Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped...

22
Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore , Laura Nore ˜ na, and Constance Schober [email protected] University of Central Florida SIAM Conference on Nonlinear Waves and Coherent Structures, University of Washington, Seattle, June 13, 2011 Thanks to the National Science Foundation for partial funding Jul 2011 – p.1/16

Transcript of Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped...

Page 1: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Geometric Integration forDamped Hamiltonian PDEs

Brian E. Moore, Laura Norena, and Constance Schober

[email protected]

University of Central Florida

SIAM Conference on Nonlinear Waves and Coherent Structures, University of

Washington, Seattle, June 13, 2011

Thanks to the National Science Foundation for partial funding

Jul 2011 – p.1/16

Page 2: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Multi-Symplectic PDE, Bridges (1997)

These equations can be written

Kzt + Lzx = ∇zS(z)

K and L are skew-symmetric matrices

z = z(x, t) is the vector of state variables

S is smooth

Examples include KdV, Boussinesq, Zakharov-Kuznetsov,nonlinear Schrödinger, nonlinear wave equations, etc.

Conservation laws are derived directly from the equation.An example is the multi-symplectic conservation law∂t 〈KU, V 〉+ ∂x 〈LU, V 〉 = 0, where U and V satisfy thevariational equation.

Jul 2011 – p.2/16

Page 3: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Conformal Multi-Symplectic PDE, M. (2009)

These equations can be written

Kzt + Lzx = ∇zS(z)−a

2Kz −

b

2Lz + F (x, t)

a and b are positive real constants

S is smooth and may depend on a and b

F is a forcing term

Equation satisfies a conformal multi-symplectic conservation law

∂t 〈KU, V 〉+ ∂x 〈LU, V 〉 = −a 〈KU, V 〉 − b 〈LU, V 〉.

Methods that preserve this property behave similarly tostandard multi-symplectic methods for small a and b.

Jul 2011 – p.3/16

Page 4: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

General Conformal Conservation Laws

IfKzt + Lzx = ∇zS(z)

has a conservation law

∂tP + ∂xQ = 0,

then

Kzt + Lzx = ∇zS(z)−a

2Kz −

b

2Lz

has a conformal conservation law if it satisfies

∂tP + ∂xQ = −aP − bQ.

Jul 2011 – p.4/16

Page 5: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Examples of Conservation Laws for

Kzt + Lzx = ∇zS(z)

Energy: inner product of the equation with zt

∂t(

S(z) + 12(z

Tx Lz)

)

+ ∂x12(z

TLzt) = 0

Jul 2011 – p.5/16

Page 6: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Examples of Conservation Laws for

Kzt + Lzx = ∇zS(z)

Energy: inner product of the equation with zt

∂t(

S(z) + 12(z

Tx Lz)

)

+ ∂x12(z

TLzt) = 0

Momentum: inner product of the equation with zx

∂x(

S(z) + 12(z

Tt Kz)

)

+ ∂t12(z

TKzx) = 0

Jul 2011 – p.5/16

Page 7: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Examples of Conservation Laws for

Kzt + Lzx = ∇zS(z)

Energy: inner product of the equation with zt

∂t(

S(z) + 12(z

Tx Lz)

)

+ ∂x12(z

TLzt) = 0

Momentum: inner product of the equation with zx

∂x(

S(z) + 12(z

Tt Kz)

)

+ ∂t12(z

TKzx) = 0

Linear Symmetries: inner product with Bz

∂t(

zTKBz)

+ ∂x(

zTLBz)

= 0

Jul 2011 – p.5/16

Page 8: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Examples of Conformal Conservation Laws for

Kzt + Lzx = ∇zS(z)−a2Kz − b

2Lz

Energy: inner product of the equation with zt

∂t(

S(z) + 12(z

Tx Lz)

)

+ ∂x12(z

TLzt) =

−b2 (zTLzt)

Momentum: inner product of the equation with zx

∂x(

S(z) + 12(z

Tt Kz)

)

+ ∂t12(z

TKzx) =

−a2 (zTKzx)

Linear Symmetries: inner product with Bz

∂t(

zTKBz)

+ ∂x(

zTLBz)

= −a(

zTKBz)

− b(

zTLBz)

Jul 2011 – p.6/16

Page 9: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Numerical Preservation

Suppose we have the following PDE and Conformal CL

Kzt + Lzx = ∇S(z)−a

2Kz ∂tP + ∂xQ = −aP

Jul 2011 – p.7/16

Page 10: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Numerical Preservation

Suppose we have the following PDE and Conformal CL

Kzt + Lzx = ∇S(z)−a

2Kz ∂tP + ∂xQ = −aP

Integrating with appropriate boundary conditions, yields

∂tP = −aP ⇐⇒ P (t) = exp(−at)P (0) with P =

Pdx.

Jul 2011 – p.7/16

Page 11: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Numerical Preservation

Suppose we have the following PDE and Conformal CL

Kzt + Lzx = ∇S(z)−a

2Kz ∂tP + ∂xQ = −aP

Integrating with appropriate boundary conditions, yields

∂tP = −aP ⇐⇒ P (t) = exp(−at)P (0) with P =

Pdx.

A numerical method preserves this property if it satisfies

P i+1 = exp(−a∆t)P i with P i =∑

n

Pn,i∆x.

Jul 2011 – p.7/16

Page 12: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Numerical Preservation

Suppose we have the following PDE and Conformal CL

Kzt + Lzx = ∇S(z)−a

2Kz ∂tP + ∂xQ = −aP

Integrating with appropriate boundary conditions, yields

∂tP = −aP ⇐⇒ P (t) = exp(−at)P (0) with P =

Pdx.

