GEOCHEMISTRY OF THE SURFACE EMISSIONS IN …...GEOCHEMISTRY OF THE SURFACE EMISSIONS IN THE CERRO...

14
GEOCHEMISTRY OF THE SURFACE EMISSIONS IN THE CERRO PRIETO GEOTHERMAL FIELD J. N. Valette IGPP-UCR, Riverside, California* I. Esquer-Patino CFE-Coordinadora Ejecutiva de Cerro Prieto ABSTRACT Five kinds of surface emissions, each with its own unique chemistry, are observed in the Cerro Prieto geothermal field. Two areas of active surface emissions are located on the western edge of the productive field: Cerro Prieto volcano in the north, and Laguna Volcano in the south. Isotopic compositions and ratios of the major elements show a similarity between hot spring water and geothermal reservoir waters. Moreover, changes in the chemistry of the hot springs since the beginning of the exploitation of the field in 1973 suggest a close relationship between hot spring and reservoir water. The chemistry of the various emissions is more or less influenced by temperature, humidity t wind, and rainfall. The hypothetical model proposed for hy- drothermal water circulation in the upper part of the system gives the possible relationships of the various types of surface emissions with each other and with the reservoir. INTRODUCTION The surface emissions of Cerro Prieto were the first indication of the existence of a geothermal field located in deltaic sediments of the Colorado River in Baja Cali- fornia (Mexico). This field shows temperatures as high as 350°C at tess than 2 km depth. A new chemical survey of the surface emissions at Cerro Prieto was initiated in January 1979 in order to study the changes occurred since the last detailed surveyS/6 and to determine the relationship of the emissions to the geothermal reservoir. During the field survey four morphological types of surface emissions were defined: Hot springs: Temperatures = 90°C, pH = 6.5 -8, Eh -25 mv to +100 mv. Mud pots and mud lakes: Temperatures 90-100°C, pH <8, Eh negative. * Present address U. S. Geological Survey, Menlo Park, Calif. 94025. Fumaroles: Temperatures in two ranges 45°C and 80-1 OO°C, pH = 2-5, Eh negative. Pools: Temperatures < 45°C, pH 1-5, Eh negative. The surface emissions (57 areas) were mapped and sampled for chemical analysis (Fig. 11. SAMPLING, STORAGE AND ANALYTICAL METHODS A total of 165 fluid samples were collected from Cerro Prieto and from two locations at Tule Check. Samples from hot springs and cool pools were collected by direct aspiration with a plastic syringe. Water was extracted from wet muds collected from mud pots by decantation and centrifugation. For some of the hot springs, mud 'pots, and fumaroles, the vapor phase was condensed using Teflon-coated pyrex funnels. In situ measurements of temperature, pH, oxidation potential and, where possible, flow conditions and natural radioactivity were carried our at each sample location. 3 Water samples were membrane filtered (pore diameter = 0.45 Il m) and stored in acid-washed pyrex and polyethylene con- tainers. Three types of samples were prepared: untreat- ed samples (for alkalinity and other major species) were stored under refrigeration and analyzed within one day; samples (for trace element analysis) acidified with 6 mill of ultrapure HCI, were also refrigerated; and untreated and acidified samples (for volatile elements analysis) frozen in the field using liquid nitrogen and transported in dry ice to a storage freezer. Atomic absorption analyses were made for Na, K, Li (flame emission) and for Mg, Mn, Si0 2 , Fe (ab- sorption). Ca was analyzed by titration with EDTA, CI by the Mohr method, and HCO- 3 by titration with orange methyl. Sulfate was analyzed by turbidimetry using a Spectronic 20. Neutron activation analyses were made for AI, V, and Mn. RESULTS The chemical and isotopic data (Tables 1-3) show a wide range of compositions among the superficial fluid samples.

Transcript of GEOCHEMISTRY OF THE SURFACE EMISSIONS IN …...GEOCHEMISTRY OF THE SURFACE EMISSIONS IN THE CERRO...

Page 1: GEOCHEMISTRY OF THE SURFACE EMISSIONS IN …...GEOCHEMISTRY OF THE SURFACE EMISSIONS IN THE CERRO PRIETO GEOTHERMAL FIELD J. N. Valette IGPP-UCR, Riverside, California* I. Esquer-Patino

GEOCHEMISTRY OF THE SURFACE EMISSIONS IN THE CERRO PRIETO GEOTHERMAL FIELD

J. N. Valette IGPP-UCR, Riverside, California* I. Esquer-Patino CFE-Coordinadora Ejecutiva de Cerro Prieto

ABSTRACT

Five kinds of surface emissions, each with its own unique chemistry, are observed in the Cerro Prieto geothermal field. Two areas of active surface emissions are located on the western edge of the productive field: Cerro Prieto volcano in the north, and Laguna Volcano in the south.

Isotopic compositions and ratios of the major elements show a similarity between hot spring water and geothermal reservoir waters. Moreover, changes in the chemistry of the hot springs since the beginning of the exploitation of the field in 1973 suggest a close relationship between hot spring and reservoir water.

The chemistry of the various emissions is more or less influenced by temperature, humidity t wind, and rainfall. The hypothetical model proposed for hy­drothermal water circulation in the upper part of the system gives the possible relationships of the various types of surface emissions with each other and with the reservoir.

INTRODUCTION

The surface emissions of Cerro Prieto were the first indication of the existence of a geothermal field located in deltaic sediments of the Colorado River in Baja Cali­fornia (Mexico). This field shows temperatures as high as 350°C at tess than 2 km depth.

A new chemical survey of the surface emissions at Cerro Prieto was initiated in January 1979 in order to study the changes occurred since the last detailed surveyS/6 and to determine the relationship of the emissions to the geothermal reservoir. During the field survey four morphological types of surface emissions were defined:

Hot springs: Temperatures = 90°C, pH = 6.5 -8, Eh -25 mv to +100 mv. Mud pots and mud lakes: Temperatures 90-100°C, pH <8, Eh negative.

* Present address U. S. Geological Survey, Menlo Park, Calif. 94025.

Fumaroles: Temperatures in two ranges ~ 45°C and 80-1 OO°C, pH = 2-5, Eh negative. Pools: Temperatures < 45°C, pH 1-5, Eh negative.

The surface emissions (57 areas) were mapped and sampled for chemical analysis (Fig. 11.

SAMPLING, STORAGE AND ANALYTICAL METHODS

A total of 165 fluid samples were collected from Cerro Prieto and from two locations at Tule Check. Samples from hot springs and cool pools were collected by direct aspiration with a plastic syringe. Water was extracted from wet muds collected from mud pots by decantation and centrifugation. For some of the hot springs, mud 'pots, and fumaroles, the vapor phase was condensed using Teflon-coated pyrex funnels. In situ measurements of temperature, pH, oxidation potential and, where possible, flow conditions and natural radioactivity were carried our at each sample location. 3 Water samples were membrane filtered (pore diameter = 0.45 Ilm ) and stored in acid-washed pyrex and polyethylene con­tainers. Three types of samples were prepared: untreat­ed samples (for alkalinity and other major species) were stored under refrigeration and analyzed within one day; samples (for trace element analysis) acidified with 6 mill of ultrapure HCI, were also refrigerated; and untreated and acidified samples (for volatile elements analysis) frozen in the field using liquid nitrogen and transported in dry ice to a storage freezer.

