Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois...

79
Geometric Geometric interpretation interpretation & Cubes & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) [email protected] [email protected] www.testgroup.polito.it Lecture 3.2

Transcript of Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois...

Page 1: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

Geometric Geometric interpretation interpretation

& Cubes& Cubes

Geometric Geometric interpretation interpretation

& Cubes& Cubes

Paolo PRINETTOPolitecnico di Torino (Italy)

University of Illinois at Chicago, IL (USA)

[email protected] [email protected]

www.testgroup.polito.it

Lecture

3.2

Page 2: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

2 3.2

Goal

This lecture first introduces a geometric interpretation of Boolean Algebras, focusing, in particular, on the concept of K-cubes.

It then presents several ways of representing K-cubes.

Eventually some advanced operators on cubes are defined.

Page 3: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

3 3.2

Prerequisites

Lecture 3.1

Page 4: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

4 3.2

Homework

No particular homework is foreseen

Page 5: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

5 3.2

Further readings

Students interested in a deeper knowledge of advanced operators on cubes can refer, for instance, to:

G.D. Hachtel, F. Somenzi: “Logic Synthesis and Verification Algorithms,” Kluwer Academic Publisher, Boston MA (USA), 1996

Page 6: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

6 3.2

Outline

Geometric interpretation of Boolean Algebras

K-cubes representation

Advanced operations on K-cubes.

Page 7: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

7 3.2

Geometric interpretation

The carrier Bn of a Boolean Algebra can be seen as an n-dimensional space, where each generic element v Bn (usually called a vertex), is represented by a vector of n coordinates, each B.

Page 8: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

8 3.2

x

z

00 10

1101

B = { 0, 1}

B 2

Page 9: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

9 3.2

x

y

z

000

111

100

101001

010

011

110

B = { 0, 1}

B3

Page 10: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

10 3.2

x

y

zB = { 0, 1 }

B4

w

Page 11: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

11 3.2

K-cube

A k-dimensional sub-space (or k-cube)

Sk Bn

is a set of 2k vertices, in which n-k variables get the same constant value.

Page 12: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

12 3.2

x

z

00 10

1101

0-cube = vertex

B = { 0, 1 }

B2

Page 13: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

13 3.2

x

y

z

000

111

100

101001

010

011

110

B = { 0, 1 }

B3

0-cube = vertex

Page 14: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

14 3.2

x

y

z

000

111

100

101001

010

011

110

B = { 0, 1 }

B3

1-cube = edge

Page 15: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

15 3.2

x

y

z

000

111

100

101001

010

011

110

B = { 0, 1 }

B3

2-cube = face

Page 16: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

16 3.2

B = { 0, 1 }

B4

2-cube = face

x

y

z

w

Page 17: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

17 3.2

Remarks

Not all the sub-sets of Bn with cardinality 2k are k-cubes.

Page 18: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

18 3.2

x

y

z

000

111

100

101001

010

011

110

B = { 0, 1 }

B3

An example of set of 22 vertices which is not a 2-cube

Page 19: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

19 3.2

Remarks

Not all the sub-sets of Bn with cardinality 2k are k-cubes

The empty set is not a k-cube

Page 20: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

20 3.2

Remarks

Not all the sub-sets of Bn with cardinality 2k are k-cubes

The empty set is not a k-cube

The total # of different k-cubes is:

N n! 2(n k)! k!

n-k

Page 21: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

21 3.2

Examples

n = 3 k = 2 : 2-cubes : faces

N = 3! 2 / 1! 2! = 6

n = 3 k = 1 : 1-cubes : edges

N = 3! 4 / 2! 1! = 12

n = 3 k = 0 : 0-cubes : vertices

N = 3! 8 / 3! 0! = 8

N n! 2(n k)! k!

n-k

Page 22: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

22 3.2

Outline

Geometric interpretation of Boolean Algebras

K-cubes representation

Advanced operations on K-cubes.

Page 23: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

23 3.2

K-cubes representation

k-cubek-cube

Page 24: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

24 3.2

K-cubes representation

AlgebraicAlgebraicnotationnotation

CubicCubicnotationnotation

k-cubek-cube

Page 25: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

25 3.2

K-cubes representation

AlgebraicAlgebraicnotationnotation

CubicCubicnotationnotation

Product termProduct term Sum termSum term

k-cubek-cube

Page 26: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

26 3.2

K-cubes representation

CubicCubicnotationnotation

k-cubek-cube

list of n valueslist of n values { 0, 1, { 0, 1, –– }, },one for each one for each coordinatecoordinate

Page 27: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

27 3.2

In such a list there will be:

n-k values set at 0, or at 1, and in particular:

at 0 if the corresponding coordinate gets the value 0 in all the vertices of the cube

at 1 if the corresponding coordinate gets the value 1 in all the vertices of the cube

k values set at a particular value, conventionally represented by “––” and read “don’t care” (they correspond to the k coordinates which assume all the 2k possible combinations of values).

Cubic notation (cont’d)

Page 28: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

28 3.2

x

z

00 10

1101

0-cube in cubic notation

B = { 0, 1 }

B2

1010

Page 29: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

29 3.2

x

y

z

000

111

100

101001

010

011

110

B = { 0, 1 }

B3

0-cube in cubic notation

111111

Page 30: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

30 3.2

x

y

z

000

111

100

101001

010

011

110

B = { 0, 1 }

B3

1-cube in cubic notation

1100

Page 31: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

31 3.2

x

y

z

000

111

100

101001

010

011

110

B = { 0, 1 }

B3

2-cube in cubic notation

00

Page 32: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

32 3.2

B = { 0, 1 }

B4

2-cube in cubic notation

x

y

z

w

11 00

Page 33: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

33 3.2

Cubes representation

AlgebraicAlgebraicnotationnotation

k-cubek-cube

list of n-k literals, one for list of n-k literals, one for each variable that gets the each variable that gets the

same value in all the same value in all the vertices of the cubevertices of the cube

Page 34: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

34 3.2

Cubes representation

AlgebraicAlgebraicnotationnotation

Product termProduct term

k-cubek-cube

Page 35: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

35 3.2

Cubes representation

AlgebraicAlgebraicnotationnotation

Product termProduct term

k-cubek-cubeEach k-cube is represented by a Each k-cube is represented by a logiclogic product product of n-k variables where:of n-k variables where:• variables assuming constantly the variables assuming constantly the

1 value are asserted1 value are asserted• variables assuming constantly the variables assuming constantly the

0 value are complemented.0 value are complemented.

Page 36: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

36 3.2

x

z

00 10

1101

0-cube by product terms

B = { 0, 1 }

B2

x zx z’’

Page 37: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

37 3.2

x

y

z

000

111

100

101001

010

011

110

B = { 0, 1 }

B3

0-cube by product terms

x y zx y z

Page 38: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

38 3.2

x

y

z

000

111

100

101001

010

011

110

B = { 0, 1 }

B3

1-cube by product terms

x zx z’’

Page 39: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

39 3.2

x

y

z

000

111

100

101001

010

011

110

B = { 0, 1 }

B3

2-cube by product terms

yy’’

Page 40: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

40 3.2

2-cube by product terms

B = { 0, 1 }

B4

x

y

z

w

x zx z’’

Page 41: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

41 3.2

Remark

The universe set, i.e., the n-cube, which, according to the previous rules should be represented by “no” variable, is usually represented by the symbol 1.

Page 42: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

42 3.2

f ( x1, x2, x3 )

10 -

- 1 -

110

From cubic notation to algebraic notation by product

terms

Page 43: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

43 3.2

f ( x1, x2, x3 )

10 - x1 x2’

- 1 - x2

110 x1 x2 x3’

From cubic notation to algebraic notation by product

terms

Page 44: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

44 3.2

f ( x1, x2, x3 )

x1 x2’

x2

x1 x2 x3’

From algebraic notation by product terms to cubic notation

Page 45: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

45 3.2

f ( x1, x2, x3 )

x1 x2’ 10 -

x2 - 1 -

x1 x2 x3’ 110

From algebraic notation by product terms to cubic notation

Page 46: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

46 3.2

Minterm

A minterm (or fundamental product) is the representation of a 0-cube by a product term.

k-cube representation

1 0 1 x y ’ z minterm

0 1 1 x’ y z minterm

0 0 x’ z’ not a minterm

1 y not a minterm

Page 47: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

47 3.2

Cubes representation

AlgebraicAlgebraicnotationnotation

Sum termSum term

k-cubek-cube

Page 48: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

48 3.2

Cubes representation

AlgebraicAlgebraicnotationnotation

Sum termSum term

k-cubek-cube

Each k-cube is represented by a Each k-cube is represented by a logiclogic sum sum of n-k variables where:of n-k variables where:• variables assuming constantly variables assuming constantly

the 1 value are complementedthe 1 value are complemented• variables assuming constantly variables assuming constantly

the 0 value are asserted.the 0 value are asserted.

Page 49: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

49 3.2

x

z

00 10

1101

0-cube by sum terms

B = { 0, 1 }

B2

xx’ + ’ + yy

Page 50: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

50 3.2

x

y

z

000

111

100

101001

010

011

110

B = { 0, 1 }

B3

0-cube by sum terms

xx’ + ’ + yy ’ + ’ + zz’’

Page 51: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

51 3.2

x

y

z

000

111

100

101001

010

011

110

B = { 0, 1 }

B3

1-cube by sum terms

xx’ + ’ + zz

Page 52: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

52 3.2

x

y

z

000

111

100

101001

010

011

110

B = { 0, 1 }

B3

2-cube by sum terms

yy

Page 53: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

53 3.2

2-cube by sum terms

B = { 0, 1 }

B4

x

y

z

w

xx’ + ’ + zz

Page 54: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

54 3.2

Remark

The universe set is usually represented, in this notation, by the symbol 0.

Page 55: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

55 3.2

Maxterm

A maxterm (or fundamental sum) is the representation of a 0-cube by a sum term.

k-cube representation

1 0 1 x’ + y + z’ maxterm

0 1 1 x + y ’ + z’ maxterm

0 0 x + z not a maxterm

1 y ’ not a maxterm

Page 56: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

56 3.2

Outline

Geometric interpretation of Boolean Algebras

K-cubes representation

Advanced operations on K-cubes.

Page 57: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

57 3.2

Several advanced operators have been defined on k-cubes, including:

Splitting Coverage Intersection Distance Union Complement Cofactor Consensus …

Advanced operations on K-cubes

Page 58: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

58 3.2

Note

Since most of them are of interest for peculiar applications, only (e.g., advanced techniques for logic minimization), they are not fatherly dealt with in the present course.

Just a couple of them are going to be presented here.

Interested students can refer to the book suggested in slide 5 for a deeper analysis.

Page 59: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

59 3.2

Splitting

Splitting allows us to find all the vertices of a given k-cubes.

Algorithm

Assign each “–” all the possible combinations of the related input variable, until no “–” are present.

Page 60: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

60 3.2

Example

–11–0

Page 61: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

61 3.2

Example

–11–0111–0

011–0

Page 62: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

62 3.2

Example

–11–0

11110

11100

01110

01100

111–0

011–0

Page 63: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

63 3.2

Coverage

We have to distinguish between:

Coverage among cubes

Coverage among sets of cubes

Page 64: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

64 3.2

Coverage among cubes

A cube a covers (or contains) a cube b, and we denote it as:

a b

Iff all the vertices of b are vertices of a as well.

In such a case we say that b implies a or that a is implied by b.

Page 65: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

65 3.2

Example

a = - 0 -

b = - 0 0

a b

000

111

100

101001

010 110

011

b

aa

Page 66: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

66 3.2

“Working” Definition

A cube a covers a cube b, iff the cube b can be derived from a by replacing, in a, one (or more) “–” by 0 or 1.

Examples

a = – 0 –

b = – 0 0 a b

a = 1 0 – 1

b = – 0 1 1 a b

Page 67: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

67 3.2

Coverage among sets of cubes

A set of cubes C covers a cube a iff each vertex of a is a vertex of at least one of the cubes of C.

Example

C = { 0–1, 10– } a = –01 ?

Page 68: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

68 3.2

Solution

We first split the vertices of a :

001, covered by C[1] = 0–1

101, covered by C[2] = 10–

As a consequence

C = { 0–1, 10– } a = –01

Even if, when considered individually

C[1] a and C[2] a

Page 69: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

69 3.2

000

111

100

101001

010110

011

C[1]

C[2]

aC[1] = 0–1

C[2] = 10–

a = – 0 1

Page 70: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

70 3.2

Hamming distance between cubes

We define Hamming distance between 2 cubes a and b, and we denote it as

D (a, b)

the # of coordinates of the 2 cubes such that:

a[i] = 0 and b[i] = 1

or

a[i] = 1 and b[i] = 0

Page 71: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

71 3.2

Properties

Two cubes have a null distance iff they share one or more vertices

Two cubes having unit distance are usually referred to as being logically adjacent.

Page 72: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

72 3.2

Example

y

z

000

111

100

101001

010

011

x

110

Page 73: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

73 3.2

Example

y

z

000

111

100

101001

010

011

x

110aa

a = - 0 -

Page 74: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

74 3.2

Example

y

z

000

111

100

101001

010

011

x

110aa

a = - 0 -

b

b = 1 - 0

Page 75: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

75 3.2

Example

y

z

000

111

100

101001

010

011

x

110aa

a = - 0 -

b

b = 1 - 0 D(a, b) = 0

Page 76: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

76 3.2

Example

y

z

000

111

100

101001

010

011

x

110aa

a = - 0 -

b

b = 1 - 0 D(a, b) = 0

c

c = 1 1 1

Page 77: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

77 3.2

Example

y

z

000

111

100

101001

010

011

x

110aa

a = - 0 -

b

b = 1 - 0 D(a, b) = 0

c

c = 1 1 1 D(a, c) = 1

Page 78: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.

78 3.2

Example

y

z

000

111

100

101001

010

011

x

110aa

a = - 0 -

b

b = 1 - 0 D(a, b) = 0

c

c = 1 1 1 D(a, c) = 1

xyz 00 01 11 10

0

1

Page 79: Geometric interpretation & Cubes Paolo PRINETTO Politecnico di Torino (Italy) University of Illinois at Chicago, IL (USA) Paolo.Prinetto@polito.it Prinetto@uic.edu.