A numerical method preserves this property if it satisfies

P i+1 = exp(−a∆t)P i with P i =∑

n

Pn,i∆x.

Note: ∂tP < 0 is typically considered preserved if P i+1 < P i

Jul 2011 – p.7/16

Page 13: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Splitting Methods, McLachlan and Quispel (2002)

zt = FH(z) + FD(z)

Solve zt = fH(z) with conservative method zi+1 = Ψ∆t(zi).

Solve zt = Dz exactly with flow map Φt(z) = exp(Dt)z.

Original system is solved by composing these flow maps.

Jul 2011 – p.8/16

Page 14: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Splitting Methods, McLachlan and Quispel (2002)

zt = FH(z) + FD(z)

Solve zt = fH(z) with conservative method zi+1 = Ψ∆t(zi).

Solve zt = Dz exactly with flow map Φt(z) = exp(Dt)z.

Original system is solved by composing these flow maps.

Example: Define non-standard difference/average operators

Dat z =

zi+1 − e−a∆tzi

∆tand Aa

t z =zi+1 + e−a∆tzi

2

Implicit midpoint for zt = FH(z) is D0t z = FH

(

A0t z)

.

Splitting method for zt = FH(z) + FD(z) is Da/2t z = FH

(

Aa/2t z

)

Jul 2011 – p.8/16

Page 15: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Structure-Preservation

A non-standard 1-step FD method preserves a conformal CL, ifit has a discrete product rule and the corresponding CL ispreserved by the conservative method upon which it is based.

Example: The conformal box scheme

K

(

Da/2t Ab/2

x z)

+ L

(

Db/2x A

a/2t z

)

= ∇S(

Aa/2t Ab/2

x z)

satisfies Dat

Ab/2x z,KBAb/2

x z⟩

+Dbx

Aa/2t z,LBA

a/2t z

= 0.

Sum over spatial index with b = 0 and appropriate BCs gives

P i+1 = exp(−a∆t)P i with P i =∑

n

A0xz,KBA0

xz⟩

∆x.

Jul 2011 – p.9/16

Page 16: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Nonlinear Schrodinger with Dissipation

iψt + ψxx + V ′(|ψ|2)ψ + ia

2ψ = 0

Can be written Kzt + Lzx = ∇zS(z)−a2Kz with

J =

[

0 −1

1 0

]

K =

[

−J 0

0 0

]

, L =

[

0 −I

I 0

]

,

z = [v,w, p, q]T , S(z) = 12(p

2 + q2 + V (v2 + w2))

The conformal norm conservation law

∂t(w2 + v2) + 2∂x(vwx − wvx) = −a(w2 + v2)

Jul 2011 – p.10/16

Page 17: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Residual in Local Conformal Conservation Law

a = 0.01, h = 0.01,

05

1015

2025

−10

−5

0

5

100

0.2

0.4

0.6

0.8

1

1.2

x 10−13

MS−CC−CL−1: Γ = 0.010, |RaMAX

| = 1.19904e−13

Jul 2011 – p.11/16

Page 18: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Residual in Global Conformal Conservation

10 20 30 40 50 60 70 80 90 10010

−14

10−13

10−12

TIME

ln(D

)

PreissmanConformal

Jul 2011 – p.12/16

Page 19: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Dissipative Semi-Linear Wave Equation

utt = uxx − aut − f ′(u)

Can be written Kzt + Lzx = ∇zS(z)−a2Kz with

J =

[

0 −1

1 0

]

K =

[

J 0

0 J

]

, L =

[

0 −I

I 0

]

,

z = [u, v, w, p]T , S(z) = 12

(

a(uv + wp) + v2 − w2 + 2f(u))

momentum:∂t(vux+pwx)+∂x

(

f(u) + v2

2 − w2

2 − vut − pwt

)

= −a(vux+pwx)

angular momentum: ∂t(u× ut) + ∂x(ux × u) = −a(u× ut)

others: ∂t(vw + cup) + 1

2∂x

(

v2 + w2− c(u2 + p2)

)

= −a(vw + cup)

Jul 2011 – p.13/16

Page 20: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Error in dissipation rates for utt = uxx − aut − cu

c = 1, a = 34 , ∆t = 0.025, 80 grid points on [−π, π].

0 5 10 15 20 25 30 35 40 45 50−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

t

d

standard box schemeconformal box scheme

Jul 2011 – p.14/16

Page 21: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Solution Behavior for utt = uxx − aut − cu

c = 1, a = 34 , ∆t = 0.025, 80 grid points on [−π, π].

−4 −3 −2 −1 0 1 2 3 4−1

−0.5

0

0.5

1x 10

−8

x

uT = 50

−4 −3 −2 −1 0 1 2 3 4−1

−0.5

0

0.5

1x 10

−8

x

u

exactstandard

exactconformal

Jul 2011 – p.15/16

Page 22: Geometric Integration for Damped Hamiltonian PDEs€¦ · Geometric Integration for Damped Hamiltonian PDEs Brian E. Moore, Laura Norena, and Constance Schober˜ bmoore@math.ucf.edu

Solution Behavior for utt = uxx − aut − cu

c = 1, a = 34 , ∆t = 0.025, 80 grid points on [−π, π].

−4 −3 −2 −1 0 1 2 3 4−4

−2

0

2

4x 10

−14

x

uT = 100

exactstandard

−4 −3 −2 −1 0 1 2 3 4−1

−0.5

0

0.5

1x 10

−16

x

u

exactconformal

Jul 2011 – p.16/16