Atomic absorption analyses were made for Na, K, Li (flame emission) and for Mg, Mn, Si02 , Fe (ab­sorption). Ca was analyzed by titration with EDTA, CI by the Mohr method, and HCO-3 by titration with orange methyl. Sulfate was analyzed by turbidimetry using a Spectronic 20. Neutron activation analyses were made for AI, V, and Mn.

RESULTS

The chemical and isotopic data (Tables 1-3) show a wide range of compositions among the superficial fluid samples.

Page 2: GEOCHEMISTRY OF THE SURFACE EMISSIONS IN …...GEOCHEMISTRY OF THE SURFACE EMISSIONS IN THE CERRO PRIETO GEOTHERMAL FIELD J. N. Valette IGPP-UCR, Riverside, California* I. Esquer-Patino

242

I o KM

N

°M94

° WELL • SPRING

o POOL ... MUD POT C:::. GEYSER

o ACTIVE AREAS IN 1979

Figure 1. Location map of the surface emissions of Cerro Prieto geothermal field.

Page 3: GEOCHEMISTRY OF THE SURFACE EMISSIONS IN …...GEOCHEMISTRY OF THE SURFACE EMISSIONS IN THE CERRO PRIETO GEOTHERMAL FIELD J. N. Valette IGPP-UCR, Riverside, California* I. Esquer-Patino

243

TABLE 1. CHEMICAL COMPOSITION OF THE SURFACE EMISSIONS FROM CERRO PRIETO AND TULE CHECK

A.A. A.A. T. A.A. M. Tur. 1. A.A. A.A. A.A. A.A. I'.A. h,A. /l.A. Ppn! Ppn! ppm Ppn! ppm ppm ppm ppm ppm PPi,} ~g/l.J!! ...f! .l!9. ..ll ~ He03 -1:i~ .l.!!. ...l!n... _V_ ~

6480 843 565 104 11008 107 304 14.8 116 0.82 0.84 32 2.25 0.67

2 7374 870 729 167 12866 38 293 16.1 103 0.93 0.99 141 0.55 0.93

3 5567 798 399 31. 6 9549 31 213 11 .7 91 3.40 0.38 77 1.17 0.30

3b 5301 702 413 66 8722 64 11.1 97 1.63 4.10 205 1.26 2.10

4 6141 824 569. 259 10674 28 347 13.0 104 2.40 1.53 105 1.43 0.99

5 953 157 2285 163 1258 5203 0 1. 5 200 53.00 1.88 93520 171.00 1.55

6 13352 1769 689 168 22396 1547 0 28.8 148 89.00 2.70 76141 116.00 2.30

40446 5055 4810 852 77381 963 751' 97.7 86 2.40 4.40 246 1.54 3.03

8 4856 661 365 20 8577 104 112 12.6 70 0.49 1.34 27 1.67 6.6xl0-3

9 62 3.87 0.14

9 bis 98 10 14 0.78 51 80 194 0.38 32 0.79 0.06 57 16.30 0.01

9 ter 10861 935 1170 340 1659~ 1912 25.0 124 2.34 1.40 75 2.20 2.53

10-473 5678 1552 465 24.7 9900 5 166 16.0 130 0.18 0.46 30 1.40 0.43

11 4165 610 391 29.3 7624 211 249 13.4 157 0.65 1.28 62 0.71 1.34

12 vas que 6709 648 1178 288 11770 3750 3.4 285 52.50 0.58 67907 60.00 10.05

12 mud pot 2776 163 641 349 3124 4957 3.8 285 185.00 11.50 126466 135.00 9.tl2

13 45495 6578 4148 118 833!tl 2737 a 181.5 131 27.60 6.40 28234 37.00 5.82

14 8956 1390 693 166 15249 1659 0 19.5 248 40.20 1.91 57338 100.00 1.64

15 22429 332 I 2285 29 40028 3849 0 69.8 190 66.70 7.30 81378 102.00 7.53

16 30302 2927 3427 2872 63187 2004 10 7.3 46 9.36 2.18 1481 6.10 2.32

17 10016 1008 673 198 15001 1895 62 17.5 133 0.65 4.00 45 4.00 0.05

18 23959 2610 942 1193 39692 15148 0 49.6 231 701.00 11.90 922890 1340.00 20.69

19 2320 2559 2445 380 40599 2312 760 55.8 81 1.40 4.60 57.5 3.10 1.44

19m.p. 6087 536 723 364 10960 2189 21.8 18 0.12 0.72 104 4.27 0.56

20 5090 592 341 20 8512 80 171 12.3 69 0.34 0.27 43 3.43 0.25

21 m.p. 160 19 38 2.0 14 307 124 2.3 30 0.20 0.04

22 5933 547 293 2.4 9547 279 355 13.4 117 0.35 0.96 79.5 2.61 0.76

23 5008 612 369 22.6 8766 30 241 5.6 59 0.50 1.04 63 1.22 0.63

2411.p. 2231 122 842 14.8 3386 3499 16 4.8 16 0.45 1.43 36 1.43 1.19

25 7779 949 705 50.0 12961 1828 a 13.1 200 6.20 1.21 10354 15.60 1.18

26 4631 482 325 7.34 7913 10 50 9.4 121. 5 0.18 0.05 46 1.02 0.03

27 4671 578 389 141 8310 14 483 14.0 108 0.• 50 1.46 47 0.28 1.03

28 4463 553 357 t3 8344 15 128 16.5 82 0.22 1.83 45 0.30 0.22

29 5115 664 357 4.6 8794 31 65 12.4 73 0.35 0.13 34 4.05 0.03

30 3891 421 307 176 7052 14 420 7.8 137 0.41 0.15 38 0.31 0.08

31 4644 607 331 17 .01 8061 6 231 10.1. 173.5 0.63 0.34 29 0.11 0.49

32A 37911 4860 1964 772 65249 7151 o 86.6 264 134.00 13.00 282369 172 11.99

32B 126 2.41 22.21

33 68411 10228 892 91084 39464 178 320 1468.00 31.20

34 9827 1972 874 153 11702 1161 0 27.5 261 38.8 3.10 2583 11.93 2.37

35 21572 3605 2886 309 40922 3475 314 62.7 260 1.61 3.40 48.5 5.75 3.37

--continued

Page 4: GEOCHEMISTRY OF THE SURFACE EMISSIONS IN …...GEOCHEMISTRY OF THE SURFACE EMISSIONS IN THE CERRO PRIETO GEOTHERMAL FIELD J. N. Valette IGPP-UCR, Riverside, California* I. Esquer-Patino

244

Continuation of Table 1

A.A. A.A. T. M. Tur T. . A.A. A.A. A.A. A.A. N.A. Il.A. Il.A. ppm ppm ppm ppm ppm ppm ppm ppm ~9!1p~: Plt~ ~R{1 p~~.Jl! ..L -.f! ...Q ~ HeOl -1.! .§1Q2 _V_

36 64 22 102 15.5 35 1913 26 0.08 116 3.71 0.44 1471 7.~O 0.36

37 m.p. 6386 372 2152 4.8 11804 2613 28 14.70 23 1.15 0.48 54 12.14 0.40

388 1859 165 653 11.4 2709 3457 0 4.40 185 111.00 4.80 153 2.74 3.33

38A 87 20 48 7.5 66 891 54 ~ 66 1.49 0.19 8145 8.65 0.\1

39 1888 65 934 2.4 2841 2157 61 4.90 25 0.52 0.28 57 4.34 0.23

40 3853 275 479 22.7 6949 1202 0 7.4 147 11.50 1.36 29024 24 1.23

41 2921 122 345 24.1 4710 182 293 6.4 40 0.19 0.19 i7 2.40 0.14

42 567 53 42 7.24 603 513 102 6.2 39 4.04 0.17 31744 153 0.72

43 3808 689 333 18.2 7054 155 147 9.6 77 0.74 0.22 32 0.46 0.19

44 15963 1425 1242 909 26337 7214 o 35 228 54.30 22.3) 171468 33 18.45

45 301 83 104 0.89 530 3307 o 221 3.53 0.08 50570 31 0.21

46 135 178 152 92 72 5513 o 0.38 190 141.00 2.73 12781 79 2.30

47 5263 271 1010 20 9424 4087 o 9.1 261 68.30 0.97 83538 51 0.78

48 32 13 18 9.5 58 1756 0 & 117 1.26 0.19 125 2.10 0.16

49 5004 1054 509 4.6 10158 576 0 15 192 6.70 1.00 4616 2.10 0.96

50 Blanche 5162 770 455 9.1 9350 257 178 7.6 143 0.54 0.52 102 0.32 0.48

50 Noire 5958 1126 513 28.4 12069 81 252 18.4 125 1.35 0.72 47 0.44 0.41

51 Vert 5205 1205 433 6.2 11362 66 62 16.4 101 0.71 0.1 96 2.2 0.18

51 Blanc 5205 1205 433 6.2 11362 66 62 16.4 101 0.71 0.1 42 1.6 0.08

52 Source 6551 1178 974 3.1 11710 1762 41 16.3 110 0.95 1.02 12 0.86 0.95

52111.p. 3597 12 3.24

53 3047 243 597 21 5113 197 614 8.6 75 0.54 2.0 55 1.15 1.87

A-54 6388 1004 570 705 5819 22500 o 17.2 266 492 20.5 61826 829 15.29

55-101 5814 706 441 2.4 9107 8 306 15.5 122 0.91 0.53 67.5 0.76 0.49

.60 3953 573 311 5.4 7101 8 511 9.6 204 0.36 0.40 204 1.02 0.31

61 5368 787 489 184 9099 14 976 10.9 160 3.83 1.14 4616 0.35 0.94

Tul A 4041 459 441 7.7 7170 99 26 8.3 116 0.87 0.11 125 0.50 0.05

Tul 8 3739 429 449 22 6812 114 91 7.8 127 0.41 0.32 35 0.57 0.27

'S3 26 0.06 0.16

AA A tomic' Absorption M Mohr Method N.A. Neutron Activation € traces T Titration Tur Turbidimetry Not determined m.p.= mud pot

TABLE 2. DEUTERIUM AND OXYGEN·18 COMPOSITION OF THE SURFACE EMISSIONS OF CERRO PRIETO AND TULE CHECK FIELDS

Sampl e 00* Sample

Nl -79 -7.15 NI0-473 -94.2

N2 'V-87 -7.15 NIl -96 -8.63

N3 -92 -7.45 N12 -97 -8.86

N4 -91. 5 -7.45 N13 -39.5 -5.75 N5 -68.7 -3.73 N14 -68.7 -2.23

N6 -69.6 -2.53 N15 -54.6 0.78

N7 'V-60.5 -2.61 Tul A -74.7 -7.53

N8 'V-92 -7.66 Tul B -82.0 -7.66

* T. Coplen analysis. **R. Forester and C. Randall analysis.

Page 5: GEOCHEMISTRY OF THE SURFACE EMISSIONS IN …...GEOCHEMISTRY OF THE SURFACE EMISSIONS IN THE CERRO PRIETO GEOTHERMAL FIELD J. N. Valette IGPP-UCR, Riverside, California* I. Esquer-Patino

245

TABLE 3. CHEMICAL COMPOSITION OF THE STEAM CONDENSATES COLLECTED IN CERRO PRIETO FIELD

Sample Ca ppm

t<lq ppm

Na -ppm

K-ppm C1 ppm

A1* l1g/l

V* llg/l

Mn*

NllCond. <7 <10 53.40 11 183 198 2.40 0.11 N12Cond. 12.20 < 5 19.20 9 65 107 0.36 3.67 N21Cond. 0.65 < 1.4 1.83 0.7 6.40 15.5 0.01 3.36x10-3

N28Cond. 24 25 131 52 227 1758 7.70 0.47 N31Cond. <8.40 14 14 7.8 440 125 0.11 0.01 N36Cond. 0.45 4 0.52 3.1 1.79 138 0.10 9.20x10-3

N39Cond. 18.90 10.5 7.96 3.8 19.60 62.5 1.63 0.07 N42Cond. 9.10 6 8.54 3.3 24 117 2.01 0.02 N46Cond. 2.51 < 3 1. 78 0.9 6.71 106 0.22 5.53x10-3

N52Cond. 7.60 2.3 - - 10 89 0.36 0.10

Ca, Mg, .... Atomic absorption analysis AI" , ...... Neutron activation analysis

TABLE 4. CHEMICAL CHARACTER~STICS OF THE DIFFERENT CATEGORIES OF WATERS COLLECTED FROM THE CERRO PRIETO FIELD

ppm ppm ppm ppm ppm ppm ppm Sample Category TOe pH Na K Ca Mg Cl 5°4 HC03

N29 Spring 89 7.6 5115 664 357 4.6 8794 31 65

N21 Mud pot 100 6.8 160 19 38 2.0 14 307 124

N46 Geyser 99.5 2.0 92 157 128 72 31 5088 0

N12 Condensate - 8.5 19 9 12 5 65 501 4

N 5 Cold pool 22 2.0 953 157 2285 163 1258 5203 0

ppm lJpml 119/1 119/1 ppm ppm Sample li Si02 Al* V* Fe Mn Na/t( Na/li Na/Ca C1/S04 Ca/Mg

N29 12.4 73 34 4.05 0.35 0.13 13.10 124.0 24.97 768 47.10 N21 2.3 30 - - 0.20 0.04 14.32 21 7.34 0.12 11.50 N46 0.06 400 12800 79 117 1.83 1.00 107 1. 55 0.12 1. 00 N12 - - 107 0.36 - - 3.58 - 3.31 - -N 5 1.5 200 93500 171 53 1.88 10.32 191.7 0.73 0.60 8.50

Na, K, .... Atomic absorption analysis AI * ...... Neutron activation analysis

Page 6: GEOCHEMISTRY OF THE SURFACE EMISSIONS IN …...GEOCHEMISTRY OF THE SURFACE EMISSIONS IN THE CERRO PRIETO GEOTHERMAL FIELD J. N. Valette IGPP-UCR, Riverside, California* I. Esquer-Patino

---

246

A careful analysis of the results reveals the existence of a fifth category of emissions, the "geysers," not easily de­tectable by their morphological aspect. They have a high temperature ('" 100°C), low pH (- 2) and low Eh « 0). These springs are not true geysers but do spout irregularly.

Five distinct types of waters characterize the various emissions (Table 4):

1. Hot Spring: Hot springs are characterized by salinities of '" 15 gil, composed dominantly of NaC!' High silica values (::: 100 ppm) are typical, as are low val­uesfor sulfate = (~35 ppm) and aluminum «50 ppb).

2. Mud volcano, mud pot and mud lake: Salinities in these features range from 3-15 gil but are typically lower than 5 gil. Sulfate is generally abundant and silica contents are less than 100 ppm.

3. "Geyser": Total salinities approximate 2 gil. High silica values are typical and reach 400 ppm in indi­vidual instances; Na/K ratios are quite low ('" 1.29) and aluminum contents are often high (max. 80 ppm).

4. Fumarole condensate: The pH of the' fumarole condensate waters varies from 3 (fumarole) to 8.5 (mud pot), depending on the type of emission. These are waters of extremely low salinity « I g/l), where sulfate (- 500 ppm) and chloride (-100 ppm) are the dominant species.

5. Cold pool: Salinities in cold pools are as high as 130 gil. High S04 values are typical and Fe, Mn, AI, and V are markedly concentrated.

INTERPRETATION OF THE RESULTS

I. CHEMICAL EVOLUTION OF THE SURFACE EMISSIONS

A. Short term evolution

1. Influence of evaporation. ,During the summer (June-August) in the Imperial Valley, average tempera­tures reach 32°C in the air and 21°C (at 1 m depth) in the soil (data from the Meteorologic Center of Riverside); the consequent evaporation can' reach 40 mm of water per month. We observed little effect of evaporation on the "geysers," springs, and fumaroles. However, cool pools and mud pots showed significant evaporation effects. This is clearly indicated by a shift in the 018 0/01) com­~osition of the pools (Table 2 and Fig. 2) and by a change In the chemistry of the pools. For example concentra­tion increases in the water of pool N47 (samples in March and August 1979) were: Na, +64%; Ca, +83%; CI, +870/0; HC03 , +100%; Li, +89%: and salinity, +440/0.

Even though some springs dJsappear during the sum­mer (N8 for example), they do not show evident effects of evaporation.

2. Influence of rainfall. Analyses of samples taken

+ SMOW • GEOTHERMAL BRINE

o SPRINGS C P o'* ~20 ~ TUUCHE"

• POOLS

~ -40 ::;;: (/)

RAIN

;:: -60 X w > ;::: -80 « ..J w :; -100 to

-'20

SO,e RELATIVE TO SMOW IN %0

Figure 2. Deuterium and oxygen-18 composition of the sur­face emissions of Cerro Prieto and Tule Check fields.

from the different kinds of emissions just after heavy rains in March and August, show a general decrease of the elementary concentrations; the effect of rainfall is oppo­site to that of evaporation.

As an example of the influence of rain on the chem­istry of some springs we have chosen the chemical changes of spring N21 in 19724 • Decrease of Na, CI, Si02 is notice­able after the rainfall; K has a strange behavior with a temporary decrease after the rain, on a pattern of general increase. In general, rainfall can cause concentration changes as great as 15%.

Thus rainfall affects the chemistry of most of the surface emissions by influx of cold water to the shallow geothermal system.

B. Long term evolution

Comparing the area of surface emissions in 19581

- ACT IVE IN 1956

- ACTiVE IN 1958 ANO 1979

o

• 0 0 0

.=--.... 'CJt N

o M-3

Figure 3. Modifications of the activity of the surface emissions of the Cerro Prieto field; P-1. P-2, M-3 = productive wells.

Page 7: GEOCHEMISTRY OF THE SURFACE EMISSIONS IN …...GEOCHEMISTRY OF THE SURFACE EMISSIONS IN THE CERRO PRIETO GEOTHERMAL FIELD J. N. Valette IGPP-UCR, Riverside, California* I. Esquer-Patino

247

and in 1979, a large reduction of activity over 20 years is obvious (Fig. 3). Often we have found extinct mud vol­canoes of 4 meters height, attesting to this decrease of ac­tivity, So there is a general decrease of the intensity of the phenomena as well as of the extension of the emissions.

This decrease of the amount of the emissions since 1958 is connected with a change in their chemistryl!4!S:

For pools, large increases in salinity have ap­peared along with decreasing temperatures, A reduction of the salinity has occured at the same time as a rise in temperature for the waters collected from the mud pots, In the springs there is a strong increase in the sa­linity with all elements concentrated except HC03 and Si02 ,

The effect of evaporation and rainfall on the chemis­try of some emissions was demonstrated previously. In or­der to explain the chemical variations observed since 1958, a change in these parameters has to be checked.

- The temperature and evaporation cycles have been constant over the period of time 'Studied with high temperature and evaporation occurring in summer.

- The volume of rainfall has increased since 1968 which should cause dilution of the waters; we ob"Serve exactly the opposite for pools and springs. For the mud pots, the reduction of the general salinity could be due to rainfall, but other

Na/K ATOMIC

t i

Figure 4. Distribution map of the Na/K atomic ratio of the sur­face emissions of Cerro Prieto. Small full circles represent surface emissions, large full circles represent productive wells.

processes can explain this also (Le., an increase of the quantity of condensate waters in this part of the system}.

In 1973 exploitation of the geothermal field started and the chemical changes observed, especially for the springs, could be the result of this exploitation. As a result of steam production, the l total quantity of the water in the reservoir can decrease, and the reservoir water can be­come more concentrated. The increase in spring salinity and the decrease of general activity of surface emissions during the same time may be related to the same pheno­mena. That is to say that the springs may be directly related to the reservoir waters. The implication of this hipothesis is that the recharge of the reservoir is slower than the rate of production and that reinjection of fluids is urgent. Finally, the general evolution of the chemistry of the springs appears to be related to the history of the field.

II. GEOGRAPHIC PATTERN OF THE CHEMISTRY

OF THE SURFACE EMISSIONS

A. Distribution of chemical parameters in the field.

Because springs occupy a special place in the chem­istry of the surface emissions, and in order to follow the geographic distributions of specific elements such as silica, chlorine or ratios such as Na/K, different charts were constructed, the results obtained for the hot springs

o 2 "'" L _-'------',

10

o

o

Figure 5. Distribution map of the Na/K atomic ratio of the spring waters of Cerro Prieto. Small full circles represent surface emissions; large full circles represent productive wells.

Page 8: GEOCHEMISTRY OF THE SURFACE EMISSIONS IN …...GEOCHEMISTRY OF THE SURFACE EMISSIONS IN THE CERRO PRIETO GEOTHERMAL FIELD J. N. Valette IGPP-UCR, Riverside, California* I. Esquer-Patino

248

are considered separately from those obtained for the sur­face emissions in general. We observe:

Silica is concentrated in the emissions of the southern part of the field, near the "geysers" in LagUna Volcano; high silica values occur in the springs in Laguna Volcano and near well M-1A. Chloride is high for all the emissions on the west­ern edge of the field and especially in the far North and South. The Na/K ratio decreases in the center of the surface emissions area (Figs. 4-5). This parameter as well as Si02 is closely related to the tempera­ture of the emissions and to water of deep origin. A special zone appears that may be related to a fault in the south central area of the surface emanations field. The increase in CI at the edges is mainly related to increased evaporation.

6//':

/:

" 5

104

E rr 103 rr

6 20

5 20

102

3 20

50 2A 10

20

IA 10

9-,,I , I , J '0, I \I I I IAI

I I I J I

WELLS

B. Comparison between well waters and surface emission waters

Comparison of the chemical results obtained for the surface emanations and for the well waters of the same area4 shows the similarity between springs and wells in the major element ratios and on Schoeller di­agrams (Figs. 6-7). Other emissions, on the contrary, have greatly different chemical patterns. Isotopic data also demonstrate these tendencies (Fig. 2). The deuterium and oxygen-18 of the Cerro Prieto springs plot close to the geothermal brine.2 / 8 On the contrary, pools (N5-N6...) plot at higher values of 618 0 and 60 show­ing the effects of other processes, especially evaporation and mixing with meteoric waters.

Some relationship may exist between three kinds of surface emissions: "geysers," mud pots, and condensate waters. The low salinity and the elemental ratios suggest an affiliation between "geysers" and condensate, and

210 28 10 1 t>

27 10

29 10 SPRINGS 31 10

26 10 ~30 10

I........

Li HC03 Co Si02 K No CI S04

Figure 6. Schoeller diagrams of the well waters collected in the western side of the productive field. Figure 7. Schoeller diagrams of the Cerro prieto springs.

Page 9: GEOCHEMISTRY OF THE SURFACE EMISSIONS IN …...GEOCHEMISTRY OF THE SURFACE EMISSIONS IN THE CERRO PRIETO GEOTHERMAL FIELD J. N. Valette IGPP-UCR, Riverside, California* I. Esquer-Patino

249

mud pots and condensate. However, in mud pots mixing of dilute shallow ground water, steam condensate and concentrated waters similar to the spring waters may occur.

C. Comparison of Cerro Prieto with Other Areas

Some samples were collected in Tule Check, an area under exploration by CFE, located about 17 km northwest of the Cerro Prieto volcano.

When chemical compositions of Tule Check springs (Table 1) are plotted in a Schoeller diagram (Fig. 8) and compared with compositions of Cerro Prieto springs, we see general similarities appear. These similarities are also demonstrated by silica and lithium contents and by elemental ratios, especially Na/K ratios (example N26 orN28 with Tul A or Tul B).

Deuterium and oxygen-18 compositions (Fig. 2) of the Tule Check springs are close to that of the geo­thermal brine of Cerro Prieto but with a slight shift of 5 D to higher values. This may suggest the action of rainfall on the waters and thus a greater influx of meteoric water into the convective system.

1000

E 0. 0.

I I

f I100

I I I I

I I

I /

I

50 I I I I

/ I

B 10

A

Li HC03 Co Si02 K No CI

Figure 8. Schoeller diagrams of the Tule Check springs.

These facts suggest that geothermal systems may exist in other areas surrounding Cerro Prieto, but more data is required.

A PROPOSED MODEL FOR CERRO PRIETO SURFACE EMISSIONS

All of these results suggest that the different kinds of emissions result from several phenomena. Nevertheless, the springs seem to be in· direct connection with the waters of the geothermal reservoir and are the natural expression of the deep waters.

The presentation of a detailed model for the evolu­tion of the chemical characteristics of the various cat­egories of the surface emissions must await further ana­lysis of the data and the model presented here must be regarded as preliminary. Nevertheless, we can suggest the interaction of severa! processes: adiabatic cooling of reservoir water with concentration of dissolved salts and loss of steam; condensation of the vapor produced during boiling; mixing of the various fluid types with each other and with surface and near-surface meteoric waters; and surface evaporative concentration of all types of fluid. Clearly, the evolution of the surface emissions represents a complex history of processes occurring both within the reservoir, at the surface, and at various points between (Fig. 9). For example, it seems that the springs are mainly conductively cooled waters from the reservoir mixed slightly with concentrated waters produced by boiling, steam and gas, condensate waters, shallow aquifer waters, and meteoric waters.

SuPf'ACi

Figure 9. Hypothetical model for the Cerro Prieto surface emis­sions. 1= Reservoir waters 2= Recharge processes ~slow-fast 3 Concentrated waters by boiling 4 Steam and gas production after boiling 5 = Steam condensation 6 = Rainfall 7 = Evaporation m = Mixing processes

Page 10: GEOCHEMISTRY OF THE SURFACE EMISSIONS IN …...GEOCHEMISTRY OF THE SURFACE EMISSIONS IN THE CERRO PRIETO GEOTHERMAL FIELD J. N. Valette IGPP-UCR, Riverside, California* I. Esquer-Patino

250

In order to understand better what processes are involved in the Cerro Prieto geothermal field we have tried also to find the possible origins of the water.

Three different possible sources of water in this system are Colorado River water, rainwater, and sea water. The hypothesis generally accepted for the source of the Cerro Prieto geothermal water is Colorado River water which has undergone strong evaporation and in­teraction with the surrounding rocks.

The ratio of the more stable elements such as Na and CI which are less affected by water-rock interaction can be compared:

Sea water Na/CI 0.55

Colorado River Na/CI' 1.24 (1975) - 1.25 (1977)

Precipitation Na/Cllo =

Cerro Prieto springs: N28 Na/CI = 0.58 N51 Na/Cl = 0.45 N60 Na/CI = 0.55

average = 0.55

This ratio is very close to that of sea water and may suggest recharge to the system by this water (or connate water). This hypothesis was previously suggested by com­parisons of CI/Br ratios' and by the relation of chloride and deuterium in bore waters.9 What we observe for the springs is another argument in favor of this hypothesis.

CONCLUSIONS AND SUMMARY

In the results presented here two points are emphasized. 1) At Cerro Prieto it seems that a close relationship may exist between the hot springs and the reservoir. 2) Changes in chemistry of the springs appear to have fol­lowed the exploitation of the field since 1973. This offers possibilites for monitoring the history and the life of the reservoir. The proposed "model shows the complexity of the processes occurring in the upper part of the system. More research is needed to improve this model and in particular, to try to understand the mixing problems.

ACKNOWLEDGEMENTS

We are grateful to the staff of the Superintendencia General de Estudios of the Coordinadora Ejecutiva de Cerro Prieto for help given in the field and in their laboratory and for all the in­formation they provided us. We want also to thank W. Elders, J. Hoagland, and members of IGPP-UCR for many fruitful dis­cussions, Linda Jankov for drafting, and J. Bischoff, A. Trues­dell, M. Lippmann, P. Bennen, and J. Henning for editing this manuscript. This work was done with the support of CFE and of the U. S. Department of Energy Geothermal Reservoir Manage· ment Program (W. Elders/University of California Riverside grand.

REFERENCES

1. Calderon, A., 1958, Estudio preliminar geologico del area al sur y sureste de Mexicali, B. C. para aprovechar los recursos geotermicos: GEOCA·Geologos Consultores Asociados, Rep. No. EG-l-58, 69p.

2. Coplen T., 1972, Origin of geothermal waters in the Imperial Valley of southern California, in R. W. Rex, ed., 1972, Cooperative Investigation of Geothermal Resources in the Imperial Valley Area and their Potential Value for Desalt­ing of Water and other Purposes: Univ. Calif. Riverside Report IGPP-UCR-72·33, pp. EI·E31.

3. Elders, W. A., Hoagland, J. R., Valene, J. N., Williams, A., Barker, C., and Collier, P., 1980, Final Report on the work at Cerro Prieto in 1979: in press, IGPP·UCR.

4. Manon, A., Mazor, E., Jimenez, M., Sanchez, A., Fausto, J. and Zenizo, C., 1977, Extensive geochemical studies in the geothermal field of Cerro Prieto: Lawrence Berkeley Laboratory Report LBL 7019, 113 p.

5. Mercado, S., 1968, Localizacion de zonas de maxima actividad hidrotermal por medio de proporciones qulmicas, Campo geotermico de Cerro Prieto, Mexico: Tercer Congreso Mexi· cano de Qufmica, Mexico, Sociedad Mexicana de QUI­mica Pura y Aplicada, 32 p.

6. Mercado, S., 1970, High-activity hydrothermal zones detect· ed by Na/K, Cerro Prieto, Mexico, in Proceedings U. N Symp. on the Dev. and Uti!. of Geothermal Resources, Pisa, 1970: Geothermics, Spec. Issue 2, v. 2, p. 1367·1376.

7. Rex, R. W., 1972, Origin of the salt of the Imperial Valley and surrounding watershed areas, in R. W. Rex, ed., 1972, Cooperative Investigation of Geothermal Resources in the Imperial Valley Area and their Potential Value for Desalting of Water and other Purposes: Univ. Calif. River­side Report IGPP.UCR·72·33, pp. F1·F38.

8. Truesdell, A. H., RYe, R. 0., Pearson, F. J., Jr., Olson, E. R., Nehring, N. L, Huebner, M. A., and Coplen, T. B., 1978, Preliminary isotopic studies of fluids from the Cerro Prieto geothermal field, in Proceedings 1st SympOsium on the Cerro Prieto Geothermal Field, Baja California, Mexico, Lawrence Berkeley Laboratory Report LB L 7098, pp. 95·101.

9. Truesdell, A. H., Nehring, N. L, Thompson, J. M., Coplen, T. B., II, Des Marais, D. J., Janik, C. J., and Mehl, D. C., 1979, Geochemical studies of the Cerro Prieto reservoir fluid (extended abs.): Program 2nd Symp. Cerro Prieto geothermal field, Baja California, Mexico p. 29·33.

10. Wedepohl, K. H., 1966, Die Geochemie der Gewiisser: Natur· wissenschaften, v. 53, no. 14, p. 352·364.

Page 11: GEOCHEMISTRY OF THE SURFACE EMISSIONS IN …...GEOCHEMISTRY OF THE SURFACE EMISSIONS IN THE CERRO PRIETO GEOTHERMAL FIELD J. N. Valette IGPP-UCR, Riverside, California* I. Esquer-Patino

GEOQUIMICA DE LAS EMISIONES SUPERFICIALES DEL CAMPO GEOTERMICO DE CERRO PRIETO

RESUMEN

En el campo geotermico de Cerro Prieto se han observado cinco clases de emisiones superficiales, cada una con su qu(mica particular. Existen dos areas de emisiones super­ficiales activas sobre el borde occidental del campo pro­ductivo: el volcan de Cerro Prieto al norte y Laguna Vol­cano al sur.

Las composiciones isotopicas y las relaciones de los elementos principales indican una similitud entre las aguas de los manantiales calientes y las del yacimiento geoter­mico. Por otra parte, los cam bios que se producen en la qu(mica de los manantiales calientes desde que comenz6 la explotacion del campo en 1973, sugieren una relacion estrecha entre las aguas de los mismos y las-del yacimiento.

La temperatura, humedad, viento y precipitacion pluvial influyen mas 0 menos la qufmica de dichas emisio­nes. EI modelo hipotetico propuesto para la circulacion del agua hidrotermica en la parte superior del sistema muestra las posibles relaciones de los diferentes tipos de emisiones superficiales entre sf y con el yacimiento.

INTRODUCCION

Las emisiones superficiales de Cerro Prieto fueron el pri­mer indicio de la existencia de un campo geotermico 10­calizado en los sedimentos deltaicos del Rio Colorado en Baja California (Mexico). En dicho campo las temperatu­ras alcanzan hasta 350°C a menos de 2 km de profundidad.

En enero de 1979 se inicio un nuevo estudio qui­mico de las emisiones superficiales en Cerro Prieto para observar los cambios ocurridos a partir del ultimo examen detallados/ 6 y determinar la relacion de las emisiones con el yacimiento geotermico. A 10 largo de este estudio del campo se definieron cuatro tipos morfol6gicos de emisio­nes superficiales:

Manantiales calientes: Temperaturas = 90°C, pH = 6.5-8, Eh -25 mv a +100 mv. Calderas y lagunas de lodo: Temperaturas

90-1 OOoC, pH <8, Eh negativo . . Fumarolas: Temperaturas en dos gamas -- 45°C Y 80-1 OO°C, pH = 2-5, Eh negativo.

- Charcos: Temperaturas <45°C, pH = 1-5, Eh negativo.

Las emisiones superficiales (57 areas) fueron carto­grafiadas y muestreadas para analisis qufmicos (Fig. 1).

MUESTREO, ALMACENAMIENTO Y METODOS ANALITICOS

En Cerro Prieto yen dos lugares en Tule Check, se recogie­ron un total de 165 muestras de fluido. Las muestras de manantiales calientes y charcos frlos se obtuvieron por aspiracion directa con una jeringa plastica. Se extrajo el agua de lodos humedos recogidos en calderas de lodo me­diante decantacion y centrifugaciOn. En algunas de las fuentes termicas, calderas de lodo y fumarolas, se usa ron embudos pyrex cubiertos de teflon para condensar la fase de vapor. Se lIevaron a cabo mediciones in situ de tempe­ratura, pH, potencial de oxidacion y, donde fue posible, de las condiciones del flujo y radioactividad natural en cada lugar muestreado. Las muestras de agua se filtraron con membranas (diametro de poro = 0.45 Ilm) y se alma­cenaron en frascos de pyrex y de polietileno lavados con acido. Se prepararon tres tipos de muestras: las muestras no tratadas (para alcalinidad y otras especies abundantes) se almacenaron bajo refrigeracion y se analizaron en el dia; las muestras (para anal isis de elementos traza) acidi­ficadas con 6 mill de HCI ultrapuro, tambj(~n se refrige­raron, y las muestras no tratadas y acidificadas (para ana­lisis de elementos volatiles) se congelaron en el campo al utilizar nitrogeno I fquido y se transportaron en hielo seco a un deposito frigor{fico.

Se hicieron anal isis de absorci6n atomica para Nat K y Li (emision de llama), y para Mg, Mn, Si02 y Fe (absorci6n). EI. Ca se analiz6 mediante titraci6n con EDT A, el CI por el metodo Mohr y el HCQ3 por titracion con metilo naranja. EI sulfato se analiz6 por turbidimetrfa, se uso un Spectronic 20. Se hicieron amilisis de activacion neutronica para AI, V y Mn.

RESULTADOS

Los datos qufmicos e isotopicos (Tablas 1-3) muestran una amplia gama de composiciones entre las muestras de flui­do superficial. Un analisis cuidadoso de los resultados re­vela la existencia de una quinta categorfa de emisiones, los geysers, no detectables facilmente por sus aspectos morfologicos. Tienen una temperatura alta (- 100°C), bajo pH (- 2) y bajo Eh «0). Estos manantiales no son verdaderos geysers pero emiten chorros irregularmente.

Page 12: GEOCHEMISTRY OF THE SURFACE EMISSIONS IN …...GEOCHEMISTRY OF THE SURFACE EMISSIONS IN THE CERRO PRIETO GEOTHERMAL FIELD J. N. Valette IGPP-UCR, Riverside, California* I. Esquer-Patino

252

Cinco tipos diferentes de aguas caracterizan las di­versas emisiones (Tabla 4):

1. Manantiales calientes: los manantiales calientes se caracterizan por salinidades de 15 g/I compuestas primor­dialmente por NaC!. Los valores elevados de sllice son d­picos (e::: 100 ppm) y tambiE~n bajos val ores de sulfato = (";;; 35 ppm) y aluminio « 50 ppb).

2. Volcanes de lodo, calderas de lodo, y lagunas de lodo: En ellos las salinidades varian entre 3 y 15 g/I, pero tlpicamente estan por debajo de 5 g/I. Generalmente, el sulfato es abundante y los contenidos de sflice son meno· res que 100 ppm.

3. Geysers: Las salinidades totales son aproximada­mente 2 g/1. Los altos valores de sllice son tlpicos, alcan­zan 400 ppm en algunos casos; las razones Na/K son bas­tante bajas (~ 1.29) y a menudo el contenido de aluminio es elevado (max. 80 ppm).

4. Condensados de fumarolas: EI pH de las aguas condensadas de fumarolas varia entre 3 (fumarola) y 8.5 (caldera de lodo) dependiendo del tipo de emisi6n. Estas son aguas de salinidad extremadamente baja « 1 g/l), donde el sulfato (~ 500 ppm) y el cloruro (~ 100 ppm) son las especies dominantes.

5. Charcos frlos: Las salinidades alcanzan hasta 130 g/1. Los valores altos de S04 y el Fe, Mn, AI y V son tf­picos y estan marcadamente concentrados.

INTERPRETACION DE LOS RESULTADOS

I. EVOLUCION QUIMICA DE LAS EMISIONES

SUPERFICIALES

A. Evolucion a corto plazo

1. Influencia de la evaporaci6n: En Imperial Valley durante el verano (junio-agosto), las temperaturas prome­dio alcanzan 32°C en el aire y 21°C (a 1 m de profundi­dad) en el suelo (datos del Meteorologic Center of River­side); la evaporaci6n consiguiente puede alcanzar 40 mm de agua por mes. Observamos pocos efectos de evaporaci6n en los geysers, manantiales y fumarolas. Sin embargo, las piletas frias y las calderas de lodo revelaron efectos de evaporaci6n significativos. Esto 10 indica claramente un desplazamiento relativo en 8 18 0/80 de la composicion de los charcos (Tabla 2 y Fig. 2) y por un cambio en la qufmica de los mismos. Por ejemplo, los aumentos de con­centraci6n en el agua del charco N47 (muestras en marzo y agosto 1979) fueron: Na, +64%

; Ca, +83% ; CI, +87%

;

HCOs, + 100% ; Li, + 890;0, y salinidad + 44%

Aun cuando algunos manantiales desaparecen du­rante el verano (por ejemplo N8), no muestran efectos evi­dentes de evaporaci6n.

2. Influencia de la lIuvia: Los analisis de muestras tomadas de diferentes clases de emisiones inmediatamente

despues de fuertes lIuvias en marzo y agosto muestran una declinaci6n general de las concentraciones elementales; el efecto de la lIuvia es opuesto af de la evaporaci6n.

Se eligieron los cambios qUlmicos del manantial N21 en 19724 como ejemplo de la influencia de la IIuvia en fa quimica de algunos manantiales. Es notable la dis­minuci6n de I\la, CI y SiOz despues de la lIuvia; el K tiene un comportamiento extrafio con una disminuci6n tempo­ral despues de la lIuvia superpuesto a una tendencia general de aumento. En general, la lIuvia puede ocasionar cambios de concentraci6n que alcanzan hasta 15 por ciento.

De esta manera, la lIuvia afecta la qufmica de la ma­yoria de las emisiones superficiales por influjo de agua frfa al sistema geotermico superficial.

B_ Evolucion a largo plazo

Si se com para el area de emisiones superficiales de 19581 con la de 1979, resulta obvia la gran reducci6n de actividades en esos 20 afios (Fig. 3). A menudo se hallan volcanes de lodo extinguidos de 4 metros de altura que 10 atestiguan. Hay una disminuci6n general de la in!ensidad de los fenomenos, as! como de la extension de las emisiones.

Esta disminuci6n de la cjlntidad de emisiones desde 1958 se relaciona con cambios de la qufmica correspon­diente: 1/4/5

En los charcos, hay grandes aumentos de salini­dad que aparecen junto con una disminuci6n de las temperaturas. En las aguas que se obtuvieron de las calderas de lodo ocurri6, simultaneamente, una reducci6n de la salinidad y un aumento de temperatura. En los manantiales se manifiesta un gran au men­to en la salinidad con todos los elementos concen­trados, excepto HCOs y SiOz .

Los efectos de la evaporaci6n y de las lIuvias sobre la qufmica de algunas emisiones se demostraron previa­mente. Para explicar las variaciones qufmicas observadas desde 1958, se deben controlar los cambios en los para­metros siguientes:

Los ciclos de evaporaci6n y temperatura resul­tan constantes en el periodo estudiado, con alta temperatura y evaporaci6n en el verano. EI volumen de lIuvia aument6 desde 1968, 10 que ocasionarfa diluci6n de las aguas, empero, se observ~ exactamente 10 contrario en piletas y manantiales. Para las calderas de lodo, la reduc­cion de la salinidad general pod ria deberse a las precipitaciones pluviales, pero tam bien otros procesos pueden explicarla (por ejemplo, un au­mento de la cantidad de aguas condensadas en esta parte del sistema).

Page 13: GEOCHEMISTRY OF THE SURFACE EMISSIONS IN …...GEOCHEMISTRY OF THE SURFACE EMISSIONS IN THE CERRO PRIETO GEOTHERMAL FIELD J. N. Valette IGPP-UCR, Riverside, California* I. Esquer-Patino

253

En 1973 comenzo la explotacion del campo geoter­mico y los cambios qufmicos observados, especial mente en los manentiales, podrian originarse en la explotacion. Como resultado de la produccion de vapor puede dismi­nuir la cantidad total de agua en el yacimiento, y la que permanece puede volverse muy concentrada. EI aumento de la salinidad de los manantiales y la simultanea disminu­cion de la actividad general de las emisiones superficiales puede relacionarse con el mismo fenomeno. Es decir, que los manantiales pueden relacionarse directamente con las aguas del yacimiento. Esta hipotesis implica que la recarga del yacimiento es mas lenta que el ritmo de produccion y que, por tanto, es urgente la reinyeccion de fluidos. Fi­nalmente, parece posible relacionar la evolucion general de la qufmica de los manantiales con la historia del campo.

II. CONFIGURACION GEOGRAFICA DE LA

QUIMICA DE LAS EMISIONES SUPERFICIALES

A. Distribucion de los parametros quimicos en el campo

Debido a que los manantiales ocupan un lugar es­pecial en la qu fmica d!! las emisiones superficiales y para poder seguir las distribuciones geograticas de elementos especfficos tales como sflice y cloruro, 0 razones como Na/K, se construyeron diferentes graticas. Los resultados obtenidos para fuentes termicas se consideran por separa­do de los que se obtienen para emisiones superficiales en general. Observamos:

La sflice se concentra en las emisiones de la parte S del campo, cerca de los geysers en Laguna Vol­cano; se encuentran valores altos de sflice en los manantiales de Laguna Volcano y cerca del pOlO M-1A. EI cloruro se eleva en todas las emisiones del bor­de occidental del campo y, especial mente, en las regiones alejadas del N y del S. La relacion Na/K disminuye en el centro del area de emisiones superficiales (Fig. 4-5). Este parame­tro, 10 mismo que el Si02 , se relaciona estrecha­mente con la temperatura de las emisiones y con aguas de origen profundo. Aparece una zona especial que puede relacionar­se con una falla en el area central S de las emana­ciones superficiales del campo. EI aumento de CI en los bordes se relaciona principal mente con el aumento de la evaporacion.

B. Comparacion entre aguas de pozo y aguas de emisiones superficiales

Una comparacion de los resultados qufmicos obteni­dos para emanaciones superficiales y para aguas de pOlO en la misma area muestra la similitud entre manantiales y pozos en las razones elementales principales, y en los

diagramas de Schoeller (Fig. 6-7). Otras emisiones tienen configuraciones qufmicas muy diferentes. Los datos iso­topicos demuestran tambien estas tendencias (Fig. 2). EI deuterio y oxfgeno 18 de los manantiales de Cerro Prieto caen proximos a la salmuera geotermal. 2 / 8 Contrariamen­te, los charcos (N5, N6 .... ) caen sobre val ores mas altos de &18 0 y b D y muestran los efectos de otros procesos, especial mente evaporacion y mezcla con aguas meteoricas.

Podria existir cierta relacion entre tres clases de emi­siones superficiales: geysers, calderas de lodo y aguas con­densadas. La baja salinidad y las relaciones elementales sugieren una relacion entre geysers, aguas condensadas, calderas de lodo y aguas condensadas. Sin embargo, en las calderas de lodo puede darse mezclado con aguas frea­ticas superficiales dilufdas, vapor condensado y aguas con­densadas similares a las de los manantiales.

C. Comparacion de Cerro Prieto con otras areas

Se recogieron algunas muestras en Tule Check, una zona bajo exploracion por la CFE, ubicada alrededor de 17 km al noroeste del vol can de Cerro Prieto.

Cuando las composiciones qu fmicas de los manantia­les de Tule Check (Tabla 1) se representan en un diagrama de Schoeller, (Fig. 8) y se las compara con las composicio­nes de los manantiales de Cerro Prieto, vemos que apare­cen similitudes generales. Estas aparecen tambien con los contenidos de sflice y litio y con las razones elementales, especialmente las razones Na/K (ejemplo 1\J26 0 N28 con Tul f!. 0 Tul B).

Las composiciones de deuterioy oxfgeno 18 (Fig. 2) de los manantiales de Tule Check son similares a la de la salmuera geotermica de Cerro Prieto pero con un leve des­plazamiento de b D hacia val ores mas elevados. Esto pue­de indicar la accion de la Iluvia sobre las aguas y asf un mayor influjo de agua meteorica en el sistema convictivo.

Estos hechos sugieren que pueden existir sistemas geotermicos en otras areas alrededor de Cerro Prieto, pero se necesitan mas datos.

MODELO PROPUESTO PARA LAS EMISIONES SUPERFICIALES EN CERRO PRIETO

Todos estos resultados indican que las diferentes clases de emisiones son consecuencia de varios fenomenos. l\Jo obs­tante, los manantiales parecen estar en relacion directa con las aguas del yacimiento geotermico y son la expresion natural de las aguas profundas.

La presentacion de un modelo detail ado para la evo­lucion de las caracteristicas qufmicas de las diversas cate­gorfas de emisiones superficiales debe esperar un analisis adicional de los datos y el modelo aquf presentado deb,e

Page 14: GEOCHEMISTRY OF THE SURFACE EMISSIONS IN …...GEOCHEMISTRY OF THE SURFACE EMISSIONS IN THE CERRO PRIETO GEOTHERMAL FIELD J. N. Valette IGPP-UCR, Riverside, California* I. Esquer-Patino

254

tomarse como preliminar. No obstante, se muestra la in­teraccion de varios procesos: enfriamiento adiabatico del agua del yacimiento con concentracion de sales disuel18s y perdida de vapor; condensacion del vapor producido durante la ebullicion; mezcla de los varios tipos de fluidos entre sf y con las aguas meteoricas superficiales y casi superficiales, y concentracion evaporativa superficial de todos los tipos de fluidos. Claramente, la evolucion de las emisiones superficiales es una historiacompleja de los procesos que ocurren dentro del yacimiento, en la super­ficie y en varios puntos intermedios (Fig. 9). Por ejemplo, parece que los manantiales son principalmente aguas del yacimiento enfriadas conductivamente, levemente mezcla­das con aguas concentradas producidas por ebullicion, con vapor y gas, con aguas condensadas, con aguas de acu(fe­ros superficiales y con aguas meteoricas.

Para lograr una meior comprension de los procesos que tienen lugar en el campo geotermico de Cerro Prieto, tambien se trato de descubrir las posibles fuentes origina­les del agua. Estas posiblemente son las aguas del R (0 Colo­rado, las aguas meteoricas y el agua de mar. