

SOI L. VeNT PIPE

SUMP AND REC.EIVIN6 TAN~

SECTION 244 . . EJECTORS VENTED ·

-J" SOU ... PIPE;: :L)~ SLOPE

SUMP - A PIT OR RECE:PTA.:;:LE

AT A LOW FOINT TtlWP'llt:H TliE Ll QUI 0 WA51E ARE DRAINED

The soil or waste pipe leading to an ejector or other appliance of raising sewage or other appliance of raising sewage or othe.r waste matter to the street sewer shall, where a water closet or water closets are installed, be provided with a vent pipe not less than four {4) inches in diameter and where fixtures other than water closets are installed, thE' vent pipe shall be of the same diameter as the waste pipe-:-

SECTION 250. BAR, SODA AND DRINKING FOUNTAIN WASTE

No plumbing fixture waste except a bar sink, soda fountain sink and a drinking fountain waste, shall be installed or set up with an indirect connection to a home drain, soil, or waste pipe. The waste from every bar sink, fountain sink or drinking fountain, if not directly connected, shall discharge ovet a property vented and .trapped floor drain located as near its practicable to the fixture. ·

Page 94: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Woterlenl

LAVATOAY

..,., (b) :lr":JC:~lii:::=.:--,

,, .. ,Dr-.... So.t Stoc• car....-,,._

WATE- CL08£T

· · ----- •• Yflftt ,,.,.. root

83

Page 95: George Salvan Architectural Utilities 1 Plumbing and Sanitary

84.

IICTION 111. RI!FRIGIRATOR WASTES The Witte pipe from 1 refrlgttatot, 18 box floor drain, or receptacle where food are kept for ttorege pUtpOielthall not connect directly with any houee drain, soil, or waste pipe. Such wuttt pipe shall ln atl caeea empty into an open aink or floor drain that ia property IUpptied with water, connected, trapped, and vented, as that of any other fixture. Refrigerator waste piP'Ithall not be lets than one and one fourth ( 1/4) inches (32 mm, for one (1) opening; one and one halt U 1/2, inches 38 mm for three (3) openings; and for four (4) or twelve (12) openings must not be less than two (2) inches 50 mm and shall have It ita opening a trap, and a clean-out angles arranged properly to flush and clean ptpe.

TRAPS. VENTS and AIR GAPS

a. TRAPS-The only aeparation between the unpleasant and dangerously unhealthy gases in a senitary drainage system and the air breathed by room occupants is the water caught in the fixture trap after each discharge from a fixture. Traps are of steel, cast iron, cop­per, plastic, or brass except in water closets and urinals which is an integrated vitreous china.

A mtnimum depth of 2 in. (.05. and a maximum of .10 (4") are common standards for water seal. AIR

Page 96: George Salvan Architectural Utilities 1 Plumbing and Sanitary

An exception to the rule that each fixture sh04Jid have ita own trap. Common ·~ceptlonl include two taundlrv trays and a kitchen link connected}to a single trap (not more thin 31

When fixtures are not always uled, the water in traps can evaporate Into the alt, bt'elking the seal • of the trap. eepecfdy tn floor dtalnt connected to toil piping. !tool odor wt61 emanate in the atr. (alway& fill with waterl

TRAP SEAL LOSS

This il due to an inadequate ventilation of the trap wherein the atmospheric minus or plua preteure affect the instalfetion.

Trap &eel-is the vertical distance betWeen the dip and the crown weir of a trap. Aleo it 11 the water in the trap between the dip and the crown weir.

011'11..-T

TRAP SEAL may be LOST under the following ways:

1. Siphonage-a . direct self-siphonage b. indirect or momentum

2. Back presaure 3.' EvaporaUon 4. Capiftery action

1. SIPHONAGE - the resutt of a minus Pf881Ute in the drlinage system. (Preaure is a force .required to mQV8 gas or liquid) when a large' amount of water flow rapktly through the trap, self siphoning is automaticalty developed and the water content of the trap (aeal) Is absolutely discharged . This is knoWn aa a· trap aeallosa. When the aeal is lost, back floW of gases from the sewer line or septic tank will pass rnto the trap, funds its way to the fixture drain oudet and spread into the room.

MINJS

85

Page 97: George Salvan Architectural Utilities 1 Plumbing and Sanitary

86

INDIRECT OR MOMENTUM SIPHONAGE

This type is the result of a minus pressure in the pipe created by heavy discharge of water from a fixture installed on a _linQ,serying an.other fixture at a lower floor.

2. BACK PRESSURE-This condition is caused by a plus pressure which blows the water out(of the fixture. It happens-~ usually when a large flow of water drop and form as slug and compress the air inside the pipe. The compressed air will find its way out through a weather point. The trap seal will give way and blow out of the fixture.

3. EVAPORATION....,. T~is process is a minor prob­lem and less probable to drain the water inside the trap. Evaporation happens only on floor drains not regularly used to admit water but is expo~ to extreme temperature.

NO WATER g;.PL

Page 98: George Salvan Architectural Utilities 1 Plumbing and Sanitary

4. CAPILLARY ACTION- This kind ot trap seal loss seldom happt:n wrfl ts t<ltety ex

perienced by homeowners. The condition is caused bv a suspensto•~ ol <i lw t~IHJ' o iJJ(!Cl

such as a string, rags, strands of hair extended over the outlet arm of the lt i.!p.

b. AIR GAPS AND VACUUM BREAKERS

STRINGS

OR R.-665

The proximity of sewage to potable water at tixt ures is inescapable. It is possible that sewage could accidentally be siphoned into a pipe carrying potable w ater.

W6~t finm f"rtJall .-------"'---... \Nil ter wole1 J i.Yit.e .

Un9.1ntt:ary wh!O'n c.l~ed .anti full , blntatmn4te1 w~r t"..ctJILl De! .dr..a.'-.!n Py

>-~tr6n mtc the W<Jter p1p1n~_1.

POTABLE WA n: r,

Page 99: George Salvan Architectural Utilities 1 Plumbing and Sanitary

MAXIMUM PERMISSIBLE LENGTH OF

VENTS FOR SOIL AND WASTE STACKS (METERS}

··---------

SIZE OF SOil. OR NO.OF FIXTURE DIAMET!R Of THE VENT PIPE t IIUR) ..----·- -·-··-.

WASTE STACk: UNITS 32 31 so 83 75 14)0 - --· -·- -· ·-·--

3 2 "'"' I I 114") 13.S

Jamm I I Y2") up to 8 18 .0

&0 "'"' ( 2"l up to 18 15.0 27

63rnm ( 2 112·) liP to 36 13-S 22.5 SIJS - - -------.......... , ___ .__~ .. ~--···-· .. ···-

7!S "'Ill ( 3''} up to 12 10.2 38.0 540 83.8

7S up to 18 !5 .4 21.0 S4.0 83 .a

75 up to 24 3.8 1!5-0 39.0 83.8

7!5 up to 38 2 .4 10 .5 28.0 83.8

75 up to 41 2.1 ••• 24.0 63.6

75 up to 72 1.1 7.5 19.S 63 .6 - ·-··---······-----··------- ·---- · ....... -··-- ·- ........... - -

100111111 14" I ,., to 24 7.5 33.0 ao.o 90.0

100 liP to 48 4..7 19.!5 34.!5 90.0

too .. to 96 3.6 13.5 252 9<\.0

100 up to 144 27 108 21.8 900

100 .. , to 182 2.4 9.0 ... 2 84.a

100 up to 264 2J 6.0 1a.a 73.S

100 up to 384 ~ &.4 14.1 61.8 - -----·-·-······· ................. ·------·--··-··-----.. -

125 ''"" Ul" l ., to 72 12.0 •.a 75.0

125 liP to 144 9.0 14J 54.0

125 up '0 .. &4 ••• S7.2

l2S up to 432 4. 'l2 2.1.2

l2S liP to 721 3.0 .... 2LO

12S up to 1020 2.4 ~· 17.4 . ·--· ··. ·- .... -·· -·-···-· · -··-- .............. ·· ···· ...... ~ ... -.................. _, . .. --·· .. - ... ..... ···--·· ····- ·- .. ... ,...., ______

88

125 ISO

-···-··· .. ··-102

102

102.

102

Kl2

1(2

102 _____ ... ___ 117 132

117 132

117 lJIZ

•• 132

67.5 132

54 132

Page 100: George Salvan Architectural Utilities 1 Plumbing and Sanitary

ISO .... ( .. ) ·~ ISO

ISO

·~ 150

;!!()() •• ' •• ,

200

200

2 00

200

200

200

up to 144 8.1 32..4 102 ISS

up to tn ~ 21 4S8 1153 ., to 57& 3.0 12.1 u 121.5

up ~ 8&4 2.1 9.9 17.5 -.o

"' to 1294 •• 7.5 27 .. 72.0

... to 2070 L2 e.a 22.5 sa.e

., to aao 12.8 43.2 120

., to 840 a.cr ... ... 78.0

up to 9to ... 11.0 .... ... .. 1100 4.8 12.0 H .O

., - 2100 a .. 1.4 21.0

., te .tlto 2.1 ... ....

., to 5<'00 1.11 &I ....

PROBLEM:

How large is the main vent required tor fixtures consisting ot 4 water closets. 4 lavatories 3 showers and 2 kitchen sinks installed on the first floor ot a two storey building 6.00 meters high?

Solve for the total fixture Units.

6 X 4 W.C. 1 x 4 LAV. 2 X 3 SHO. 2 x 2 K.A.

24units 4 6 4

38 units

Refer to Column 1 (use a 100 mm or 4" pipe)

a 100 mm soil or waste stack can accomodate a maximum of 48 units (sate).

Under Column, diameter of Vent Pipe a 63 mm pipe could ventilate 48 fixture units as high as

19.50 meters very safe for a 6.00 m problem ..

Therefore; specify 63 m (2 1 / 2) Vent Pipe.

Page 101: George Salvan Architectural Utilities 1 Plumbing and Sanitary

PROBLEM:

Determine the size of the main vent required to vent a drainage installation serving 90 fixture units installed on the first floor of a 5 storey building with a height of 19.00 meters.

refer to column 1

A 100 mm stack could serve 96 units

under column diameter ot vent A 75 mm 13") pipe could ventilate 96 fixture unit as high as 25.2 meters (sate) for a 19.00 m height.

fheretore use a 75 mm (3") Main Vent Pipe.

~···;·

i c.>VENTS-For the admission of air and the dis· .}/ charging of gases, soil and waste stacks are ex-

tended through roofs, and a system of air vents, largey paralleling the drainage system is also pro­vided.

fhc Introduction of air near the fixture (and in the case of loop venting, at the branch soil (line) breaks the possible siphonage of water out of the trap. Loop venting which permits an air and gases to pass in and out of the soil or waste branch instead of at its fixture, is fully effective in preventing the siphonage of trap seals.

TWO TYPES OF VENTS

1. MAIN SOIL AND WASTE VENT

.

. '

r·~~ ~ .. ' •:,

.

21 ~.an wtth only Dne hole no ~nttl.at1on

V<;;!nl t<> balana .atmosphenc. pressune.

This is the portion of the soil pipestack above the highest installed fixture branch extend­ed through the roof. It serves as the te;minal for the main vent and other vents of the plumbing installations.

2. MAIN EVENT

Is that portion of the vent pipe system which serves as a terminal of the smallest forms of units and grouped fixture trap ventilation. The main vent is connected full size at their base to the main soil or waste pipe at or below the lowest fixture branch and should ex­tend undiminished in size above the roof or should be reconnected with the main soil vent at least 1.00 meter above the highest fixture branch.

The main vent also serves as a relief vent for any back pressure. It must be free from off­sets to allow free movement of air. Under this main vent are other different types of vents such as:

Page 102: George Salvan Architectural Utilities 1 Plumbing and Sanitary

MAI N ::OIL AND WASTE VENT

~>t F1..00r'

-·- - - 7 ~>--·~J--~.J--~..----u-. ....o.-----'1~-"-- - -------"

STACk· thiS 1$ .a ~~n~r-al t~rm for .any v~1~al hi'\€ of .sti I, t.v a S1e or V~nt Plf'ln9·

HOUSE DRAIN

91

Page 103: George Salvan Architectural Utilities 1 Plumbing and Sanitary

3. INDIVIDUAL VENT

Sometimes referred to as back vent. It IS that p ortton ol the vent pipe which serves a single trap . It should be connected close to the ftx tuw uap as possible, 11 should be located underneath and back of the fixture and 11 must be connected to the main vent above the overflow line of the fixture.

INDI VI DUAL VENT ABOVE OVERFl-OW AT LEA.S.T 0.15 fJ1

Ov-ERFLOW LINE.,_ ---j<k-.-~5"- AI

SIZES: Lavatories, drinking fountains . . . . . . . . . 1 Y2 Sink ...... . ........ ... . . .. . .. . ..... ... ... .... 1 %" Shower, laundry, slop, sink . . .......... . 1" Water Closet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3"

PERMISSIBLE NUMBER OF FIXTURE OF UNIT

WASTE PIPE

TRAPS SHALL NOT !3E MORE THAN J.SO Mr.S FROM Tl-IE' MAIN VENT.

Size of Pipe A Number of Fixture

(mml tJnits allowed

33 (1 ~")

38 (l %") 8 50 (2") 18 63 (2%") 36 75 (3"J 72

100 (4") 384

Page 104: George Salvan Architectural Utilities 1 Plumbing and Sanitary

BATH TUB

4. UNIT VENT

This is that portion of the vent p1pe wh1cll vent1late two .:ixture traps. Usually used in apartments arranged bact.. to back.

SOIL PIPE.

DRUM TRAP

MAIN VENT

tNOIVIOUAI... VENT

'= WA;iTe

\

WALL HUNG

DRUM TRAP

BAT/-1 rue

93

./

Page 105: George Salvan Architectural Utilities 1 Plumbing and Sanitary

5. CIRCUIT OR LOOP VENT

This is employed where two or more fixture traps are installed on a horizontal soil or waste branch. The use of circuit vent generally reduces the cost of the plumbing installa­tion.

CIRCUIT VENT FOR A BATTERY OF FIXTURES

VENT

CIRCUI T ~NT

CI~UJT VENT

Battery of Fixtures-Any two or .nore similar adjacent Fixtures which discharged into a common horrz.ontal or soil branch.

w.c:. w.c.

94

SIZE OF CIRCUIT VENT FOR A BATTERY o ·F WATER CLOSETS

Number of Water Closets Diameter of Installed in a Series Circuit Vent

2 ~ mm (2"1 3 to 6 75 mm (3" )

7 or more 100 mm (4")

CIRCUIT VENT FOR A BA I I tHY Ut- t-IX I UKt::;

OF WATER CLOSETS

Page 106: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Fl-OOR_

6. RELIEF VENT

Is installed to ventilate the soil and waste pipe and the connecting branches other than the fixture traps.

Relief vent is provided when waste branches are circuit vented.

so mm ( 2") neue F Vi:! NT - Aru=.AsT )i a:: 11\E. DIAMETER OF~ SOIL. PIPE A~ IN NO CA$E 6e l-E$ T~N

3e rnm

75 mm (3..,) ~~~UIT

VENT

The base of the soil pipe stack on tall building installations is susceptible to back pressure due to the large volume of water rushing down inside the pipe, therefore, a relief vent in this portion is necessary.

111 FLOOR LINE!.

lUl RELIEF VENr

111111

HOUSE DRAIN 95

Page 107: George Salvan Architectural Utilities 1 Plumbing and Sanitary

9t-i

Where change of directions are made, relief vent is a must .

MAIN VENT

~RANCH Yf!NT

SOIL APe

WASTE PIPE..

~---t--~ ~LIEF.

OT LeSS "TW\N

SO Mm OWAETE~ ANP SHOULD !IE THE .sAME DIA.AS' TI-fE

tvtAIN ~NT

VENr

7. YOKE OR BY-PASS VENTILATION

On a long vertical soil pipe a relief vent is installed at 3 to 5 floor intervals. In this case, the relief vent is referred to as the YOKE or by-pass ventilation .

Page 108: George Salvan Architectural Utilities 1 Plumbing and Sanitary

97

Page 109: George Salvan Architectural Utilities 1 Plumbing and Sanitary

98

8. WET VENTILATION

Refers to the vertical pipe of the plumbing system used as ventilation of the plumbing, in· stallation and fixture traps which at the same time receives and convey liouid waste dis­charge from the fixtures. Widely used for small groups of bathroom fixtures particularly on a one or two storey residential houses.

MAl~ SOIL .t LAY. WASTE VENT

9. LOOPED VENT

Used on Fixtures in a room away from partitions. Common to beauty parlors, barbers shops and dental clinics and surgical rooms.

LOOPED

FLOOR

Page 110: George Salvan Architectural Utilities 1 Plumbing and Sanitary

N -·-· -

-010 .0 13

. 020

.0 25 .032 .038

.050

.063

.0 75

.088

. 100

.12S .I SO .2 00 .250 . 300

SIZE OF THE WASTE PlPE

PROBLEM :

Determine the size of a horizontal branch waste pipe for one lavatory, one residential sink

and a slop sink.

FIXTURE UNIT VALUES

Lavatory, Wash Basin 15. sq. m. roof drain, floor drain residential sink

Bath Tub, Kitchen Sink, Laundry Tub Shower Bath

Slop Sink, Combination Fixture (water Closet, Lavatory, Bath Tub with Shower)

Urinal

Water Closet

Referring to above table,

1 lavatory 1 res. sink 1 slop sink

Total

1Y2 3

unit

5 Y2 units

1 1Y2

2

3

5

6

Referring to the Table below size of Pipes 5 1/ 2 units is nearest to the value of 6 under col ­umn 1 diameter of pipe a 50 mm pipe is satisfactory.

Tf 1erefore A. 50 mm (2" J pipe is required.

SIZE OF PIPE

--·· -- .... -- -- -· - ·- - - ·- - -OtANETER

Of PIPE

MAXIMUM NUMBER OF FIXTURES UNITS THAT MAY BE CONNECTED - - · ·--- · ·-.. ·-·--- · - - ·-·· - ---- - ------- -- ··- -

ONE HORIZON

BRANCH

T08lACk WITH 3 OR NOR! BRANCH NOT OVER INTERVALS - - - ·-- - - ·--· ·- - ·· - -· ·--a BRANCH IN I BRANCH tNT~RVAL TOTAL IN

.... tnch STACJ(

- · - -· - - · ·- - --· - - · - · 10 3/8 " 13 1/ 2 "

20 314" .

25 I" 32 Jl/4 ' 1 2 38 ,.,2 3 4

I 2 ~ 8

~ 2" 6 10 63 21/2 " 12 20

6 24

9 o4 2 75 3" 20 30 eo 6 0 88 3~2" 100 .... 1$0 240 Ill ~

125 S" 360 S40 200 1100 150 e" 6 20 960 200 8" 14 00 22 00 2 50 ro~· 2500 3800

3SO 1900 aeo 3600

1000 5600 300 12' • 3800 6000 ISOO a~oo

99

Page 111: George Salvan Architectural Utilities 1 Plumbing and Sanitary

SIZE OF SA·NITARY DRAIN DIAMI!T!R OF PIP! MAXIMUM NUMBER OF FIXTURE UNITS

.... 32

•• so 63

71

100

125

ISO

200

210

300

too

anoh11 2% a1ope a% a lope 4% elope

Ill~· I I I

I 112" 2 2.S 3

2" s 7 ... 8

2'Ja .. 12 13 14

3" 18 19.0 21

4" 96 20!5 114

15" 216 240 264 ... ~50 S25 800 ... 1392 1806 2200

10" 2520 3200 3aoO

t2'• 4320 S818 8912

SANITARY DRAIN -receive the discharges of sanitary and domestic waste only.

a. Industrial drain -this house drain receives the discharges from industrial equipments. Due to some objectionable acid wastes, this usually terminate into a separate drainage basin.

b. Storm drain-this receive the discharges of all storm. Clear water or surface water washes except sanitary wastes this usually terminate into rivers, lakes, etc.

PROBLEM:

Determine the '-size of a Sanitary House Chain for a plumbing installation consisting of 20 water closets, 10 urinals, 5 shower baths 12 wash basins, 4 floor drains and 6 combine fix ­tures.

Referring to table Fixture Unit Values.

20 W.C. x 6 120 Units 10 urinals x 5 50 5 sho. baths x 2 10

12 wash basins x 1 12 4 floor drains x 1 6 combination x 3

Total

4 18

214 Units

Referring to above Table, column·2 under 2% slope a 125 mm could serve 216 Fixture units.

Specify a 125 mm diameter pipe (5").

Page 112: George Salvan Architectural Utilities 1 Plumbing and Sanitary

M

HOUSE SEWER

This is that portion of the horizontal drainage aystem which starts from the outer face of the building and terminate at the main sewer in the street or septic tank.

SIZE OF HOUSE SEWER

For ordinary residential installation, a minimum size of 150 mm (6") diameter for vitrified clay pipe. If cast iron or pla~tic pipe, a 100 mm 14") can be used.

INSPECTION AND TESTS

SECTION 252. All WORK TO BE INSPECTED

All pipes, fittings, traps, fixtures, appurtenances and devices of a plumbing, drainage and gas piping system shall be inspected and approved by the Plumbing Inspector to in­sure compliance with all the requirements of this Code.

SECTION 253. NOTIFICATION

It shall be the duty of the Master Plumber doing the work authorized by the permit to notify the Plumbing Inspector, in writing that his work is ready for inspection. Such ~otification shall be given not less than eight (8) working hours before the work is to be inspected.

SECTION 254. MATERIAL AND LABOR FOR TESTS

The equipment materials, power and labor necessary for the inspection and test shall be furnished by the Master Plumber.

SECTION 255. SYSTEM OF TEST

All the pipings of the plumbing system shall be tested with water having a pressure head of at least fiye (5) feet, or by air as herein after provided.

SECTION 256. TESTS

Upon the completion of the entire water distribution system including c.on~ections to appurtenances, devices, tanks, apparatus or fixtures, it shall be tested and inspected,

101

Page 113: George Salvan Architectural Utilities 1 Plumbing and Sanitary

102

and proven to be tight under a water pressure not less than the maximum pressure under which it is to be used.

Upon the completion of the setting or installing of the plumbing fixtures, devices, ap­paratus, appurtenances, or appliances having waste and/ or water connections, and prior to the general use thereof, it shall be the duty of the Master ·Plumber doing such work to notify the Plumbing Inspector that such work is ready for inspection.

SECTION 2S7. METHOD OF TESTING

All pipings of a sanitary plumbing and/or drainage system shall be tested w ith water in the following manner; ( 1) WATER TEST: The water test shall be applied to the plumb­ing system and/ or drainage system in its entirety or in sections. It applied to the entire system, all openings in the piping shall be tightly closed except the b.ighest opening above the roof or other highest point and the entire system filled with water to the point of overflow. All dead ends shall be relieved of air during the process of filling. whether the rest is by sections or in its entirety. If the system is tested by sections, each opening shall be tightly closed except the highest opening of the section under test, and each section shall be filled with water, but no section shall be tested with no less than five (5)

feed head of water or two and one-half (2 Yz} pounds pressure of air test applied.

House's sewer shall be subjected to a water test identical to that of the above except that the pressure need not exceed that imposed by a five (51 feet head of water.

Under any test, the water of air pressure shall remain constant for not less than ten (101 minutes without any further addition of water or air or showing of leaks.

AIR TEST: The air test shall be made by attaching the air compressor or test apparatus to any suitable opening, and closing all other inlets and outlets of the system, then forc­ing air into the system until there is a uniform pressure sufficient to balance a column of mercury five (5) inches in height or two and one-half (2-1 / 21 pounds per inch on the en­tire system. This pressure shall be maintained for ten 110} minutes without any show of loss in the pressure.

Water or other liquids shall not be used to test gas piping for thightness .

SECTION 258. COVERING OF WORK

No drainage or plumbing system or part thereof shall be covered until it has been in­spected, tested, and approved as provided in this CODE.

SECTION 259. UNCOVERING OF WORK

If any house drainage including septic vaults or plumbing system or part thereof is covered before being regularly inspected, tested and approved, as herein provided, it shall be uncovered upon the order and direction of the Plumbing Inspector.

Page 114: George Salvan Architectural Utilities 1 Plumbing and Sanitary
Page 115: George Salvan Architectural Utilities 1 Plumbing and Sanitary

SEWAGE DISPOSAL SYSTEM

SEVERAL TYPES:

1. CESSPOOL-is a hole in the grolmd with stones and bricks·laid in such a manner as to allow raw contaminated sewage to leach into the undersurface of the ground. (now ... obsolete).

2. PRIVY -is a concrete vault constructed for the collection of raw sewage sealed with a wooden shelter. (obsolete)

3. SEPTIC TANK-is a receptacle or vault used to collect organic waste discharge frt~m the house sewer.

4. PUBLIC SEWER LINE -is a public sewage disposal system consisting of a sewage treatment unit which conveys the raw sewage to the disposal system.

a. Combination public sewer-it conveys storm water and sanitary waste.

b. Sanitary Sewer-only carries sanitary waste to a modern sewage disposal plant rain­water is prohibited.

c. Storm Sewer-this carries storm water and terminates jnto a natural drainage such as lakes & rivers.

MANHOLE-serves as a clean-out and an access for inspection and repair. In­stalled on a public sewer line at an interval of 75 to 150 meters diameter from 0.90 to 1 .20 meters and provided with iron rungs as ladders to the bottom. A well fitted steel cover is provided in level with the road.

Catch Basin-a recep­

tacle in which liquids are retained for a suf­ficient period to the deposit settleable ma­terial.

MANHOLE

104

Page 116: George Salvan Architectural Utilities 1 Plumbing and Sanitary

PROBLEM:

Prepare the bill of materials required to con-­struct the sewer line of a 100 meters length, connected to two 1.00 meter diameter man­holes. The size of the sewer pipe is 0.~.

100 wrs

SOLUTION:

100 tess iD + i o = 99.0 M

1 -:fu- (length of one pipe) = 99 pipes

• Subtract 3% 99 - 2.97 = 96.03 pipes

3% to take care of GAPS 25-50 mm (1" to 2") if there are 96 pipes only 95 wifl be grouted referring to the Table below, a concrete pipe of 0.90 w ill need 0.198 brags cement and .0247 cu.m. sand.

95 x .198 = 18.81 bags cement say 19 95 X .02<7 = 2.35 cu.m. sand

105

Page 117: George Salvan Architectural Utilities 1 Plumbing and Sanitary

106

QUANTITY .OF CEMENT AND SAND PER PIPE JOINT

CONCRETE PIPE SIZE BAGS CU.M. IN METER CEMENT SAND

0.60 .132 .0165 0 .90 .198 .0247 1.20 .266 .0330 1.50 .320 .0400 1.80 .376 .0470 2.10 .443 .0554 2.40 .496 .0620 2.70 .558 .0695 3.00 .616 .0770

SEPTIC TANK

A watertight receptacle which receives the discharge of a plumbing system or part th.ereof, and is designed and constructed so as to separate solids from the liquid, digest the organic matter through a period of detention, and allow the effluent to discharge into a storm drain; or directly to the ground outside the tank through a system of open joint or perforated pip­ing.

Page 118: George Salvan Architectural Utilities 1 Plumbing and Sanitary

r-- --- -- -·---' I I I I I I I

, ' I

: tl I

MANHOLE: I I L _ -- _ ... _ _ _,

~- -- -....... ----, I I t I I I

n : ;MANHbL.E : L---- _____ J

I i I 1 I I

I ' I j I I I I I I

I l I

- --- ------ --- - --- ----J L--------- - -----J

1 I I I I I I I

I I I ~------- - ---------- ----

_ _ __ _ __ _ _ _____ __ _ _____ _ _ ___ _ _ _ J

L

PLAN

SECTION AT~A

107

Page 119: George Salvan Architectural Utilities 1 Plumbing and Sanitary

108

SECIJON BB

SUGGESTED SIZE OF SEPTIC TANKS IN METERS

NUMBER OF PERSON SERVED

INSIDE DIMENSION OF DIGESTION CHAMBER

10 15 20 25 30 35 40 45 50 60 70 80 90

100

LOCATION/ FEATURES

0 = Depth

1.20 1.20 1.20 .1.20 1.30 1.30 1.40 1.40 1.50 1.50 1.50 1.60 1 .~ 1.00

w =Width

0.90 1.10 1.25 1.40 1.50 1.60 1.66 1.75 1.80 1.95 2.00 2.20 2.30 2.50

L = Length

1.80 2.20 2.50 2.80 3.00 3.20 3.30 3.50 3.60 3.90 4.00 4.40 4.60 5.00

1. Septic tanks should be located not less than 15 meters away from potable wat9f to prevent contamination.

2. Where there is public sewer pipe, septic tanks are not allowed.

3. No septic tank shall be installed within or under a house.

4. The inlets and outlets are submerged and arranged so as not to disi.urb the sludge or SCUM.

5. The bottom of the Tank should slope (1:10) minimum towards the manhole in the center to facilitate cleaning.

6. The top cover and the manhole are usually extended 15 em abo~ the surface of the soil to overcome surface water infiltration.

Page 120: George Salvan Architectural Utilities 1 Plumbing and Sanitary

TECHNICAL DATA IN DETERMINING VOLUME OF SEPTIC TANK

1. Minimum Width = 0.90 meters

2. Minimum Length = 1.50 meters

3. Minimum Depth = 1.20 meters

4. For r~sidentiat = allocate 0.14 to 0.17 cubic meter of liquid per person.

5. To serve 12 persons == not more than 2.0 cu.m.

6. For school industrial establishment :::: Volume shoud not be less than 0.057 cu.m. nor more than 0.086 cu .m. per person.

PROBLEM:

Determine the size of a septic tank to serve 200 persons in a commercial building.

200 x 0.057 = 11 .4 cu.m Assume 1.00M width for 100 persons

2.00M width for 200 persons l == ?

l X 2.00 X 1.50 = 11 .40 L .. 11 .40

3.00 L = 3.80 meters

109

Page 121: George Salvan Architectural Utilities 1 Plumbing and Sanitary

! r

§ LL · u.. w

1 POO~

110

SEWAGE DISPOSAL

j iJ\S"TRIBUTING BOX

!. F'OOLS

' !5 POOLS 4 POOLS (or3)

KEEP CESSPOOLS 30.00 METERS AWAY FROM WATER SUPPLY

PLAN ( lt.''siONE)

Page 122: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Mfflu.Qttt ~W¥

rYJ=.;;;;;;--:-- dl!ft n b.rh

l ~· 1 max. IS.OOH'I.

1

LEACHING CESSPOOL DISPOSAL

_... t f.--..\ Of1 ba<---' I

(J -.1-tn

~ mar. t&.oo m.

FOR FLAT .AND .SLIGI1TL.Y SL.OPING GRADES

FOR STEEP GRADES

111

Page 123: George Salvan Architectural Utilities 1 Plumbing and Sanitary

earth fme ~1nders --+-~

or .gravel

co.ars:e ~m~r.s --~~ or 4ravel. l1Je wtth Jfor--""' ( 'JlliT1) ~~ JOint Jomts ~ (6\4!1rlrl w1th o.lo(1") of tar pap42r wtrtd ~

~~·~UI

DRAIN TILE TRENCH

112

~EP1ll. TANK

--=: T-r-------r-C- - tp.!. --t-- :.r-:~o~::l

- -~la:.iton '"'" _____ _.. .. JCt" PLanK

" ,, lXt

01 gpoGAL FIEL.D

Page 124: George Salvan Architectural Utilities 1 Plumbing and Sanitary

a. Not the best Way to Clean and recYcle Water.

SO~-

'.

--- dra111 fu1/d

113

Page 125: George Salvan Architectural Utilities 1 Plumbing and Sanitary

114

b. Better method but more ~xpensive to install.

c. Fast .becoming illegal be­cause it puts raw sewage in direct contact with the earth.

d. Used in low and marshy ground adjacent to a stream, requires careful design and frequent inspection and servicing.

i9Jl'Ur:E

Page 126: George Salvan Architectural Utilities 1 Plumbing and Sanitary

CJSTERN FOR RAINWATER STORAGE

..

'.( :L----- -o~~---------- --~: Di.a1r1 Vlllv~ \\~ ... __) :-~ ~_:-_-:_ { _ -=- -=-~~\ i

1 Ov~rlappm1 I 1 1 :I I 1 M6nl1ole 1

1 1 Flltu 11 1

1 : l :Box 11 : f I I I l l

I I I

I I I I I I I

I I I : I: : I I I 1 1

I t f'latfo rm Dr-a 1n 1 1 1 1 L 1 ~Power Pump :i - ·)c E)- -·· · ·- - --·- !- J=-...-=-4 o-= ----=~ ..... qr ~ ~-- - eonn~ctton V " Mtt.il Pump.s\et.ve L __ _ _ l __ _ __ l __ l

C~mp i.o Prtvtnt c1t!movable. ~dtctl 1

1sp1a.sh of f!lt.er Box Top : , _ - - - - - - - - - - - - - - - - - - -- - .J.

Stuffing Box

PLAN

To N tnc:rtcs.sed ui )I~ whir~ l«Ahon .lnd re~~u1r~m!fltl ~manti

AVERAGE DAILY HUMAN CONSUMPTION OF WATER:

pper Valvt .>c.r4en

WHERE EN"TIJZE

OSTEflN AAO F1L lt~ ARE PLAc:E.D BELoW ~uno, MAN+tOlE SHAll.

I3E BRc116H T TD .ru~ AND SEALED.

50 to 100 gallons (189.51iters) per day per person each from 12 to 35 gal. each 100 chickens- 4 gat. each goat - 2 gal. each hog - 4 gal.

115

Page 127: George Salvan Architectural Utilities 1 Plumbing and Sanitary

TANKS AND CISTERN CAPACITIES IN GALLONS Multiply by 3.79 to get Liters equivalent

DEPTH IN SQUARE TANKS

METERS 2.40M 3.00M 3.60M

1.20M 1,920gal. 3,000 4,320 1.80M 2,880 4,500 6,480 2.40M 3,840 6,000 8,640 3.00M 7,500 10,800 3.60M 12,960

EXAHP\..1

~--> ¥

PER TABLE

VOL

AVE

= 6 000 gallons : 22,760 liters ( eooo a a. n)

:3.00 X 3.00 IC 2. 40

= 1,050 Utera/cu.m V = 2 77 gallons /cu.m

CIRCULAR TANKS 2.40M 3.00M 3.60M 4.20M

1,50(} 2,350. 3,380 4,610 2,250 3,520 3,070 6,420 3,000 4,700 6,76& 9,220 3,760 5,870 8,460 11,520 4,510 7,040 10,150 13,830

+

1.eo

f

PER TABLE

VOL

= 7, 040 oonons = 26,681.60 litera

=U ,2 X h • 3.14{1.50}2 )( 3.60 :c 25.434 cu.m

25. 434 X I. 050 : 26.70!) 21.6cu.mxi.O!SO = 22,680 litera = 26,68f.60

1: t 22, 740 liters

21.6 cu.rn lC 277 ~ 5,983.2

as per toble : 6, 000 901fona

f DRUM = 53 gallons ) = 0.19 cy.m

6000 -53

= U3.2 drums

(i GALLON :. 0036 e)c:v.m

116

I (6000}: .0036(6;000)

6,000 = 23.16 cu.m

70441 !S3

2!S.43o4 X 277 = 7044.1 gallons

= ! 133 drums

7044.1)( • 0036 c 25.358 cu.m

Page 128: George Salvan Architectural Utilities 1 Plumbing and Sanitary

... .

~~ rF QJJ ·~ rE ~ ~ !Nl [OJ [LJ ~ t ~'~ A~[Q) ~Ol~[D) WMllES 6 t=:=:::. ~ M~ NAGlE ~IEINJ1' ~IN

~ lUJ ~ !LJQ)~ ~G~

Page 129: George Salvan Architectural Utilities 1 Plumbing and Sanitary

REFUSE HAND.LING AND SOLID WASTE MANAGEMENT IN BUILDINGS

118

RECYCLING SOLID WASTE

This is another energy conservation influence to which the Kitchen is special!¥ sub}ect. The separation of dry organic garbage (paper), wet organic garbage, and inorganic wastes such as glass, plastics, aluminum, and other metals is encouraged by community recycling efforts in many locations. In the home, wet organic garbage can be composted for garden use, and dry organic garbage might fuel the fireplace. Thus the kitchen needs direct access to a com­post pile, as well as a place {which is cool and dry, to discourage odors) to store various wa~te metals, plastics, and glass until recycling time.

The Clivus Multrum is one built-in way to deal with wet organic waste from both kitchen and bathroom, but typically where a clivus multrum has not been installed. a place for food wastes awaiting composting is also required . Since these wet wastes are particularly odor­ous, they also need cool temperatures and isolation from the kitchen. In addition to being roomy, easily accessible, closed off and cool , these spaces must be able to be cleaned. The energy consuming and ar:Jtirecycling garbage compactor is clearly an easier approach for the designer as well as the user, but it fails the challenge of resource conservation .

The outdoor compost pile has its own characteristics to challenge the designer. At its best, it is a frequently turned, quite warm, damp, well-aired source of rich humus (and red worms) for gardens; odors are noticeable only while the pile is turned. At its v:v-orst, it is a source of unpleasant odors and a breeding place for ·vermin. (Any disease carrying insects, bugs or small animals). Where odors are not objectionable, the heat generated in a fre.al!~ntly fed and tended compost pile could be welcome against the exteriOr. walls of residences. Clearly. these walls must have inorganic exterior materials. .

In larger buildings, solid-waste collecting and processing systems are often installed to deal with volumes of 'specialized' wastes, paper from an office building is one example.

There are 2 basic approaches to these systems:

1. Utilize the waste to recycle both organic and inorganic materials and to recover heat from nonrecyclable materials.

2. Ship the waste elsewhere as quickly as possible.

The first approach includes composting systems which are available for multistory buildings; an obvious problem in urban areas is the distribution of compost from so many families to so .few gardens.

Another example of the first approach is the "INCINERATOR" -(a furnace or other device for incinerating trash or burning into ash) a potential source of both heat and air pollution.

A major problem is the need for separate waste storage, collection and processing for various categories of garbage. At best, without separation otherwise recyclable materials are utilized only for heat, as when paper is incinerated. At worst they become part of our socie­ty's growing solidwaste disposal problem.

The second approach, of quickly· shipping these wastes elsewhere, is particularly likely to generate large quantities of unrecoverable solid waste. Garbage disposal units in apartment

Page 130: George Salvan Architectural Utilities 1 Plumbing and Sanitary

kitchens feed the sewer, which le8eena the buildings' solid-waste collection problems, but not those of the municipal sewage treatment plant . For the wastes that cannot be flu~hed, compacters are often used to reduce the volume (therefore the cost) of shipped wastes, once compacted, later separation to recover the material is more difficult. Yet the amount of space taken up by the collection and storage of unseparated wastes is typically less than that required for separated wastes, and space becomes more precious as density increases. Storage and k>ading areas for a downtown apartment toWer are likely to be far smaller than for a suburban apartment complex.

An example of the second approach to waste handling is shown in the figure below, where pulping of waste is used to greatly reduce its volume. The~ systems grind waste into pulp in the presence of water, making a readily transportable SLURRY (a thin, watery mixture of a fine, insoluble materials, as clay, cement or soil). At the loading docks, this slttrry enters a water press where about 90% of the water is squeezed out, reducing the volume to about one·fifth of that of the original wastes. This water is reused and replenished as required.

A PULPJNG INSTALLATiON "'R AMRTMENT R'EFU~

Such pulping systems are used not only for general refuse, as illustrated, but also for the destruction of documents and for food service wastes. Pulping systems have limitations: They should not. be used to handle metal or plastics, so that the recovery of at least these materials remains a possibility .. Pulping systems are replacing incinerators in urban areasj their advantages in reduced air pollution must be weighed against the possible heat contribution from incineration.

Once shipped from buildings, unsorted garbage must undergo energy-intensive processing if its resources are to be recovered. This procedure.typically involves shredding the mixed garbage then blowing it through massive "air classifiers" that separate the organic (burn­able) wastes from metals and glass. Burnable wastes can then be used, under controlled combustion. to generate electricity, and the glass and metals (which have been further mag­netically separated into ferrous and · non-ferrous metals) can be recycled.

119

Page 131: George Salvan Architectural Utilities 1 Plumbing and Sanitary

120

SOLID WASTE RECOVERY PROJECT (Clean Communities Corp. Haverh~l Mass.)

Page 132: George Salvan Architectural Utilities 1 Plumbing and Sanitary

WASTE DISPOSAL .... by Corlias G. Karasov

Every day we throw away countless fonns of waste -from gum wrappers and banana peels to used car oil, old refrigerators, and an occasional battered car. Add to this the millions of tons of waste generated by agriculture, industries, mining and oil and gas extraction, and you have about one million tons of solid waste generatEtd every day in the United States (about four kilograms for every person 1. Anothef 315 biUion liters of waste-water are poured into the sewers and septic tanks each day (1370 liters per person).

So much solid and liquid waste is generated that it would be impossible for natural processes to handle it all. Also many forms of modern waste are persistent-without~pecial treatment they .do not break down in the environment for many years.

What happens to this waste? Mismanaged waste eventually shows up as pollution in our . lakes, streams, drinking water, and air, even as an unsightly pile cluttering our view of the environment. Industrial and municipal wastes are the main source of groundwater contami­nation (half of our drinking water supply comes from groundwater sources). Waste manage­ment is a major nationwide problem today.

SOLID MUNICIPAL WASTES

A. Collection

Modern communities can collect liquid wastes in sewers with ease and with relati~ely lit­tle expense per person. But there is no similar method for collecting solid wastes. Collec­tors still have to go each home or place of business and gather the solid wastes, -largely QY hand. This of course, is expensive.

However, the work today is more sanitary than it was in the past. SPECIAL Sanitation Trucks have closed watertight bodies as well as special machinery that presses down the refuse into a small place.

B. Disposal

Once collected, a satisfactory method of disposing of solids is needed. The two most commonly used methods are incineration and sanitary landfills, though many other dis-posal techniques are available: .. -

Open dump, hog feeding, grinding and discharge to sewers, milling, compacting, dumping and burial at sea, reduction composting, pyrolization (destruction with high heat), well oxidation, and annaerobic digestion.

a: Incineration, or controlled bu'rning of combustible waste, can be an effective wast~ reduction method for 70 percent of all solid municipal wastes. If an incinerator is operated properly, it can reduce bulk by 90 to 95 percent. Ash left over is generally disposed off in a landfill - (soft courses can be estabiished this way).

Environmental laws require specialized pollution control equipment such as scrubbers and electrostatic precipitators to remove fly ash (fine ash particles that would other­wise rise from chimneys and pollute the air. In the past the heat generated in incinera­tors went to waste. Today the heat is often channeled to heat boilers.' There·~ pro­duces steam, either for heating buildings or for generating electricity.

121

Page 133: George Salvan Architectural Utilities 1 Plumbing and Sanitary

HOUSEHOl:-0 WASTE -bet~ foadll4 · tntc:=> trod that ~~ts

tt be10re haulln.:1 •t t() d dump or tnane.r.ra tor.

122

b. Sanitary Landfills -are not open dumps. In this process, refuse is dumped at a pre-planned site, com­pacted, and covered with a layer of earth. There are two basic ap­proaches in making a sanitary land­fill. The trench method and the area method.

6A.RBA6'= TRUCK · ~~o1p~ With. ~1al 21rm to lift tr.ash ~nta\ners.

1. Trench Method-a tractor digs a trench with a bulldozer blade and trucks. Dump the refuse in­to it. Then the tractor compacts the refuse thoroughly and co­vers it with earth that was dug up earlier. The. trench method is primarily used on level ground.

Page 134: George Salvan Architectural Utilities 1 Plumbing and Sanitary

SOL.. I 0 WASTE ~ompac:te£:1 tnto tla~s. e~n ane W~k:Jhtng almost l,so:> k•lagrams. Tht.S a:m~ttd W.dS'te IS

ttum G1ffeh ~d fa- .s:a mtar.y Landfall .

2. Area Method -is generally used on rolling terrain where the exist­ing slope of the land ~an be used as a basin. In this method, trucks deposit refuse over a se­lected area. Huge, heavy trac­tors w ith special compacting wheels press down the refuse. Then the refuse is covefed with earth hauled in from elsewhere. The tractors make the fill so firm that it later settles only slightly.

Once a landfill has been compacted and covered the land cannot be used to build homes or other buildings because of the danger of heavy objects sinl<ing as the fill settles. However, many fills are used for golf courses and other light uses.

LIQUID MUNICIPAL WASTES

A. COLLECTION

In some underdeveloped areas of the work, open sewers are used. In parts of Asia, peo­ple go to home at night to collect human wastes and carry it away in carts. In some parts of China and Japan, human waste is used as a fertilizer . Today, elaborate sewer systems are used to carry most liquid sewage to waste treatment plants. When no sewage system is available, however septic tanks and other subsurface systems are generally the next choice for homes and business.

SEWERS -are designed to carry sewage from residences, business, and industries throu~h lar!;Je C()nduits to sewa~e treatment plants where the sewage undergoes a series of treatment steps to remove polluting materials. Once treated, the wastewater is released to rivers and lakes to become part of our water resources. Sludge removed from the wastewater is treated and disposed of in landfills.

123

Page 135: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Most older sewer systems are designed to carry all forms of wastewater together, in­cluding both storm water and sanitary sewage. A disadvantage of this "combined" sewer system is that most treatment plants are not designed to receive the large volume of sewage that comes through after rainstorms. Rather than damage the treatment plant with the excess waste after a. storm, wastewater is often allowed to bypass the treatment plant and enter our waterways untreated.

Newer sewer systems often carry " Blackwater" (Toilet Water) and " Greywater" (any other water) separately. In the event of any rainstorm, greywater can be released if necessary while the more concentrated blackwater is treated. A second advantage of se­parated sewer systems is that greywater can in some cases be released after fewer treat­ment steps.

41- 6l.A.CKWATER

./'~ ~¢ GRE.YWATE_R

~~~------------~ OLD SYSTEM (c:otnbm~4

124

~TME.NT R.Af4T

q ~~~~~ ~~9~~ BY PASSING "eAt:YWATER .. . 9> ~.,......"'

an.d R.o\IN WAlER

B. DISPOSAL

wat42r­. ways

At the sewage treatment pJant, sewage is put through a series of treatment steps to remove any biological and chemical contaminants that can harm human health or ecolo­gical systems; to remove final traces of suspended solids; to remove undesirable growths of algae; to remove taste, color and odor; and to reduce nutrient content then the treated sewage is released to rivers and lakes to become part of our water resources.

Page 136: George Salvan Architectural Utilities 1 Plumbing and Sanitary

The three standard Treatment stages are:

Primary -this is almost always used. Primary treatment is used to remove large floating or suspended particles, heavier particles such as sand or gravel (called grit) and any ex­cessive amounts of grease or oil from the sewage. A series of screen grit chamber, and sedimentation tanks is used for this step.

If no further. treatment is performed, the wastewater is disinfected by the addition of chlorine and discharged into a stream or a body of water. If further treatment is needed. the wastewater goes to secondary treatment.

SCREENING

TRAPS COARSE MATrER

GRIT CHAMBER LIGHT ~Pe)Q;p ""RT1G.U!S 1"1..0\T

HJ:AW 6"1T t=MT1a..SS SINK

.. .

2. Seco41dery Treatment-is the use of aerobic microorganisms (bacteria that thrive in air) to break down organic matter left in the sewage. The process-called biological oxidation-involves the use of trickling filten~, activated sludge and stabilization ponds. Unless tertiary treatment is used, the wastewater is disinfected with chlorine and discharged. '

125

Page 137: George Salvan Architectural Utilities 1 Plumbing and Sanitary

126

rRlGKLIN6 FtLTER

A tnc.l<hn4 i'ttUr: wh•Lh blologtully punflfS U'til4l of or4an•~ matt4!!r tr~atlhe!nt. ThiS proas& IS ~lso )(nown 4K ~btl. ~~Gitaon,

b4r~au~ u~, or .au· 'Pr~a~. ba~tlttu dcriroy 1tw c::njaruc

wast~.~~ pa~ •tta s,ray 1lw'OUgh (»ppni"9 m'four .Arms. thL¥ ~•nc~ mt~ w1th an; lM .uw~c t'hfn lnc~ iloWiy 1br"OU9h a 1)~11" of 'oarul)t uusb.N ~. whf,. 'l>.td8M~ c..arryn19 'lirats ~&k Mlwn Uw or~tt.; rnat.tful mto humw .t&Jt¥bn~~-

SLUDGE left over the primary and secondary treatment processes is sent to a sludge digester for further processing. The sludge digester uses aerobic bacteria to break down volatile matter in the sludge over the course of two to three weeks. Methane, a by-product of this step, can be used as a fuel source. The remaining sludge can be us­ed as a fertilizer or soil conditioner, incinerated, or deposited in a landfill.

SETTL.IN6 TANK

Page 138: George Salvan Architectural Utilities 1 Plumbing and Sanitary

3. Tertiary Treatment, also called advanced wastewater treatment, is used to get drinking-quality water. At this stage, chemical treatments are used to remove unde­sirable constituents that remain after Secondary treatment. These includes nitrates, which can cause public health problems and nitrogen and phosphorus, which encour­age the growth of algae. The specific treatment methods used in tertiary treatment depend oh the source of wastewater being treated. For example, carbon absorption reverse osmosis, or distillation processes are used to remove organic materials. To eliminate heavy metals from wastewater, lime treatment or coagulation. and sedimen­tation treatments are used. {Please refer to Chapter 7 seW'age treatment and recycling of water).

Pr~~r.a t1on ao4 6nt Tan i\S'

127

Page 139: George Salvan Architectural Utilities 1 Plumbing and Sanitary

SEPTIC TANKS

In area& without sewer pipes to cerry sewage to treatment plants, septic tanks and other subsurface absorption systems are- the mOst commonly used means of treating wastewater.

A septic tank is a watertight tank In which sewage is purified by anaerobic bacteria. Solid wastea settle to the bottom of the tank, where the anaerobic bacteria aid in their decomposi­tion. Sludge left over is periodically collected from septic tanks and treated or disposed of in landfills.

The sewage effluent-wastewater-passes out of the tank through perforated pipes and into the surrounding soil. However, if the. soil is too clayey or clogged with too much waste, the wastewater will not be able to leave the tank and be purified. Proper use of septic systems is purified before it reaches nearby lakes, streams, rivers, or underlying groundwater. (Please refer back to Chapter 5, sewage treatment.)

INDUSTRIAL WASTE

128

Agriculture, mining, -chemical and metal industries, and paper manufacture are responsible for a big chunk of the waste generated in the United States, and countries with big indus­tries. Industrial mining and agricultural waste amount to more than 380 million metric tons of solid and liquid waste generated in the.United States each year.

Industries generate most hazardous wastes . The two largest-hazardous waste generators are the chemical industry (60 percent) and the primary metal industry (10 percent) crude estl· mates of the hazardous waste disposed of in the United States each year run from 100 to 275 million metric tons.

Industries are now responsible for disposing of their own waste. This is often extremely cost­ly. In response to rising costs for waste disposal, many companies have attempted to reduce

. the waste generated and recycle and reuse waste materials. Many industries have success­fully reduced both non-hazardous and hazardous wastes. Almost 35,000 chemicals are etas sified as either potentially or definitely liazardous to human health. Some of these chemicals are toxic; the most commonly known can, in certain concentrations, cause birth defects, cancer, irreversible health problems, and cteath. Other types of hazardous wastes are corro· sives, such as acids; flammables; explosives; irritants that can cause incapacitating short· term chronic allergic response reactions.

Page 140: George Salvan Architectural Utilities 1 Plumbing and Sanitary
Page 141: George Salvan Architectural Utilities 1 Plumbing and Sanitary

THE RECYCLING OF WATER

130

"Today's water supply is tommorow's sewage problem" is a slogan of officials of municipal Public works department. With great effort and expenses, millions of gallons of potable water where delivered to a City, only to be continuously polluted by human wastes. Trans­formed into sewage, it was then run to foul the nearest river or, in more recent times, it was purified -also at great effort and expense.

Adequate sources of water are now in short supply. Fresh water lakes, deep wetls, and some less-polluted rivers now often yield insufficient water for this extravagant and wasteful cycle.

We face the scheme of making the purified sewage effluent quite a lot purer and drinking it. Thus, the slogan is reversed and becomes "Today's Sewage flow can be tommorow's water supply". Terms such as "Sewage Disposal" are used less often and are replaced by "Water Reclamation" and "Recycling of Water". However, human sensibility is such that we are re­luctant to think that we are drinking purified sewage effluent.

Reclaiming sewage for drinking water is a change that will affect the practice of architects and planners. It wil1 change the nature of buildings, their mechanical systems, and their plumbing fixtures. Regional planning will also be affected, since the recycling may take place in small, newly planned communities and even on college campuses. Space for local treat­ment plants may be required in the master plans now on the drawing boards or those soon to be contemplated .

In this fast-moving development, the possible, complete digestion of sewage at an individual house or even directly at an individual toilet fixture has been seriously considered. At our present time of writing, the speed of change is so great that any appraisal of the current situ­ation must be considered to be $Ubject to additional changes.

Effluent - the outflow of a sewer, septic tank.

Sludge-any heavy, slimy deposit, sediment or mass, as the waste resulting from the precipitate in a sewage tank, oil refining or mud brought up by a mining drill.

THREE KINDS OF WATER

As discussed earlier, the descriptive terms· are:

1. Storm water

2. Area water-wastes from laundries, wash basins, sinks, showers, bath tubs.

3. Black water - the water plus-hul)"lan waste that is flushed out of toiletS and urinals.

FOUR DISTINCT OBJECTIVE STATEMENT IS NEEDED about the planning that should apply to new buildings in new communities. :_This planning should include: ·

1. Storm water to be recharged to the earth.

2. Grey water to be collected separately and given the lighter treatment sufficient for its purification.

3. Black water to be collected separately and then treated in city plants, locally or at each building site.

4. Eliminating the incidence of black water by the use of composting processes.

Page 142: George Salvan Architectural Utilities 1 Plumbing and Sanitary

SEWAGE TREATMENT WORKS WARD'S ISLAND, NEW YORK CITY (ACTIVATED SLUDGE PROCESS

GRJT CHAMBER (MANHATT.

~6:[))-~·.~ :'?.- -:-U ~- ·· -·- ·

.. .

PRELIMINAR'Y ~~~~~~-~ETTU CHAMBe~

.SL.UD'-E

.>TORA~E' S'UH .• I N6

FINAL S~TTl..ING

CHAMf5CRS

I::Sl

Page 143: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Sew~ Tratment wortc"s", W.rtis Island. New Ycrk t~ty, Ad•vattd ~u~ Proc..ess. [AJManhatt:an ~nt .c:::hamber [8] Manhattan >Lw~ tunn~l E:] Bron~ {ew31}1 tunnel [qJ Labor'atory .and Admtn1strat.m. [E:] Power plant (T] t:\Jmp and t=0w1r Bu•ld1n~ ~ R'~ltTl&nary ~1.hn~ dam~r.r. fHJ A~.dt•oo tharrtP€1:S [IJ Fmal Settlm~ ~ham bet'> pJ Sl~e ~ta-~ l>u •ld1ng [}:] ..:11'14 [':] Pur~ IVa~ <::bsatar4e [MJ Dec:t. ·1br .Slu4ge boaii.

132

Page 144: George Salvan Architectural Utilities 1 Plumbing and Sanitary

T~ PU8LIC ~Urf'LIES --~

-------iAWm CHLORI DE.

· .. :: .··•----. SETTL..IN6 , ..

·(FERRIC SUL..FATE · L..fMe:!

CHLORINE. $OM A.SW

·· !1---- FL..OCCUL.ATION

- ---· FILT'llATION

. .

A CITY WATER TREATMENT USING RIVER WATER AS A SOURCE

133

Page 145: George Salvan Architectural Utilities 1 Plumbing and Sanitary

134

GENERAL:

The individual sewage disposal facility is a system designed to treat sewage from one build­ing plot and dispose of it on the site, itself, usually by some type of soil absorption system consisting of a septic tank followed by either leaching pools or tile fieldS. The individual disposal system cannot be considered a satisfactory permanent method of sewage disposal as compare to a connection to an approved public sewerage system .

RECYCLING AT NEW YORK INSTITUTE OF TECHNOLOGY

A new method of sewage treatment, known as the Pasveer Oxidation stream {using the ele· ments for effective sewage digestion-sunshine and turbulent flow that creates the water and provides an adequate oxygen content) has been adopted at N.Y. Institute of Technolo­gy. Serving the new 450-Acre Campus at old Westbury, Long Island, N.Y., it provides an on-campus sewage treatment, which returns the purified effluent to the ground through 48 leaching wells located under the athletic field . The groundwater thus restored, aids in providing a contributing source of water for 400-ft. (1 20 m.) deep wells, distantly located, that furnish part of the water supply for the campus buildings.

1. PROCESS

The oxidation stream process is a modified form of the activated sludge process and may be classified in the extended aeration group. It is not a mechanically aerated lagoon. The biological removal and conversion of organic solids occur simultaneously in the aeration basin under aerobic conditions. Aerobic conditions are always maintained by induction of oxygen into the liquid with a highly efficient mechanical aerator. The surface aerator also has excellent propulsion capabilities which keep all solids in suspension.

OUIET LA(!;()ON

Page 146: George Salvan Architectural Utilities 1 Plumbing and Sanitary

2. OPERATION

The oxidation stream is operated as a closed system and the net growth of volatile sus­pended solids will increase so that it will periodically be necessary to remove some sludge lowers the concentration in the stream and keeps the metabolism more active. The ex­cess sludge formed in the process is sufficiently broken down so that the water binding properties, present in sludge produced from other processes is not present. The surplus sludge may be discharged without offensive odors for direct drying on open sludge dry­ing beds. (The designs according to its designer, Mr. Bogen had provided for a 4,330 equivalent population and a 340,000 gallons per day flow).

t.eAt::HING FEILD UNDER FOOTBALL. FEILD

STORWf DRAIN

LEGEND

A. S UMP PUMP P IT

F

B- SLU~E. PUMP PIT

C-CHLDR'INE GONTAC.T CHAMBER

0. INFLUENT STRUCTURE

E. LABOAATORY BUILDING F.CLAF?lFlER

6- ROTOR BRI D6E

H- SL.UD6E ORYI NG BEDS

135

Page 147: George Salvan Architectural Utilities 1 Plumbing and Sanitary

SANTEE WATER RECLAMATION PLANT and PARK/RECREATIONAL FACILITIES PADRE [)AM MUNICIPAL WATER DISTRICT

1. Raw Sewage from the community of SANTEE enters the treatment plant, (top of dia­gram I.

2. The process then proceeds southwards to the point where reclaimed water is pumped to customers.

3. Sludge does not enter the San Diego River but is pumped to the San Diego Metro Sys-tem/or can be aerobically treated at the plant. ...

OPEN CHANNEL

CHLDRINA"f10N SlAT ION

S"EVEN lifCEE\'\ 110NAL LA!<E5

75 WAIER' SURF.Al:E ACRES

[l I<'E~LAIMEO IM\TEI'c: D 0 .::'HLORINA110N ANO J PUMPING F.A::IU11E5

136

Ill PERCOLATIDN 6E.05

.st.UDGE TO SAN Dl56() METRO GYSTEM

Page 148: George Salvan Architectural Utilities 1 Plumbing and Sanitary

WATER USED IN FLUSHING TOILET

When considering reduction of waste water flows, the biggest water-wasting device that first come to mind is the water flush toilet. Almost everyone has participated in the use of about 5 gallons (18.92 liters) of drinking-quality water to flush out of sight, objects of no more than a cigarette butt. Altogether, water wasted in flushing toilets approach almost half of all water used in a household:

LOSSES:

When the flusher rubber is faulty, water escapes through the water closet tank at a rate of 20 gallons per minute. This adds to 120 gallons per hour, so that in 10 hrs, a 1,000 gatlcn tank is emptied.

A leaking faucet will result to loss of water. As an example, the illustration below will explain the average loss· of water for a period of one month.

i • • •

lDdrt:lps/ mmutt 2~ Lr~r! ;morrth

' ' • '

' • • • • • • ' • • • •

137

Page 149: George Salvan Architectural Utilities 1 Plumbing and Sanitary

BIOLOGICAL COMPOST TOILET or MULLBANK TOILET (Formerly Ecolet)

This is an aesthetically acceptable toilet. That do not use water at all. Its function, appear­ance, and adaptib ility are shown in the illustration.

FUNCTIONS:

1. A toilet with a controlled humidification process.

2. Developed in Sweden and marketed by Recreation Ecology conservation of the U.S. Inc. 9800 West Bluemound Road, Milwaukee, Wisconsin 53226. ..

3. ODOR-FREE, it can be used continuously without discomfort.

4 . It has a continuous , uniform, biological decomposition when in operation and is mainly activated by mesophilic microorganisms.

5. Organic kitchen refuse can be received, as well as torn up newspaper and waste­paper.

5. The mullbank enables the hygienic handling of waste at the source. No discharge of waste or chemicals to the earth.

7. It produces a fertilizer and a soil amendment.

8. Domestic water consumption is reduced which implies reduced treatment of sewage water.

• 9. It will operate in a wide variety of temperature ranges .

.A VEt.JTILATING FAN ANO eXHAUST SYSTE~ A MOULDED HI..;H rrTO EVAR)I?A"l"E LIQUID WASTE AND ~EMOVE' ODOR. GLOSS LAMINATED AN!; IM~T RESISTANT

POt..YSl"ERENE HOUSINEo A DISTRIBUTOR Pa'f ~NO SEAT I

A TRANSR>R'MER: AND $WITCH-

A COLLECTION TRAY IN

SPREADING INRJT IN ,· 20 POUNO.S ( 9·07 J<IL.LG) t.iF

PEAT MDSS WHICH IS SPREAD CVER THE HEATING GDILS

TCJ PROVIDE SOIL BACTERIA

TO INlER'AC.T WITH WAST~

BA~TER IA .

WHICH DECOMPOSeO (POWDER OW'(] ARE GANE~f;:O FOR REMOVAL

A HEATING COl~ WITH THERMDSTAT TO INSURE lliAT A TEMPERATURE 1DEAL FOR DEC.OMR?.SITlON IS MAINTAIN

A TOILET YOU CAN'T FLUSH

138

Page 150: George Salvan Architectural Utilities 1 Plumbing and Sanitary

THE CLIVUS IVIULTRUM (U.S.) (Inclining Compost Room) METHOD OF ORGANIC WASTE TREATMENT

This method for the treatment of organic wastes is self-contained. It uses no water. Pro­ducts ofthe toilet and kitchen are retained in a impervious container from which there is no effluent. It preserves nutrients by conversion to a rich humus suitable for gardens. No ext~r­nal supply of energy or chemicals is needed to .effect the decomposition.

In the Multrum, the bottom of which is sloped, the organic wastes slide down at a rate slow enough to be thoroughly decomposed before reaching the storage chamber. A draft main­tained by natural convection, ensures that there is aerobic action in the process and that kit­chen and bathroom are odor free.

Bath, dish and laundry wash waters are not handled by the multrum. It is disposed of in such a way as not to endanger human health or water quality. With toilet wastes eliminated from the effluent leaving the house, this danger is greatly reduced.

Invented 30 years ago in Sweden, commercially available in the past decade in Scandina­via , and adaptable to all types of buildings.

- - GARBA6E CHUTE ' .. ~-· -·--·· ··- - _,., _.,_.

the MULTRUM .at a bas~ment m- .21 house

139

\

Page 151: George Salvan Architectural Utilities 1 Plumbing and Sanitary

EXHAUST VENT

I!IXHALJST AIR OUT c:;oz , H,o

'- ... ....... ' \

\ \ I GOUNTJ!.R ToP ~R8Afie UNIT

~-+----KIT~HEN WASTES CHAMBI!R

... STARTER LAYER OF -~~:.;_

f'EA T }- TOP SOIL

140

TOI&.ST WASTE CHAMI5&R

COMPOST CHAMBER USING 1.20 x 2.40 Floor space by 2.10 high that receives garbage and human waste under controlled conditions. The end product is a humus, which is only 5 to 10%·of the volume originally put in. This end product is safe for gardens because of the long retention in the container (2 to 4 years).

Page 152: George Salvan Architectural Utilities 1 Plumbing and Sanitary

THE MICROPHOR FLUSH TOILET

The recycling of water from sewage is not the only way to ease the water supply problem. Obviously the use of less water at fixtures also helps. This reduces the volume of sewage produced. The microphor flush toilet for use in conventional plumbing systems is a notable item for this purpose. It only tlusl)es 2 quarts ( 1.892 liters) as against 5 gallons flush for the ordinary water closet.

HOW IT WORKS:

The microphor low flush toilet is activated by pressing the flush lever. Water and waste are immediately deposited into the Lower Secondary chamber which is built into the structure of the toilet.

The toilet has a complete water wash of the bowl refills to form a seal. At this point, the se­condary chamber is pressurizec1 with compressed air and the waste and water is deposited into the normal sewer line.

FINISHE=O WALL.

Savings = 2/5 used 3/5 saved

For conventional - say 1,000 gals. only 400 gal . tor microphor

600 gal. saved.

RIM FLUSH

FINISHEO FLOOR

CXJTLET

USE: WAX B"OVVL. RIN~

WHEN INSTALLING TOILET

141

Page 153: George Salvan Architectural Utilities 1 Plumbing and Sanitary

NOTES

Page 154: George Salvan Architectural Utilities 1 Plumbing and Sanitary

~lUM~~~ceJ ~~xuu~~~

Page 155: George Salvan Architectural Utilities 1 Plumbing and Sanitary

PLUMBING FIXTURES

.PLUMBING FIXTURES

144

Plumbing fixtures are receptacle~ inten~~g tq r@ceiv~ w~t~r, liquid, @r water c~mied wastes and discharge them into the dr~in~g~ ~yl),tam.

1. WATER CLOSET

A plumbing fi~ture use~ to. ~pnvev ~rQ~!lil;! q~qy w~~te ttl the plymbing system.

Dtt:fign-:-This come in the follpwing type~:

a. '-"~~ow~ -l~i.l~t ~fficiept, nqj~ie~t less expe.nsive, b1,.1lging frqnt.

b. Reverse Trap-more expensive than washdown. Flushes through a siphon action created in the trap way, mode­rately noisy.

.. ---... t .. Wlt1'8" tieAL. .... ~ ..

Page 156: George Salvan Architectural Utilities 1 Plumbing and Sanitary

~· ~il!hf1n J(ft -e~pensive "'"~ m<>re efficient. larger amount gf Stlfpdi!"9 water, larger trap­way ca~:~sing !e~ clog and ft4s~ing action is greater.

d. Siphon Vortex- very effi­cient, less, noisy and must ex­pemsiv~ fi!:J.§hirg l:}y whirlpool action. It hcts JEirg~ amount of ~nding Wflt~r ~lmost cover­ing !he whpl~ 1;)911¥1 i~terior.

~. DlffJQt FIYJh Vf/Jftf- ln places where water is al,l!Jnq~nt and the pressure is high, Flyshing tt{::tiQn can be obtained di· rectly from iJ fh:l§h value connected into the bowl. Fo~nd in commercial and insti­tutional installations.

I-lEAC

SE'Al...

145

Page 157: George Salvan Architectural Utilities 1 Plumbing and Sanitary

146

TDP .SPLJD DESt&l'l ,~--4-----_§ 7~

MARINA (most expensive) Flush valve model No. PE-3530 · wall mounted elongated siphon jet.

$79 <1>----· -------

1

! 415

~---· .. -----

'1~1 ~

I

-~c' ~~,;~4 :w"" "1!\~ VENTURA (cheapest) Flush valve PF-3534-FV Siphonic Wash­down.

Page 158: George Salvan Architectural Utilities 1 Plumbing and Sanitary

VALVE (6} SHOULD SHUT" OFF WATE~ INTAKE WHEN r"L~T ARM RAISES Ar g.) ~~~~·R ~~VE TUBE REFILLS ~UNGEF? _ SEE TOILAT BOVVL DE:TAIL-S BELOV-/ WHit....E TANK

RBr~VERH~

it.]

~] VALVe PLUNGER

fVILt... COGK

WATER SUPPLY

I /BE

TUBE:. R'EFILLS

TANK~

I I

LIFT ARM AND 1-tFT WIRES SHOUl-D NOT JAM AT ANY TIME- WHEN JAMMED THEY PREVENT VALVE FROM RE)EATIN& PROPERLY

$"EAT

PLUNGER

FLOAT

UFT WillE

STOPPEl? BALL SHa-lLD aDSE S:MOOTHLY

5CREW

- TO BOWL REALL TU6E tc::&~----

TANK 1<E FlLL TUB~

DETAIL OF A TYPICAL BAL..LCOCK VALV~

147

Page 159: George Salvan Architectural Utilities 1 Plumbing and Sanitary

t-1 l

...,_.-~,.._ ........ .a. I

"i 1:-1' t\4i !

148

CARMELA (Less Expensive) Flush Valve PF3531-FV Siphon Jet

Recommended for Institutional/ Commercial Common/Lobby Toilets

_,.g,

Concealed P-Trap Flush Valve Bowl elongated Siphons Model No. PF 3631-FV

Philstandard - Saniwares "MARINA"

New Madera - '.'CARMELLA" Compton FV - "VENTURA"

t Ill

Page 160: George Salvan Architectural Utilities 1 Plumbing and Sanitary

~7 t

VICTORIA PF 2000 Most Expensive, Luxurious, one piece de­sign - Flushes at only 13 liters. Recommended for

Expensive Master's. toilet Expensive suites

Elongated Siphon vortex bowl and Tank in one piece.

Philstandard - Saniwar~ Car1yte "VICTORIA"

149

Page 161: George Salvan Architectural Utilities 1 Plumbing and Sanitary

748

CARMELA PF 2102

Free standing toilet combinauon PF 3531 elongated bottom outlet siphon jet bowl with extended rear shelf - P F 4145-01 closed­couple tank .

Recommended for Master's Toilet

150

Concealed P-Trap W.C. PF 2103

Floor Mounted, back outlet Toilet combi­nation PF 3631 elongated siphon jet bowl same tank.

Phi lsta ndard elongated compact elongated Yorkville Concealed P-Trap

- Saniwares - Carmela PF 2102 - .carmela PF 2103

Page 162: George Salvan Architectural Utilities 1 Plumbing and Sanitary

.. 2.9(, -

.524

s

~89

SABRINA PF 2600

t

Free Standing Toilet Combination PF 3536 round front bottom outlet siphonic reverse trap bowl with extended rear sb~lf-PF 4145 close coupled tank with cover .. · ·

Recommended for Masters toilet, Children toilet, Hotel rooms.

r;78

7

Model PF 2601 Floor mounted, bacl< outlet toilet combina­tion - PF 3636 round front siphon jet bowl

same water tank.

Philstandard new cadet round front Yorkville

Saniwares , Sabrina 2600 Sabrina 2601

151

Page 163: George Salvan Architectural Utilities 1 Plumbing and Sanitary

.5 91

.5.14 t

VENTURA PF 2400 Free standing combination PF 3534 Round Front bottom outlet siphonic washdown bowl with extended rear shelf PF 4145 close­coupled tank with cover.

(Recommended for children's room Guest Rooms lower budget toilets)

t

Model REGINA PF 2XlO

t I

Free Standing Combination PF 3533 bottom outlet siphon action washdown bowl with jet-round front with extended rear shelf­PF 4145 close coupled tank with cover.

Philstandard Compton regular Perfect 2113

- Saniwares - Ventura - Regina

Page 164: George Salvan Architectural Utilities 1 Plumbing and Sanitary

SYLVANA Model PF 2800 Free standing Toilet Combination PF 3538 round from bottom outlet Siphonic wash­down bowl with extended rear self-PF 4144 close coupled tan!( with cover.

Recommended for Driver's maid's care-taker's toilet also for small restaurants.

oe

Sylvana Backspurl Bowl Model PF 3538 BS

Floor Standing toilet round front bottom outlet siphonic washdown bowl with 51 mm back spud.

Philstandard Perfect 2113 Back Spud Perfect 3280

Saniwares Sylvana~ Sylvana Back Spud PF 3538

Page 165: George Salvan Architectural Utilities 1 Plumbing and Sanitary

154

400

~ ~

~ i~

7~8

~ .65.5

rr

FERNDALE PF 3535-Full Flush washdoor bowt with open and self-draining riverback outlet 95° slope P-Trap PF 3535 ST) table for high or low leud cistar.

Recommended for budgeted toi'let rooms

BIANCA PF Z700 Floor mounted toilet combination - PF 'S1 round front washdown bowl with extended rear shelf and backoutlet.

Philstandard Coronet PF 440 Coronet P F 441

Saniwares Ferndale PF 3535 Bianca PF Z70

"' ~

Page 166: George Salvan Architectural Utilities 1 Plumbing and Sanitary

4-97

~I 430

DIAMANTE BOWL No. PF 3430

Floor standing bottom outlet pan flush toilet.

Recommendation tor Rural: areas ,low cost houses Public Toilet

4-81

PER LAS SQUAT BOWL

Model No. PF 3431

..

Pail Flush squat toilet for recess installa­tion.

Philstandard Bolton

Silangan Squat PF 3444-S

Saniwares Model PF 3430 Perlas Squat

PF 3431 Oriental PF 3446

155

Page 167: George Salvan Architectural Utilities 1 Plumbing and Sanitary

156

ORIENTAL SQUAT BOWL Model No. PF 3446

Washd.own Squat Bowl with integral f~t treads for loose P or S - Trap instaUation­suitable for high or low level cisterns

Recommended for low cost and rural hous­ing Public Toilets.

Page 168: George Salvan Architectural Utilities 1 Plumbing and Sanitary

LAVATORIES

LAVATORV. is a bowl or basin for washing the face and hands. The basin maybe of the following forms:

0 D

1. Rounded

2. Square

3. Oval

D

The elevation of the sides could either be any of the two types:

1. shallow or deep

... 4. Rectangular

5. Trapezoidal

6. Triangular

2. Nearly vertical or gradually sloping side.

157

Page 169: George Salvan Architectural Utilities 1 Plumbing and Sanitary

158

The materials could also be any of these:

1. porcelain 3. enameled cast iron

2. formed steel 4. vitreous china

Another types is the molded one-piece lavatory with an integral countertop having the tollow­ing varieties.

1. Built-In installation Self-rim­ming- the lavatory fittings are installed througl1'1! hole drilled at the counter top.

2. Fitting ledge installation self rimming- the lavatory fittings are installed in a hole provided within the lavatory itself.

3. Under the Counter-the lava­tory is placed below the built-in counter top.

Page 170: George Salvan Architectural Utilities 1 Plumbing and Sanitary

FAUCET

TYPES:

1. Washer-type faucet

2. Cartridge- faucet

3. Diaphragm faucet

pop JJ p .>TOPPER

~OM6JNA i10N

SEPARATE FOR 13UIL T IN

t:OJJNTE.RS

AN6LE. VALVE/ SUPPLY PIPE ASSEMSl.Y

LAVATORY FITTINGS (millimeters) ~ LAVA lORY SUPP1. Y ASSEM6LY.

t..l - IOmm A'fltjt IQI~. - Whffl ttaNJ ...

~ P.O PUJG WITH CH.A\ IN AND RUBBeR STOPPER CHFI'OME PLATED F"INISH.

P TRAP ASSEMBLY 3L mm P 1'21\P WITf-t

LLEANOUT

IYI • ln~ 10 mm M.l~ ntREA.DeP .

• ESeutdl£on A..elU­~ lu~ ns.tr.

159

Page 171: George Salvan Architectural Utilities 1 Plumbing and Sanitary

160

PULL UP

ORA IN PLUN~ER ANO l.EVER A$~MBLY

HOW A TYPICAL LAVATORY

TO CLOSE DAAIN

Fa'· UP ,..._ ORAlN

BOOY

WJTH A POP UP OMJN or.eRA115.

HOW A TYPICAL LAVATORY FAUCET WITH POP-UP DRAlN OA!RA~$. THE LSFT COUPLING ATTACHEDTO~E PIVOT ROD MUST 5E l.OOSENeD TO RE:MOVe THE S~R.

TYPES a- WALL.·~

Page 172: George Salvan Architectural Utilities 1 Plumbing and Sanitary

CARMELA f'F-()()10

Wall-hung lavatory with fitting ledge for 102 or 204 holes or with PF 9671 Floor pe­destal or Trap cover

CARMELA PF-()011

Recommended for Expensive suites Master's Toilet

Philstimdard Saniwares Avalon

161

Page 173: George Salvan Architectural Utilities 1 Plumbing and Sanitary

162

MELISSA LAV. Model PF 1008

Self rimming Oval shaped Lav. with front Overflow for bu11t-in installation.

. 50~

Recommended for Master's Toilet Hotel Rooms Lobby Toilets

Philstandard Ovalyn Avalon

Saniwares Mellissa Katrina

Page 174: George Salvan Architectural Utilities 1 Plumbing and Sanitary

· SOB rr4.

\

! I h:z;o---.f ~3-4-.S--Jj"

SABRINA Model PF- 1005

Wall-hung lavatory with rear Overflow and cast -in soap dishes pocket hanger and in-

tegral China brackets.

l I

i i

~

DIANA Model 1006 Wall-Hung lavatory

Recommended for Boy's Room - Sabrina G1rl' s Room - Diana Philstandard - Saniwares New Comrade - Sabrina Copacabana - Diana

163

Page 175: George Salvan Architectural Utilities 1 Plumbing and Sanitary

164

VENTURA PF 1002

Wall-hung lavatory with rear Overflow and cast in soap dishes- pocket hanger w ith integral China brackets

Recommended for Guest Rooms Other Rooms Low budget toilets

SYLVANA PF 1003 Same specifications as Ventura.

Philstandard - Saniwares Laverne American

-Ventura -Sylvana

Page 176: George Salvan Architectural Utilities 1 Plumbing and Sanitary

f 0

0 © ~

REGINA Model PF 1007

Wall-hung Lavatory with Minor back skirt hanger and 10 mm Chain stay hole.

Recommended tor low budgeted rooms

() U)

Philstandard Granada

* (,8

'

Saniwares REGINA

165 .

Page 177: George Salvan Architectural Utilities 1 Plumbing and Sanitary

166

BIDET

A fixtures that appears like a water closet, since a person sits down on it. But it is designed as a combination lavatory which can plug the drain and collect Hot and Cold water, with an inverted water sprayer to clean the most delicate and well-guarded parts of the body.

Suitable for Expensive Master;s Toilet

CONTESSA PF 5106 FLUSHING RIM AND SPRAY

Philstandard - Luxette Saniwares - Contessa

Page 178: George Salvan Architectural Utilities 1 Plumbing and Sanitary

I

COMMODORE PF 6600

URINAL

WaU-hung washout Urinal with flushing rim and integral trap - 19 mm0 top spud.

0

r--~ I I I

ADMIRAL PF 6610 Wall-hung washout urinal with extended shields and integral flush spreader concealed wall-hanger pockets 19 mm0 top spud.

Philstandard - Saniwares Washbrook - Admiral Mural - Commodore

For Men's Toilet Suitahle for Hotels and Offices.

1G7

Page 179: George Salvan Architectural Utilities 1 Plumbing and Sanitary

BATHTUBS

Tubs are now designed not only for one person but large enough to accomodate couple bathing together. Some one-person bath tubs are equipped with seats, shelves for soap and shampoo with non-skid surfaces. Others have built-in water pressure pipes and sprayers for soothing the muscle pains.

NIPPLE. FOR SPRAY ,\-lo>E CONNECT10N

STUD

RUBBER -71 GAS.KJ:T.

9/1" /e L.~ NUT

168

,_? l:.LOSED OPeN

6~ STOP FOR Pf..lJ6 PROPS TO C.L05E DRAIN

~TRAINE~

~ c::.o PPISR A~PTCR "-+--1~ G.OPPF..R EL.BO\N

~-+-,ri'--~U M TRAP

TYPICAL TUB FIITINGS

Page 180: George Salvan Architectural Utilities 1 Plumbing and Sanitary

SHOWER VALVES, HEADS AND TUB FIXTURE ARRANGEMENTS

DlVERTER

, l

II ,, II I II II I I 1

I

E:JECT~ TeE

~WINe~:::$~~ SPOUT ~

I

~) I I

I I I I , I I I I

I I

I I I I I I I I I : I

k1

,-----l ~~:o=; 'u~,o~ sa._ce_R+---lo.~ 'T: ~-

, l I 1 I •- .J I I 1 I

~ -•;r,-.~

rr:J TUB

u;;r--Ottt::RA.OW

PLU6

169

Page 181: George Salvan Architectural Utilities 1 Plumbing and Sanitary

F l t-llSHEO WALL.

i I

~--------------------~~ 'I ------ -ti ! ' .......

~--· 148!3

1 -~'s~~~'~---------1- ·------

t 2.04r

0 0 ------:fL. IOZ

170

TII...E..S: iY j OTHE.RS

:..: ~ ~ _· :.: .:_ .. :..._: . .:._ .. . .. .

ROU6H FLOOR

Page 182: George Salvan Architectural Utilities 1 Plumbing and Sanitary

BATHROOM BASICS

SOAP HOLDER

·r=:rRs ·T AID

MEDICINE CABINET

ROLL PAPER HOLDER

TOWEL RAIL BRACKET

cs,___---2J SHOWER CURTAIN ROD

TOOTH BRUSH

AND TUMBLER HOLDER

171

Page 183: George Salvan Architectural Utilities 1 Plumbing and Sanitary

RE5lDe.NTlAL SlttKS

I L., ,

w 0

~

w 0 0

172

STAfNU!SS STfi!L . MIN. J.tA)(

L IIYz" 33"

w 13" zz_I 0 sf2., 12"

ENAMELZD C'AST lib~&

MIN ~X

L.. IZ" 3/)11

w 12' Zl¥

D r,• e''

R:>RCELASN I!AAMI!LEO STEEL

L w D

STAHU!SS &Tei!L MIN MAX

L 28" 'i". w I(,'' 2211

D 5'' 1 o"

ENAMe..eD GASr IRON

MIN MAX L 32 11 421

w 20 11 2~" D ",, .. Qll

R)R(l!:LAIN !!NAMEL..I!D STEEL

MIN MAX

'- 3211 32. 11

w z,n .21"

0 1" .eYe"

'

Page 184: George Salvan Architectural Utilities 1 Plumbing and Sanitary

~~+~-------------~--------------~t­r ,.._..-----..

w

0 0 0

0 0 0

TRIPJ...e 80\NL..

SiNGLE BOWL ~DWNIIQtftD ( RtGH r Ol'f Lf!FT")

STAINLS.SS STEEL.

MIN MAX L 4311 Si'' w Z2" D 5" 7JI4J(

STAINU:SS STeEL MIN M.o\)(

L 3 }It' 3l.Yl' w 31~ '52 1.1 f 0 71 7~"

STAlNL..ESS STEEL.

MIN MAX L... 33H 4f9jl'

w Zl" 25'' D 7A 7}2"

~ELEOCAST IRON

MIN MA)C

L- 4211 7'Z"

w toll t:5"-

0 ~II ~~~

173

Page 185: George Salvan Architectural Utilities 1 Plumbing and Sanitary

174

,, ""'' t1 L..O~W

i t ~~==========~~~ I I

' I I J

I

'

M IN.

I I '------ ------------ __ ) __ ~ SINK W•TH JIILAT RIM

I I

w

1 M IN ..

l""------ .... · --- ... -- __ __ ,'--~

t

' • •

w

\ I

'--- ----------- -----··----+

SINK WITH ~J.EDQ!. 1\NO Mac:&PLASH.

"

Page 186: George Salvan Architectural Utilities 1 Plumbing and Sanitary

L

0 0

DOUBLE BOWL. tt DRAJNBCARD

STAINLESS STEfL ENAMELED ~T JRQN

Ml~ MAX r MrN MAX L ~(/' 1211 ~ L .5tf 7211

w l1 1 zs• i w i 2+11 1.5"

D .,,, 7 Yz" I 0 (,'' B"

l.

ooo

0 0 .._______0

STAINLESS STEEL

MIN MAX l- 84'1 w z.s'' 0 1~·

175

Page 187: George Salvan Architectural Utilities 1 Plumbing and Sanitary

176

L­·-.r--...;;;;._---1-r---------.jl ~

0 0 0

0 w

'"------~-f.-

,_ ___________________ ,_~

= 1 _____ 0 J w

0 0 0

0 0

M'N. ~ L S+' 72. w 21. 2.5-0 ~ .. gn

STAINLeSS STI!fl ~IN M,.4)(

L lift.'/ I"~' w 14" 20X." D "'' ~

Page 188: George Salvan Architectural Utilities 1 Plumbing and Sanitary
Page 189: George Salvan Architectural Utilities 1 Plumbing and Sanitary

MOSQUITOES-CONTROL METHODS

CONTROL METHODS AGAINST THE MOSQUITO

Malaria control involves a complex organization requiring the services of physicians who are malariologists, entomologists who obtain information of the vectors and their habits, public­health nurses who make contacts with the infected persons, and the public in general, is re­quired. Not the least important is the work of the sanitary engineer and sanitarian in control-ling the mosquito vector. ...

Mosquito control is applied against the aquatic forms by means of drainage, filling, and the use of oil and other Larvicidal agents. These procedures may be grouped under the term "Larvicidal" methods. Other methods, which we may call "adulticidal" methods, are directed against the mature winged mosquito and include the use of sprays under various circumstances and mosquito proofing of occupied buildings.

LARVICIDAL METHODS

THE FIELD FOR DRAINAGE

178

Drainage improvement includes installation of open ditches, subsurface drains, vertical drains, filling low areas, the cleaning and draining of natural streams, and control of im­pounding reservoirs. In tidal areas it may also include construction of dykes and tide gates. Since the malaria mosquito breeds only in waters containing vegetation, it is obvious that elimination of such waters by drainage or otherwise will prevent the production of anophelines. Drainage frequently makes it possible to eliminate permanently some large breeding area as a swamp or many small temporary or permanent pools. However, drainage is costly and therefore it cannot be justified unless it will protect a large number of people.

DITCHING

The first step in drainage is to make a tentative layout of the system of ditches. If the pro· blem is to drain a swampy area formed by seepage at the bottom of a hill, the main ditch should parallel the bottom of the hill and the deep enough to intersect all the ground-water flow before it appears on the ground surface. Flat swampy areas and ponds will require a main ditch leading from the deepest point of the area. The main ditch should always be dug first and drainage allowed to occur. After a few days the lateral ditches may be dug, and it may be discovered that not so m~ny will be required as was first supposed. Frequently they will be smaller ditches connecting holes with the main ditch.

Page 190: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Ditches should have clean sides sloped as steeply as the earth or other material will permit. The bottoms should be as narrow as possible to confine the stream. Wide ditches are unde­sirable as they permit pools of water to stand and breed mosquitoes. Where a very wide ditch is necessary, this danger may be eliminated by constructing a small ditch in the bottom of the large one so that the small flows wil be concentrated and kept moving. Sharp bends should be avoided when making changes of difecUon, and branch ditches should join the main ditch at acute angles or with a curve. The grade of an unlined ditch should be great enough to give a cleaning velocity but not so great that erosion will occur. A grade or fall of 0.05 foot per 100 feet is the minimum (approx. 1.5 em or .015 m per 31 m) for an unlined ditch, while 0.6 to 0.8 foot per 100 feet is the maximum (approx. 0.18 m to 0.24 m or 24 em per 31 m is the maximum}.

Side slopes of earth ditches are usually 1 horizontal to 1 venicat in firm loam or sand clay. In soft loose soil it should be 1.5 horizontal to 1 vertical. In hard rocky material it may be steeper than 1 to 1.

FILliNG

Areas that cannot be drained can sometimes be economically and adequately kept from breeding mosquitoes by filling. This may be done with shovels if the hole is small, with scrapers if the hole is larger and if there is earth available nearby, Large fills along water fronts

• may be done with hydraulic dredges. In some cases it is possible to fill low areas on the out­skirts of towns with rubbish. This, if properly done, is satisfactory, but care should be taken that cans, buckets, and other containers are covered with earth, ashes, cinders, or sawdust so that they will not hold water and breed mosquitoes or cause other nuisances.

Sanitary fill differs from ordinary dumping in that the material is adequately covered with earth at the end of the working day.

If possible, sites should be chosen so that the prevailing winds will carry occasional odors away from built-up areas. Generally it is believed that odors will be unnoticeable more than 300 feet from the dumping area. Low areas such as ravines, abandoned borrow pits, and swamps, are particulary suitable provided the fill will not obstruct natural surface drainage. Springs are also to be avoided. Water that d~ains through the fill will. of course, show con­siderable pollution and effect adversely near-by bathing beaches and water courses.

OIL AS A LARVICIDE

The larvae and pupae of the common varieties of mosquitoes are air breathers and must come to the water surface to renew their air supply by means of their breathing tubes. Oil when applied to the water surface forms a film over the water surface, and some of it will enter the breathing tubes. The oils used have a poisoning effect rather than mere clogging or choking. Experiments have shown that if the larvae once obtain a dose of kerosene and then are removed to clear water they will die in about 15 minutes, practically the same length of time as reQuired to kill those remaining beneath a kerosene film. With the heavier crude oils 3 hours may be required before· the larvae die. Pupae seem to be somewhat more resis­tant than larvae.

179

Page 191: George Salvan Architectural Utilities 1 Plumbing and Sanitary

OILS UIED

KetOMNA Is a vttV tlpid destrovor of thelitvat. It alto has the advantage of good spreading tbilltv ovet thlt watttt surface, ·Itt dllddvanttgel 1r1 higher COlt compared with some other olli; QUIOlt Wflpotatlon from tnt 8utfaoe t)f the wttet, particularly In hot weather; end a lack of cotor which makM It dlffloult for tht oiler to be certain that a complete film has been pllU)IKJ ~ thO Wltet.

Ctude lind fuol oils vary eomewhl!t In toxic: power 1nd tpreading ability. The latter quality is u~tually the governing factor. Proper spr.adlng can be obtained by diluting tha heavy oil with a suffioltnt amount of ketosette. Tlw crude oils have the advantage of being easily inspected for continuous film and in addition Will remain On the water surface for several days thereby Increasing the Intervals required betWeen application&.

It Is oftlfn l)ostlble to obtain from ger1ges west• oil Which has been drained from crankcases and 11 therefore a mixture of lubri~ting oil, kerosene and gasoline. Its efficiency is not so great as that of the lighter crude oils, it being somewhat deficient in spreading and toxic power. Objections are sometimes raised to the oiling of some waters, such as ornamental ponds and areas where fish and water fowl are raised or encouraged to congregate.

APPLICATION

180

Oil is applied by means of spraying apparatus that will produce an even thin film over the water surface. The knapsack spray can is widely used. It holds about 5 gallons of oil and is strapped to the back of the laborer. It has a pump located in the can which is operated by a lever to force the oil through a flexible hose to a nozzle.

The amount of oil require will depend upon conditions. If the oil spreads well and there are no obstractions, it is possible to cover a 1/2 hectare of water surface with 10 gallons (38 liters) of oil, but in actual practice losses cause by vegetation and uneven application figures of 20 to 60 gallons of oil (76 to 2281iters) of oil per 1/2 hectare of water surface covered. The amount of oil applied by one man in an 8-hour day will also be variable but should be within the limits of 40 to 80 gallons (152 to 3041iters) per day with knapsack sprayers.

In large bodies of water, oiling is necessary· only along the edge or in patches of vegetation where the larvae are protected from wave action and natural enemies. In ornamental pools where there may be objection to use of heavy oils, kerosene will be useful and will not be in­jurious to vegetation. Oiling should be done at close enough intervals to prevent emergence of a crop of mosquitos.

Page 192: George Salvan Architectural Utilities 1 Plumbing and Sanitary

RODENT CONTROL

RODENTS AND PUBLIC HEALTH

Rats and other rodents are I"8S8fYYirs « • number of important diaeases. End6n'llc or Murine Typhus fever and plaque are ~r•••.a.d from domestic rats and other rodent• to man by fleas. Ratbite f ever is transnctl8d bv baa ot rata and mice to man. Well's dis&ald ot infectious jaundice may be contracted by eecmg food contaminated by the urine of rats.

GENERAL METHODS OF CONTROL

The chief means of rodent control are through I'M\nl enemies, by poiSoning, trapping, fumigation, viruses, ratproofing, and elimination of food, if poasible coordinated Into organized community campaigns. To these has recet•ttv been added the use of DDT as a means of killing the rats f leas which are the vehicles oM infection. This, however, Is not ro­dent control. Natural enemies of rodents, among which mB'f be counted cats, dogs, snakes, and birds of prey, m ice, will not usually p~ove suffic:ienttr effective to exterminate these pests from a given area without human aid.

1. POISONING

In general, poison has proved one of the most effective methods of destroying rats, where it can be used without danger to man or domestic animals. The poisons commonly used in the past were arsenic, strychnine, phosphorus, red squill and barium carbonate. Of these f ive poisons, powdered barium carbonate is generally found the most satisfactory for ord inary use. It is odorless and tasteless, and its action is slow enough to allow rats to leave a building in search of water before they die.

Meats, vegetables, fruits and cereals or meal are recommended as baits, and are mixed with barium carbonate in about the proportion of 1 part poison to 4 parts of the bait, divided into portions the size of a walnut. Untaken baits should be removed the following morning, as they will sour and cause an acid condition which results in a taste so bitter than the rats will not take them.

2. TRAPPING

This is an effective method of freeing premises from rats when properly done. Among the many traps on the market advertised for this purpose, the simple inexpensive "snap" or " guillotine" trap is usually found best adapted for all - round usage. Cage traps are some­times used if it is desired to capture rats alive for inspectionaf purposes in regard to their fleas. Among the baits found effective for use in traps are cheese, bread, raw and cooked meats, fish, apples or vegetables. Traps should be set in runways, behind boxes and cans, along walts, and in any sheltered ~where rat is liketv to enter in order to hide. Traps plac­ed in the open are not generalty so effectNe as thole placed in the manner mentioned above, as rats usually seek sheltered places wtae conc:aalment is easy. The tfaps may be concealed

· or camouflaged with leaves, ~of grass or hay, or scraps of paper. For good restuls ·plenty. of traps are necessary. A dozen or more trapS for a heavily infested dwelling and 50 to

181

Page 193: George Salvan Architectural Utilities 1 Plumbing and Sanitary

182

100 or more for a large building or farm. The trapping campaign must be short and decisive, or the rats become wary and avoid the traps.

3. FUMIGATION

This is the application of disinfectants in gaseous form, although the meaning of the term has been extended to include use of gas as an insecticide. Fumigation affects surfaces only and will not exercise any germicidal effect within fabrics. For buildings, the safest and most effective method in general usage is fumigation by sulphur dioxide. A drawback to the use of fumigants in buildings is the possibility of unpleasant odors resulting from dead rats in the walls.

Approximately fumigation is the use of calcium cyanide, which is sold under the name of Cyanogas. When exposed for the atmosphere it slowly gives off hydrocyanic acid gas which will spread through any enclosed space. The poison can be obtained in granular or powdered form, and it can be sprayed into burrows by means of a sprayer. Old vacant houses have been deratted by using an average of about 5 pounds per house. Houses so treated should be tightly closed, with door and window cracks sealed with paper, for at least 4 hours. Doors and windows may then be opened without danger to neighbors, but the house should not be occupied for 24 hours, and bedding, clothing, etc. should be aired. During actual applications the workman should use a gas mask.

4. RATPROOFING

Rats tend to breed and increase in numbers up to the food supply available for them. Trapp­ing and other measures, therefore, unless carried on continuously, are of only temporary benefit unless the rats are starved out by being excluded from food. The rat proofing of buildings is, therefore, the most effective means of rat control. It is a simple matter to make buildings of rat proof construction and an ordinance requiring such construction, properly enforced, will. in the course of time, result in a practi~ally rat-free city.

Buildings in which food is handled or stored should have floors of rat proof material or of concrete not less than 8 em. or 3 inches thick, in addition to the top dre~ing and the floor must rest directly upon the ground or filling of earth, cinders, etc. The floor must be sealed into walls surrounding it, and the walls must be of ratproof material or of concrete, stove, or brick laid in cement mortar, and not less than 6 inches thick. To prevent burrowing beneath, this wall must extend at least 60 em. into the ground to a horizontal offset of 30 em or 12 in­ches, and must extend at least 0.30 em or 1 foot above the floor.

Other buildings lacking cellars must be rat proofed by elevating on pillars at least 45 em or 18 inches above the ground and the ground surface beneath kept free of rubbish or other rat­harboring material or a curtain wall may b~ constructed at least 10 em or 4 inches thick and extending at least 0.60 m or 2 feet into the ground, with a 30 em. or 12 inch horizontal offset, at the margin of the ground area of the building such a wall may have ventilation openings with gratings having a 1 em or 3/8 inch openings or hardware cloth of 1 em or 3/8 inch open­ings with wire not less than 12 gauge thickness.

In all classes of buildings all unnecessary spaces and holes, ventilators, and openings other than doors and windows must be closed. Spaces between inner and outer walls are required to be closed with cement mortar or ratproof material, and such closing material must extend for at least 30 em or 1 foot above the floor level. Cellar and basement walls must also be of materials as specified above but not less than 23 em or 9 inches thick with no openings ex­cept for doors, windows, ventilators, or plumbing, and these must be protected as specified below. Cellar and basement floors must be of the specified wall material, be at least 3 inc.hes thick, and be sealed to the walls.

Page 194: George Salvan Architectural Utilities 1 Plumbing and Sanitary

~'----r-......----------VElz."fiCAL. SlUDS ..,...._.---#-~-------INNER. ~L

--~---------aASE ~ ~------F~I~

,.--- - - f'L.Q:)R. j;)IST

~-- --~PlATE

.----PIER

In this figure, when buildings are supported on posts or piers, they are made ratproof by rais­ing them 0.45 m or 18 inches or more above ground l.evel and by placing concrete between inner and outer walls above sill.

5. RAT STOPPAGE

This is a method applicable to all buildings, especially old ones. It is a modified method of the orthodox ratproofing procedu re. It consists of closing all the openings of the outside walls and the roof of a building or block of buildings through which rats may enter.

It is accomplished in part by sealing with bricks or Portland cement mortar all holes or cracks in foundation, walls, or around pipes passing through walls. Holes in wood floors or walls are stopped with sheet metal. The lower edges of doors, the door casings, and thresholds are covered with 24-gauge gatvanized sheet iron. Preferably this should be " channeled" or bent around the edge of the door. The channels or plates at the vertical edges should extend at least 15 em or 6 inches above the door bottom. Cellar and basement windows and other w indows or ventilators, both cellar and roof, allowing access by rats from the ground, roof, or trees are protected with galvaniz~ 16-gauge metal screen of 1 em or 3/ 8-inch or smaller mesh securely fastened.

183

Page 195: George Salvan Architectural Utilities 1 Plumbing and Sanitary

·-~j.SIDI~ (WQDO)

,--------~ I~SlDE ~L.L OF HOUSE

.r------iv EA.TlGAL. WDOO .$'llJD

. ME~OOS Or £XCLU01Nw RA-rs FROM WAU..S

184

.-.f1~i--~---i~O SToP --~BAse eaA~

g~~~~;;;!l:=t}----~MiiiTAL PLATE

~~~~===:::::...:...-l:s-------'FL.OOI2lNt; ~~-----IFl..DC)R .J01a"

~~~~~~~~~~~

- -----1FOUI-.IMT1/>W

Metal guards or other means are used to prevent rats from climbing pipes, rain spouts, or wires and using them as a means of entrance. Sheet aluminum is not satisfactory for stop­ping rats as they are able to gnaw through it. Attention should be given to points where plumbing and other pipes pass through walls. If openings have been left, they should be fill­ed with good concrete mortar or covered with metal plates. If the foundations are less than 60 em or 24 inches deep, a curtain wall is installed outside and in contact with the original ..._.,an to a depth of at least 60 em or 24-inches with a 12-inch (0.30) horizontal extension as shown in the figures below. The curtain wall may be of good concrete, 3 to 4 inches thick (0.08 to 0.10 ml or of 24-gauge galvanized metal.

Page 196: George Salvan Architectural Utilities 1 Plumbing and Sanitary

r-•

:

! , .. .:. · .. .. ·' : ~'

. .:._

'

. ~

' ~ "' " . '9

300 too

• •

~ - - TA12. JoiNT ...

---·- - CONCJ:2.EIE Ft.a::>R.

·• ~ §!

I II

Floor and Foundation construction of a new building without a basement. This type of construction should be use~ for building where food will be stored.

__ CoNCI:tETE FLOOR. t .SL.AB ON FILL)

Old building made ratproof by placing cur­tain walt around old foundation.

185

Page 197: George Salvan Architectural Utilities 1 Plumbing and Sanitary

After all the vents have been stopped, trapping, poisoning, or fumigation should be used to kill the rats already within the building. These measures should proceed for about 6 weeks and should be accompanied by precautions to exclude rats from food inside the building. Maintenance of the rat stoppages will be required oUhey are to retain their efficiency.

PEST CONTROL

What You Should Know (by Carol Duval, source, Reader's Digest 1988)

186

Insect pests have plagued mankind since the dawn of history. Until recently, efforts to con­trol them met with little success. Most of the insecticides used liberally only a generation ago, such as arsenic and cyanide, endangered the people and pets they were intended to protect. More recently, however, newly developed insecticides and increased scientific knowledge of pest physiology and behavior have enabled us to control pests much more ef­fectively with less-toxic chemicals. Many modern insecticides are safe for householders to use. Here are some hints to get the most out of the products you choose. But remember, all pesticides can be dangerous. The key to safety is correct use. Always carefully read and follow the instructions on the label.

ANTS

Although they do little damage, ants can carry disease, and some species give painful bites or stings. For effective tong-term control, first locate their nesting sites by following ant trails. Saturate the nests, usually found in the garden, with liquid insecti~ides containing chlorpyrifos or diazinon. Use a surface spray on all paths the ants can use to reach their food sources. Ants usually enter over windowsills, door jambs, under skirting boards or through cracks and crevices in walls. Treating only the paths already in use isn't sufficient, as ants will quickly find new routes. Insecticidal dusts can be used instead near electric wiring or in inaccessible spots, such as behind the fridge or in the cavities of walls.

To prevent reinfestation, remove all the food sources you can. Wipe kitchen benches and sweep floors regularly, wash dishes and utensils immediately after use, and dispose of opeO­ed soft-drink cans.

Page 198: George Salvan Architectural Utilities 1 Plumbing and Sanitary

SILVERFISH

These nocturnal animals eat almost anvthing that contains glue, paste. starch or sugar, in­cluding fabrics and paper. They can live in any dark and relatively undisturbed spot, but are ~articularly common in ceiling cavities. Store books and papers in light. airy conditions to prevent damage. If you discover a silverfish infestation. spray surfaces over which the in­sects travel, such as wardrobe sides and bookcases. Ousts can be used in ceiling voids and in places where wet surface sprays might cause damage, such as around valuable books. Space ·sprays can be used as a backup treatment. But remember that inhaling such sprays can be dangerous; leave the house for four hours after use.

_ : ·~-~ .. / ,/ I ··'. ' ·, ,

.···

I

BEDBUGS

Although they do not damage household goods or carry serious diseases, bedbugs can keep you awake all night and itchy all day. To eradicate these pests, first try to discover their davtime hiding places. The likeliest spots are in the seams and under the buttons of mat­tresses. but they also inhabit cracks and crevices in skirting boards and architraves, fur­niture, picture frames and shelves. Thoroughly clean and vaccum infested rooms, then app­ly a surface spray to all harborage areas, and around bed frames, skirting boards and fur­niture to prevent further infestation. If the problem is severe. spray mattresses with a pyrethrin-based insecticide, but air them for at least four hours before reuse. For fast. effec­tive results, use a space spray as well. Before spraying. open all wardrobe doors and remove mattresses from beds to maximize exposure to the spray.

187

Page 199: George Salvan Architectural Utilities 1 Plumbing and Sanitary

COCKROACHES

W8

Only a few of the couple. of thousand cockroach species infest homes. The commonest pest varieties in Asia are the German cockroach (pale brown, up to 2/3 Inch long) and the American cockroach (a reddish-brown insect between one and two inches long}. All species hide by day in warm, dark spots. The German cockroach can often be found beneath the sink, behind the stove, fridge, dishwasher and near the hot-water heater. The American spe­cies usually prefers subfloor areas, grease traps, drains and rubbish dumps. At night, cock­roaches seek food and water, carrying germs from garbage and sewage to food.

Perhaps the most despised of household pests, cockroaches are also among--the hardest to control. Absolute cleanliness is essential in cockroach prevention and eradication. Clean all dirty dishes and utensils immediately after meals (don't forget pets' dishes); store food in sealed containers or the refrigerator; keep garbage in a tightly closed bin; r&gu Ia rly wipe ben­ches, cupboard shelves and the spaces near the stove and fridge to remove food particles and grease.

The most effective insecticides against cockroaches are surface sprays and dusts, used where the insects hide or walk. Before using surface sprays inside cupboards, remove all food and utensils; never spray bench tops or areas where food is prepared. In rarely disturb­ed spots or spaces where spraying is awkward, such as inside wall cavities, use a light ap­plication of dust. Cockroach baits and traps are of limited use.

Cockroaches are sensitive to the smell of many insecticides, so don't use more than there­commended amounts. The pests will avoid treated areas if alternatives are available, so make sure you treat all possible hiding paces. Keeping treated areas free of dirt and grease will also maximize the amount of poison the cockroaches pick up. If you don't follow these rules, a few cockroaches are likely to survive your attacks; their offspring may be more resis­tant genetically to the chemicals you used, and thus harder than ever to eradicate. To pre­vent reinfestation, fill in all cracks and crevices, particularly in warm places such as around hot-water pipes.

CLOTHES MOTHS

Clothes moths lay their eggs in dark, undisturbed areas on clothing, carpets and blankets. Since the developing larvae prefer materials of animal origin such as wool, silk and fur, in­creasing use of synthetic materials has lessened the damage these moths cause. However, many modern fabrics contain at least a proportion of animal fibers or carry residues of perspiration or spilled food, and are thus susceptible to attack.

Page 200: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Moths will not attack clothes regularly exposed to light and air. To safeguard garmer~ts you won't wear for months, clean them thoroughly and then wrap them tightly in plastic. Clothing already infested should be placed in a tightly sealed black plastic bag and left in direct sunlight for about three hours to kill any larvae. For further protection, use an insec­ticide that gives off toxic vapors such as naphthalene balls or flakes or dichlorvos-im­pregnated resin strips. Hang mothball containers or pest strips in cupboards where the vapors will build up and penetrate atl stored articles.

To ensure complete eradication, vacuum all carpets and apply surface spray to all possible feeding sites, such as cupboards, carpets and the folds of upholstery.

CARPET BEETLES

• Like clothes moths, these breed in quiet, protected places among clothing, beneath fur­niture, around carpet edges and in the crevices of upholstery. The larvae eat materials of animal origin and seeds, pollen, nectar, grains and cereals, leaving sandlike droppings, and small castoff skins.

To avoid carpet-beetle infestation, protect furniture, stored clothing and blankets as for clothes moths. If carpet beetles infest rugs or carpets, shake or vacuum the affected items to remove eggs and spray with a surface insecticide. To check that the insecticide won't stain your carpet, first spray a spot normally hidden from view. Also apply insecticide to cracks and cervices along skirting boards, under furniture and inside cupboards. Regularly check all stored food, disposing of any that is infested.

FLEAS

Fleas in a house usually arrive on a dog or cat. They lay their eggs in the animal's fur or bed­ding. The eggs hatch out as larvae, which feed on organic debris such as dead skin flakes in carpets or between floorboards. When the larvae grow into adult fleas, they hop back on to your pet, or infest places like the creases of upholstery. From here they go to work on you.

1H9

Page 201: George Salvan Architectural Utilities 1 Plumbing and Sanitary

The key to flea eradication is control of the larvae. First, thoroughly vacuum your carpet to remove as many· eggs as possible and to pull the pile upright so th~t insecticide can penetrate it fully. Vacuum your pet's bedding and places where it sleeps, then incinerate the vacuum dust and treat the vacuum bag with insecticidal spray. Vacuum or sweep and wash uncarpeted areas thoroughly. Next, treat all floors, soft furniture and the pet's bedding with a surface spray to destroy larvae. (Always spot-test to check that the spray won't stain.) Wash your pet with an anti-flea shampoo and, for long-term protection, attach an insec­ticidal collar. Regular sweeping and vacuuming should prevent reinfestation of fleas.

DO PESTICIDES POISON PEOPLE?

190

Any substance that will kill an insect can be dangerous to humans. In sufficient quantity, some can be lethal. When properly used, however, pesticides are not dangerous. Important safety rules to remember are:

1. Follow the directions included with the product you have chosen.

2. If you use a spray, cover all food utensils as well as surfaces where food is prepared· or served.

3. If you spray or dust for any length of time, wear protective gloves. Always make sure you wash thoroughly after using any insecticide.

PROFESSIONAL PEST CONTROL

If you find you can't control pests yourself, consult the experts. How can you tell if you're getting skilled service? Says Stephen K. H. lp, deputY managing director of Flick Pest Con· trol Limited and president of the Hong Kong Pest Control Association: "A good pest-contol serviceman does a thorough survey of the client's premises, which may include the roof, ceiling and every room so that he will know where and how to apply the chemicals." As well as chemical treatments, a reputable company should offer what professionals call "in­tegrated pest management" - a program including hygiene hints, pest-proofing (locating and mending pest-entry points, such as holes in the roof and gaps around pipes), furniture and carpet treatment protection and follow-up services. Ask whether these services are in­cluded in the quoted price. If they are, you should get the treatment best suited to your re­quirements- as. well as your money's woah.

Page 202: George Salvan Architectural Utilities 1 Plumbing and Sanitary

APPENDICES:

Page 203: George Salvan Architectural Utilities 1 Plumbing and Sanitary

_METRICATION

120 2

212~ LOOt BOILS

90

80

70

f ohrenheit l 40

50

40

30

20

10

·slF WATER f reezes

0°C

-10

-20

-3o

40 Temp. at -40°F and -40°C: 15 the same

-5o

·so

CONVERSION, FAHRENHEIT DEGREES TO CELSIUS DEGREES.

FORMULA

9 )( °C ------- + 32 5

oc = 5 (°F - 32) ---g---

Page 204: George Salvan Architectural Utilities 1 Plumbing and Sanitary

RULES AND GUIDES FOR USAGE OF Sl

EXAMPLES OF Sl DERIVED UNITS EXPRESSED IN TERMS OF THE BASE UNITS AND OTHER UN.ITS

Expressed in Expressed in Quantity Description terms of terms of Base or

other Units Supplementary Units

area square metre m2

volume cubic metre m3

speed-linear metre per second m/s

-angular radian per second rad/s

acceleration metre per -Linear second

squared m/s2

-angular radian per second squared rad/ s2

wave number • 1 per metre m-1

density, mass kilogram per density cubic metre kg/ m3

concentration mole per cubic (amount of metre substance) mol / m3

specific cubic metre volume per kilogram m3/kg

luminance candela per square metre cd/ m2

dynamic pascal second viscosity Pa.s m-1.kg.s-2

moment of force newton metre N.m m2.kg.s - 2

surface tension newton per metre N/m kg.s- 2

heat flux water per density, square 1./>J® m2 kg.s- 2 irradiance metre

heat capacity, joule per entropy kelvin J / K m2.kg.s- 2. K -1

specific heat joule per capacity, kilogram J/(kg.K) m2.kg.s- 2.K-1 specific kelvin entropy

specific energy joule per kilogram J/kg m2.s- 2

19:~

Page 205: George Salvan Architectural Utilities 1 Plumbing and Sanitary

194

thermal conductivity

energy density

electric field strength

electric charge density

electric flux density

permittivity

current density

magnetic field strength

permeability

solar energy

molar entropy solar heat capacity

• radiant intensity

watt per metre kelvin

Joule per cubic metre

Volet per metre

coulomb per cubic meter

coulomb per square metre

farad per metre

ampere per square metre

ampere per metre

henry per metre

Joule per mole

Joule per mole kelvin

watt per steradian

W/(m.K)

J/rrtJ

V/m

C/m3

Clm2

F/m

H/m

J/mol

J(moi.K)

W/sr

m.kg.s-3.K-1

m-l.kg.s-2

m.kg.s-3.A-1

m-l.s.A

m-2.s.A

m-l.kg. -1.S4.A2

A.m-2

A.mt

m.kg.s-2.A­

m2kg.s-2.mol-1

m2.kg.s-2.K -l.mol-1

m2.kg.s-3 .sr-1

* The wave number is the reciprocal of the wave length, expressed in metres, of an electromagnetic radiation.

NOTE: The values: of certain so-called dimension less quantities, such as ref­ractice: index, relative permeability or relative permeability are expressed by pure numbers.

Page 206: George Salvan Architectural Utilities 1 Plumbing and Sanitary

MOW TO CONVERT COMMON MEASUREMENTS FROM ENGLtSH TO METRIC UNITS

FOR ORDINARY USE

TO English Units Metric Units MEASURE TAKE THE NUMBER OF MULTIPLY BYl EQUALS THE NUMBER IN

Length inches (in) 25.4* millimetres (mm)2 inches (in) 2.54* centimetres (em) inches (in) 0.025 metres (m) feet (ft) 0 .. 305 metres (m) feet (ft) 30.48* centimeters (em) .. yards {yd) 0.914 metres (m) miles (mi) 1.009 kilometres (km)

Area square inches (in2) 6.45 square centimetres (cm2) square feet (ft2) 929.0 square centimeters (cm2) square feet (ft2) 0.093 square metres (m2) square yards (yd2) 0.84 square metres (m2) square miles (m2) 2.59 square kHornetres fkm2)

Volume cubic inches (in3) 16.39 cubic centimeters (cm3) (solids) cubic feet (ft3) 0.028 cubic metres (M3)

cubic yards (yci3) 0.765 cubic metres (m3)

Volume fluid ounces (fl.oz.) 29.57 millilitres (ml) Liquids) pints (pt) 0.47 litres (L)

u.s. quarts (gtl 0.95 litres (L) gallons (gal) 3.79 Litres (Ll

English fluid ounces (fl.oz.) 28.41 millilitres (mil pints (pt) 0.57 litres (l) quartz (qt) 1.14 litres (L) gallons (gal) 4.55 litres (L)

Mass or ounces (oz) 28.35 grams (g) Weight pounds (lb) 453.6 grams (g) A voir short tons (s.t.) 907.18 kilograms (kg) dupois (2000 lb) 0.907 tonnes (f) (16 oz - long tons (l. t.) 1,016.05 kilograms (kg)

1 lb) 1.016 tonnes (t)

Troy ounces loz) 31.104 grams (g)2 (12 troy ounces • pounds (lbs) 373.341 grams (g) 1 lb; for jewelers)

Tempera- degrees Fahrenheit (°F) 5/9 (after sub-degress Celsius (°C) ture

Time Same units are used in both the Metric and English systems: second (s), minute (min) and hour (hl.

Speed or miles per hour (mph) 1.609 kilometers per hour (km/hl Velocity feet per second (f/s) 0.305 metre per second (m/s)

knots 1

Frequency (Radio, cycle per second (c/s) hertz (hz) FM,AM, TV, etc.)

195

Page 207: George Salvan Architectural Utilities 1 Plumbing and Sanitary

19(}

Power

Electric Current

Energy

Force

Pressure or Stress

Density

horsepower (hpJ 0.746 kilowatt (kw)

ampere (A) (Some unit in both Metric and English systems)

British Thermal Unit 1.055 kilo joule (kjl (BTU)

calories, int'l table 4.187 joules (J) (cal. ITI

calories, thermo-chemicai 4.184 joules (J) leal.)

pound-force (lbf) 4.448 newton IN) kilogram-force. (kgf) 9.007 newton IN) ....

pound per square inch 6.895 kilo pascal (kPa) (psi)

pound per cubic inch 27.600 grams per cubic centimetre (lb/in3) (g'cm)

1 Last figure was. rounded out, for ordinary uses, except those ma.rked* which are exact.

2 The letter and figures enclosed in parentheses under this tolumn. are the symbols of the measurement units. Examples of use: 25.4 mm, 9m2, 32°C, 110 km/h, 7 g/<:m3.

Page 208: George Salvan Architectural Utilities 1 Plumbing and Sanitary

RULES AND GU,DES FOR USAG~ Of Sl

Conve~sion, ~able from En~lish to Met~ic Units:

LENGTH OR HEIG.HT

ft(') in(") =em ft (') in(") =em ft (') in{") ==em ft (') in( ") =em

1 1/8 0.3 4 40.6 3 2 99. 1 5 0 152.4 1/4 0.6 s· 43.2 3 '· 99 .. 1· 1 152.4 3/ 8 1.0 6 45.7 4 101.6 ,2 157.5 1/2 1.3 7- 48.3 5 104.1 3 160.0 5/8 1.6 8 50.8 6 106,7 4 162.6 3/4 1.9 . 9 . 53.3 7 109,1 5 165.1 7/8 2.2 10 .. 55.9 8 11 1.8 6 167.6

1 2.5 11 58.4 9 114.3 7 170.2 2 5. 1 2 0 61.0 10 116.8 8 -172.7 3 7.6 1 63.0 11 11-9.4 9 175.3 4 10.2 2 66.0 4 o. 12L9 10 177.8 5 12.7 3 68.6 1 124.5 11 180.3 6 15.2 4 71.1 2 127.0 6 0 182.9 7 17.8 5 73.7 3 129.5 1 185.4 8 20.3 6 76.2 4 132.1 2 188.0 9 22.9 · 7 78.7 5 134.6 3 190.5

10 25.4 8 81 .3 6 137.2 4 193.0 11 27.9 9 83.8 7 139.7 . 5 195.6 0 30.5 10 86.4 8 142.2. 6 198.1 1 33.0 11 88.9 9 144.8 7 200.7 2 35.6 3 .0 91 .4 10 147.3 8 203.2 3 38. 1 94.0 11 149.9 9 205.7

6 10 208.3 7 8 233.7 8 6 259.1 . 9 4 284.5 11 210.8 9 236.2 7 261 .6 5 284.5

7 0 213.4 10 238.8 . ·. . 8 264.2 6 289.6 1 2·15.9 11 241.3 9 266.7 7 292.1 2 218.4 8 0 243.8 10 269.2 · 8 294.6 3 221.0 1 246.4 n 271.8 . 9 297;2 4 223.5 2 248.9 9 0 .Z74.3 10 299.7 5 226.1 3. 251.5 1 276.9 11 302.3 6 228.6 4 254.0 2 279.4 10 0 304.8 7 231. 1 5 256.5 5 281.9

To find the equivalent of height, length, width or thickness in metric unit, convert the English units of feet (ftl and inches (in) to centimetric (em). The figure under the column "em" is the nearest metric equivalent of the corresponding figures under " ft" and " in". Thus, 5 ft . 4 in would be equivalent to 162.6 em or, rounded out, 163 em or 1.63 meters (1.63). 100 em = 1 m.

197

Page 209: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Conversion Table from English to Metric Units for Prae~ical Uses

KNOW YOUR HEIGHT IN METRtC

ft(') in(") centimeters ft(') in(") = centimeters ft(') in(=) = centimeters (em) I em~ (em I

6' 11" 211 em 4' 11" = 150 em 2' 11" = 89cm 6' 10" 208cm 4' 10" = 147 em 2' 10"" = 86cm 6' 9" 206cm 4' 9" = 145cm 2' 9" = 84em .. 6' 8" = 203cm 4' 8" = 142cm 2' 8" 81 em 6' 7" = 201 em 4' 7" "" 140cm 2' r 79cm 6' 6" -. 198cm 4' 6" = 137 em 2' 6" = 76cm 6' 5" 196 em 4' 5" = 135cm 2' 5" = 74cm 6' 4" 193 em 4' 4" = 132 em 2' 4" = 71 em 6' 3" 191 em 4' 3" = 130em 2' 3" = 69cm 6' 2" 188cm 4' 2" = 127 em 2' 2" = 66cm 6' 1" = 185cm 4' 1" = 125 em 2' 1" = 64cm 6' 0" = 183 em 4' 0" 122 em 2' 0" 61cm 5' 11" 180 em 3' 11, 119 em 1' 11" 58 em 5' 10" = 178em 3' 10" 117 em 1' 10" = 56 em 5' 9" = 175cm 3' 9" = 114 em 1' 9" = 53 em 5' 8" = 173cm 3' 8" = 112 em 1' 8" = 51 em 5• 7" = 170cm 3' 7" = 109cm 1' 7" = 48cm 5' 6" = 168 em 3' 6" = 107 em 1' 6" = 46em 5' 5" = 165cm 3' !;" .. = 104 em 1' 5" 43cm 5' 4" = 163 em 3' 4" = 102 em 1' 4'" 40cm 5' 3" = 160cm 3' 3" = 99cm ,. 3" 38cm 5' 2" 158cm 3' 2" = 97cm 1' 2" 36cm 5' 1" 155 em 3'

,, 94cm 1' 1" = 33cm

5' 0" = 152 em 3' 0" = 91 em 1' 0" = 31 em

NOTE: This' handy conversion table is designed to make it easy for a person to know his height or measure the length of a baby in the metric unit, centimetre, which is used in most metric countries for this purpose. A person 168 centimeters tall may conveniently say, in speaking, that his height is One Six Eight See Em 1168 em). Once metric units are widely used and English units are no longer used, there will be no need for conversion tables like this one. Where greater accuracy is needed to the first decimal point.

198

Page 210: George Salvan Architectural Utilities 1 Plumbing and Sanitary

Sl PREFIXES

Name Symbol Factor by which the Meaning Unit is Multiplied (No. of times multiplied)

exa• E 1018 1 000 000 000 000 000 000

peta* p 1015 1 000 000 000 000 000

tera* T 1012 1 000 000 000 000

giga G 109 1 000 000000

mega M 108 1 000 000 .,.

kilo K 101 1 000

hecto** h 102 100

deca** da 10 10

deci* d 10-1 0.1

centi c 10-2 0.01

milli m 10-3 0.001

micro u 10-6 0.000 001 • nano n 10-9 0.000 000 001 • pi co p 10-12 0.000 000 000 001

femto* f 10-15 0.000 000 000 000 001 • attom a 10-18 0.000 000 000 000 000 001

* Rarely used, mostly in highly scientific work. **Not preferred.

CONVERSION FACTORS

'

To Convert

Kip lb Kg Kn psi ksi Mpa ft-Kip Kn M Kip/ft Kp/ft2 psi Kn/M KN/M2

To

KN N N Kip mPa MPa psi Kn-m ft Kip KN/m KN/m2 N/nll Kip/ft Kip/ft2

Multi~y By

4.448 4.448 9.81 0.2248 0.006895 6.895

145.0 1.356 0.7376

14.59 47.88 47.88 0.06862 0.02()89

199

Page 211: George Salvan Architectural Utilities 1 Plumbing and Sanitary

200

MPW FOAM NO. 77-CIO'I ..

! I l I 1

~~An OF AWI.IUTIOII

-~~~~~ty...,_..~ITV

AAMCODf --.---- -.._,..,. ARY ... t.UMIIHQ ''lltMtT

eo• liTO 11·~ .... 10 , ., ~AllY llf04Ntl~l· 111.\IIMI Il, IM '""Ill

foiAiolt Of' -·"'~ ~ .. ._...,,., .. ..,. .......

I II 1 I I I • OATI IIIVIO

T ·~ JIIXT. 110.

AOOt\U a ljO, ""'"' ~JWOAV , C:ITVIU\II'I~I,AI.IT'I' TIUotiO'IC 100.

-l~TIOII Of' I .. UU.AT- Mo .. tTiltiT, IAAAMGAY , CITV~ALITY

-··'-" . 0 ADOITIOOI 0' OTIOCIII .. ICI 'I'l

0 'IIWti .. TAI.I.ATIOIII 0 "'""'"' ()f - D--0•-----O IIIIIIIC)VAI. CW c Of '

..... Oil fVPI 01' ~loiC"I

0 IIUtOIMTt41. -- 0 AGIII~'UI.TVIIAI. 0 IX)WoKI'ICIAI. ---- 0 ' lloU I . r WAS. MOHUMliii1W . - ----0 1'10Uifll14\ ------·- -.-------------- 01UC:IIUTIOIII4 1.

Q tiiiTITVfiOIIAl Do,.,.,,.. '"'c:""' fl:llfUIII~.TO- ..,t.LU D· .... IXtlniiiCi llt .. O Of Nllr lX IJTING I.IIIOOP

QTY. • IIITUJIII PUCTUflft PIUUJI'I O'TY. f iiC~JI fiXTVIIIU f l)(TUII II

- - · Q 8 0 ,....1tlt CU)I!If - - 8 0 g llforrt'l - 0 Cl • LOOII 'lAAW -- 0 lAVIIOIIY TII4Yf

- - · 0 0 0 f,AVATOIIttl -· 0 0 8 0111 T 4 I. C:UII I 0011

.. - 0 0 0 KITCHt 'l So'll( - - D 0 041 "'"''J" 0 0 0 , ... uen ·- 0 8 g li.I CHIIC: lf('Jioflll

···-. 0 8 ~ . twOWllt I<EAO ~ 0 -TUitoiLI It

........ D WATlA Vtflll - 0 0 § 0111 NIC tWO Fau.tf J1 I If

----·· 0 B QIIIJISI Til ... - - 0 0 ...... l llllll

·-· 0 ..,,.. 1'1). -- 0 8 IOOA FO\HfTAIN 11 .. 11 .. _ 0 0 8 ll.()e &INI( -- 0 8 l.lloto"JifOIIY 11011(

·-·- 0 g UIIIIIJioL - 0 0 .,,. ......... --- 0 0 Jltll COIIIOntON•Nq UI\MT -- 0. 0 0 .,_110~

--. 0 0 0 WATI .. TA"'Iti"UI .. VOIII - - 0 0 0 OTifllli iS,_CIPYI-.- ----·--- fOTAI. --- ---TO~ AI.

Q WAlE II Dlt'rfii i UTIOII I YI UM 0 t AfjtTA .. Y llJWI III IYITIM U ITO .. M OAAIOIAOI JVITfM

..... Till IIUPPC. y ' tYITIM t)f' 0-.-l:

Q IHA~lOWWf i.L 8 WAaTI "A Till ntUUU'IT f' I.N" 0 I VIIFACI OIIAIOIJIOE 0 DH ' WILl i r.- U T S'.P'!IC V l-UI. Tl IMHOf', T ..... 0 IT'll IT CAl' llol. (1 CITV_,..lCif'Al WATt• IYITl¥ 8 S4JotT ...... 11'-111 CO,...fCTIOII 0 .,..,... ctJUIIII C: OTMEA& l\'t4VII' ~· •....o ,.., ...

"VMtfll OF t TOAna Of' lUlL DING TOTAL. 41114 o · · I UILD<NC>/SUI OIVIIIOIII

r q(II'OfoEO DATI TOTAl. ecl$T lTAHT OF I"SUI.lAliOOI Of 111/JTAI.LATtOI'I.I'

lllrlCUO OATl 'lllf'lloii (O • " OF ( OW'UTtON

ACTIONTAKIII

., ... 11 11 l<tltiiY GII.,.TID TO :NST4U • 101. IAIOITAIIYif'~UIIII NO . fiXTUA I I NV.IAATI D hlll l lll 1UIJf CT T.,) ,f HI ' 0 LL0 0011010 C:.J'<OI· :no.on I THAl TNI "''O''itQ t ... TALL4 '110N $i<4l l. tl ltll '\CCOAOA>o(f

WITH ~VID , LA ... ' f i&.IO Wlf" Tt<tl QHICC AND '" CON• O\­IIITY fr1T14 flf' ,.A'IIO .. AL itUli.IH'IG COOt

~. T .. AT A OVlY I.IC:I .... II 14 .. <TMIY l .. GINHII "IIIASTI• PlVOOIUI U lNGAGin TQ UIO(I(IITAU f lO( INIT4L.lAfiQII/(OOtiTIIUCTIOIII

.& ~HAl A CllltiFoCATE Of t;OM, LfTOOII OULT 110 .. (0 I V A ~A'<ITAII• (NGtNJI•~AST(II l'l UI\II tot ... CHA .. Cit OF IN$TALLI'TION ·~· ·· I VII ... ITUI) NOT U.Tlll THAN HVI .. <ll OA¥1 MTtll CO .. OLtTIOO. I)F TilE OIIST·L~Atiepo ,

' To<4l ~ Cltt " " C.4Tt OF """' tNSI'tCTtON Al'<ll 4 CJAliFIC1'11 0 ' occ~""'' 11 NCU~ttD ~"'0" r o THr •cruAL oocv ••.,c• O F THE 't\,H lOIJitG

r,oTf

"". II,

T>< o~ PE '""' .... If CA.,CI H lO ';! ~ ltfltO>t£ 0 ' V ItSU 4NT 10 U CTIO'< I lUtltolOI! 00 nti ''NAliONAI. IVfl OOI<G COO'\

' ~

Page 212: George Salvan Architectural Utilities 1 Plumbing and Sanitary

BIBLIOGRAPHY

1. National Plumbing Code of the Philippines

2. Architectural Graphic Standard Ramsey and Sleeper

3. Mechanical and Electrical Equipment for Builclings 6th Edition MacguinG&s, Stein, Reynold

4. Planning & Remodeling Bathrooms Sunset books & Sunset Magazine

5. Homeowners Guide to Plumbing Robert Scharff

6. Philippine Standard Product Catalog

7. Saniwares Product Catalog; "Plumbing Fixtures"

8. Popular Science-Grolier Inc.

9. Parade Magazine-1979

10. How to Design and Install Plumbing-A.S. Mathips, Jr. and Smith, Jr.

11. Building and Subdivision Regulations in the Philippines-Adolfo B. Bencividez and An-tonio S. Gabriel

12. Municipal and Rural Sani t::~tion·-Victor Ehlers and Ernest Steel

13. Moldex Product, Inc •.. : ••.• uPVC ptpes

14. Att.nta tndustlres, Inc ... . •.•. uPVC pipes

I

201

Page 213: George Salvan Architectural Utilities 1 Plumbing and Sanitary

I

Page 214: George Salvan Architectural Utilities 1 Plumbing and Sanitary

A A£id Resistant Cast ln:ln ,.. . . . . . . . . . . . . . . • . . . . • . . 25 Adaptor . .......... ... ...... ... . .. ... . .... .. .. .. ...... 15 ~................. .... .. . .. ... . ................ 4 Mo.p.&Vacuum~ .. .. . .. ..... .... , .. ff1 » CNmber Stack .. .. . ... .. . . . .. ...... .. .. 34 »T~ ......................... .. .. _ ...... ....... .. . 102

B .... ................. --- .. ··--·· ······· ··········------·-· _____ .. _

a...rv af F'JXtures .... ... ......... ... . ---- -· .. - -~ s..ic .... .. ................ - --- - · ..... Tut. .. .... .. ...... .. ............. .......... .... . ... .... .. ........ .. .. .......... ................ .......

... ca.; ............................................ .

.......... .... ... ....... .. ... ................ .... .. ..

c

88 147 M m 168' 166 138 25 25 14 17

Calking ............. ........ .......... ............ ..... 70 Cap. .............. .. .... .. ... .... ................ ... ... .. 17 Capillary Af;;fii:Jn . .. . . . .. . .. . .. . .. . . . .. • . .. . . • . • .. . . . .. • '" Cast Iron ~.... .. . .. . . . . .. .. . . .. . .. .. .. . .. .. .. .. ..... 2lt Cast Iron~ & Fiaing. ..... .. ....... .... .. .... .. . .. • Catch Basin ... .. .. . . .. .. . . .. .. .. . .. .. .. . .. .. . . .. ..... • Centrifugal Pump ..... .... .. ... .... .. .............. , . 7 Ce.pool.... .. .. .. .. . . . .. . . . . .. . . . . .. .. .. .. .. • . .. .. .. .. . . 110 Check Value .. .. . . . . . .. . . . . .. . . . . .. . .. .. .. .. . .. . . .. . .. 31 ChemicafTI'881J'nllnt .. ..... .... ....... ... .... .. .. ... . 3 Circuit Vent . .. .. .. .. .. .. . .... .. .. .. . . .. .. .. .. .. .. .. .. 94 Cistern tor Watet' .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. . .. .. 116 Clean Out .. . . .. . .. .. .. .. . ... .. . . .. .. .. . .. . . .. .. .. .. .. . 66 Continuous Sedimeo•r.tian ........... .. ......... .. 3 Compartmentation .. ..... ... ....... .... .... ... .. .. . 46 Corporetion Cock .................................... 15 Coupling . .. . .. . .. . .. .. .. .. .. .. .. .. . .. ... .. .. .. .. . .. . .. . . 11 CUrb Cock .. . .. .. .. .. . .. .. .. .. . .. .. . . . . .. ...... . .. .. . .. 15 C\lindrical G .I. Tank .. .. . .. .. .. .. .. .. .. . ............. 8

D Deep Well Plunget' Pumps .. . .. .. .. .. .. .. .. .. . .. .. 7 ~ ..... .. ........... .. ..... ........... ......... 46 DiNct Aultl Valve . .. . .. . . .. .... .. .. .. . .. .. .. .. .. . .. .. 144 OoM.-ct Sywt~Kn. ... ......... ....... ..... ........... 12 Oowi~.Wat1K Distribution ..... .. .............. 12 Onlin Tie T rendh . .... ... · .. .... .. ... ...... .. ......... · 112 Dry~ System . .. .. .. .. .. .. .. .. .. .. .. . . .. .. .. .. ... 70 Duct ........... .. .. ...... _..... ... ... ........ ... ........ fS1

INDEX

E Effluent ............. ........ .. .. ..... .......... . .. .. .. . Elevator& .. ... .. . ... .. .. .. ...... ... . ... .... . :': .......... . EvapOration ..... .... .... ..... ........ .. ............ .. F8u<:etl ...... .... .... ......... .. .. ............. ...... .. Are Safety Plan ..... ..... .. .... .. .... ... .. .. .. .. .. .. .. Fire Stair Door ................ ....... .... .... .. ..... . Fire Extinguiahet' .. .. .... .. .. ... .......... .. .... . .. .. Rtlingl .. .... .. .... ........... ............... .. .. .... .. ~ .... .......... ...... .... ..... ........ .. ....... . Axtu,_Pr~ .. ... ..... .. .... .. .... ........ .. ~ ........... ... ................................ . Force Pumps . .. .. .. .. .. .. .. .. . .. .. ............. .. .. ..

G

130 46 88 32 46 45 48 16 3

80 29 5

Galvlll'liz.ed Wrought Iron Pipes . .. .. .. .. . .. .. • .. . 25 Galvanized Pipe F'rttings .. .... . : .. . .. . .. .. . .. . .. 15, 16 Galvanized Steel Gutter Oelign .. , . .. .. .. .. . .. .. . 61 Gate Valve ........ .. ... ...... .......................... 30 Garage Trap .. .. . .. .. . . .. .. . .. .. .. .. .. .. .. . .. .. .. .. . • . 79 Globe Vetve . .. . . .. . .. . . .. .. . . .. . .. .. .. .. .. .. .. .. .. . .. 30 Gooteneek .. .. .. .. . . .. . .. .. .. . . .. .. .. .. . .. . .. . .. .. .. .. . 16 G1'81teTrap . .... ...... .... . .. .. .. .... ...... ... .. ..... 79 Gutter .............. ...... .. . .. ......................... . 58

H Hange111 .... ... .... ........ .... .. ... .. .. .. .... .. . ... ... . HNd af Water .. . .. .. .. .. .. ..... .. .. .... .. .. . .. . .... . 8 Heet Control .. .. . .. . .. . .. .. .. .. .. . .. . .. .. .. .. .. .. .. . .. 46 High Riee Fire Safety............ .... .. .... ........ ... 44 Hot Water Supply .... . ..... , . .. .. .. .. .. . .. .. . .. .. .. .. 36 Hot Water Tank .... ... ...... .. ....... .... .. ... ... ... .. 21 ,.._ ............... ......................... .. ..... .. ... 48 ..... Reck .. .... .... ... .. .... .. .... .. .......... .. .... .. 48 ..... Bibb ...... ...... .. ........... ............ ..... ... 33 Hal-. Senrice .... ..... ...... ............ .......... .. HaYIItSewer... .. .... .. ...... ......................... 86 ~Tnp .. .... .. .. ........ .. ......................... 66 ~~ .. .. ... .. ... ................ . ..... .. ...... 66 HOUIIIIIdd W.. Supply .. .. . .. . .. .. . .. .. . . .. .. .. .. 14

IncineratOr ....... ...... , .. . .. .. . .. .. .. .. .. .. . . .. .. .. . .. 110 lndiYidu8l Vent .. . .. .. .. .. . .. .. .. . .. . .. .. . .. .. . .. . .. .. 92 Indirect Siphouq ...... .. ....... ·.... ..... ......... 88 Industrial w-..... .... .. .. .. .. . .. .. . .. .. .. ..... .. .. . 128 lnspec1ion aod T.a ...... ..... ... .... ... .. .......... 101

Kitchen Sink . .. ...... .. .... .. . 172. 173, 174, 176, 176 Key Cock .. .. .. .. .. . .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. 32

203

Page 215: George Salvan Architectural Utilities 1 Plumbing and Sanitary

204

L Lavatories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Lavatory Fittings . . . . . . . . . . . . . . . . . . . . . . . . 159 LavatorY witt. a Pop up Drain . . . . . . . .. .. .. . . 180 Lead Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 L.eaching Cet8POOI Oiapo681. .. .. ... . . . . . . . . . . . . . . . . 1t 1 Lift Check Valv~J . . . . .. . . . ....... . .. . .. .. .... .... ... .. .. 31 liftPump ........ .. ....... .......... .. . ...... ......... 5 liquid Municipal Waste ... ............... ......... 123 Looped Vent .. . .. . . . . . . .. .. .. .. .. .. .. .. .. .. . .. .. .. . 98

M Manhole .. .. .. .. .. .. . .. . .. .. . .. . . .. . .. .. .. .. .. .. .. . • .. . . 104 Mierophor Flush Toiiet ...... . , .. .. .. . .. . .. .. .. . .. .. . 1<10 Momentum Siphonage .... .. .. . .. .... .. .. .... ....... 86

N

Siphon<lge ..... ...... ... ... .... .. .. ...... .. .. ...... .... . 86 Siphon Vonex ..... .. ........... .. .......... .. .. ..... 143 Size of Roof Leader and Gutter ...... .. .. ...... .. Size of Sanitary Drain ·....... ................... .. .. 100 Size of Pipe .. .. .. .. . .. .. .. . .. .. .. .. .. .. .. . .. . .. .. .. .. 99 Sludge ......... ............. ......... .. .... .. .. ... .. .. 126 Solid Waste Recovery Project .. . .. .. .. .. .. .. .. .. .. 120 Solid Municipal Wa.te .......... .... ... .. .. ......... 121 Sources of Water .. .. . .. .. .. .. .. .. .. .. .. .. . . . . . .. . 2, 26 Sprinklers ............. .. ... , .. . .. .. . .. .. .. ... .. .. .. .. . 49 Sprinklers Head . ........... .. . ..... .... . .. . ... ... ..... 50 S~ndby Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Standby Power .. .. .. . .. . .. .. .. .. . .. . .. . . .. .. .. .. . .. .. 46 Storm Drain .......... .. .......... ........ ~. ...... . .. 56 Storm Water System . .. . .. .. . .. .. .. .. .. .. .. .. .. . .. 54 Storage Tank . .. . .. . .. .. ... .. .. .. ... .. .. .. ...... 8 Suction Tank .. .. .. .. . .. .. .. .. . . . . .. ...... .. .. . .. .. 9. 38 Swing Check Valve ... .. ... .... .. .. .. ... ... . .. ...... 31

National Plumbing Codes . .. .. . .. . .. . .. .. . .. .. .. .. .. 73 T

0 Oakum .......... . .... .. .. .. ... ........................ 70 Offset Bend ................ .... ........ .. . , .......... 68

p Peak Load .... ..... .. ... .. .. .. .. .. ... ..... .. .. ........ .

• Pendent ...... .......... . .. .. ... ..... ... .. ...... .. .. .. .. Perforated Pipe .............................. ........ . Pipe Fittings ....... .......... ............... .. ....... . Pipe Chase .... .... ..... .. .......... .... . .. . ... ........ . Plastic Pipes ... .... . ....... .. .... . . ...... ........ .. .. . Plug .. .. ... .. . ... ....... .... , ........ ....... .. .. ..... ... .. Plumbing System ......... .... ... ........... ........ . Polyvinyl Chloride .. . .. .. .... ........ ....... .. ...... .. Polyethylene ...... . .... .. .. .. .. .. .. .. .. ..... .. .. .. .. . . Polybutylene .......... ......... ................. .... . . Pressure Regulator .. . .. .......... ..... ....... ... .. . Privy ......... ... .... ... . .......... . .. . .. .... ....... .. . Pumps ....... ..... .... .. ........ .. .. ...... .. . ... . .. .... . Pumping Circuit System ... ... ... ................ . .

R Recycling of Water .. ... ............ .. ............ .. Reciprocating Pump ........... ...... .. .. ........... . Recycling Solid Waste .......... ........... ..... ... . R11flected Sprinkler Plan ........ .. .. .. .. ....... .. . . Refuse Handling .. .. ...... .. ... .... ........ .... .. Roof Drain . .. ....... .......... ...... .. .. .... ......... .. Roof leader .. .. .. .... ........ .. .. .............. ... . .. Roof Leader and Gutter

s Sanitary Drainage System . . .......... ........... . Sanitary Systems .. .. .... ....... ....... ........ .... .. Sanitary Landfills .. .. .. .. .... . .. ...... ....... ... . ... . Sedimentation ....... .. ........................ ..... . Septic Tanks ... . .. .. .. .. . .. .. .. .... .. .... . .. . Sewage Disposal System ...... ........... ......... . Sewage Treatment Work ...... .. .. ................ . ShowerH~ ................ . ...... .. . .... ... .... . .. Si'!mese Conn«:tioo .... ... . , .. . .. .... .. ... .... .. ... .

26 50 55 15 ffl 75 17 64 18 18 18 33

104 4-8

20

130 6

118 51

110 61 59 59

64 65

122 3

128 104 131 169 48

Tank and Ciatem capacities.. ............ .. ........ 116 Trap Seal Loss .. . .. . .. .. .. . .. .. .. .. .. .. .. . .. .. .. .. .. . 85 Trap Seal .. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. . .. .. . .. 86 Tr.etment of Water . .. .. .. .. . .. .. .. .. . .. .. .. .. . .. . .. 3 Trickling Filter .. . .. . .. .. .. . .. .. . .. .. .. . 126 Tub Fixture Ammgement.. ........ .. ...... ......... 189

u Upfaed System .. .. . .. .. .. .. .. . .. .. .. .. . .. . .. . .. . .. .. . 310 Upfaed and Gravity Return System.. ... ....... . . . 37 Unioo .. .. .. .. .. .. . .. .. . .. .. .... .. .. .. .. . . .. .. .. .. .. . .. .. . 17 Unioo Vent............ ........... .. .. .......... ........ 93 Urinals.... ................ . ... .. .... .. .......... ... ...... lffl

v v ..... ea .. .. ..................... ....... .... ............... 30 Vents ..... .... ........ ..... ... . .. .. .. .... . ... .. .. . .. .. .. 90 ty~ ....................... .. . .. ......... .... .. .. 90, 98

Vitrified Clay Pipe .. .. ..... .. ..... .. ..... .. .. ......... 25

w Waste .. .. ... .. .. .. .. .. .. .. .. .. . .. .. .. .. . ... .. .. . . ... .. .. 121 Water .... ....... ... .... .. ..... ......... ....... ......... 7 Water Treatment .. .. . . ...... ...... .. . .... .. .. .. ..... 3 Water Supply Equipment .. .... ......... .... . -..... 4 Water Re<:lamation Plant .. .. . .. .. . .. .. .. .. .. .. .. .. . 136 Water Closet . .. . .... .. . .. ... .. .. .. .. .. .. . .. .. .. .. .. .. . 144 Water Hammer . .. .. .. .. .. .. .. . .. .. .. .. .. .. .. . .. .. .. .. 34 Waste Pipe Size............. .. .......... . ........ .. ... 99 Waste Disposal .. .• .. .. .. .. .. . . . .. . .. .. .. .. .. .. .. .. . .. l21 Wells ......... ......... ........ .. ..... ........ ........... 4 Wet Pipe System .. .. .. . .. . .. .. .. .. . .. .. .. .. .. .. .. .. ~ WetVent .............. ........ ............. ... . .. .... 98

y Yoke Ventila1ion .... .. ...................... .... .. .. 98, 97

z Zoning ..... .... .. ..... ....... .. . .. ... ..... . .. .. .... .... .. 42

Page 216: George Salvan Architectural Utilities 1 Plumbing and Sanitary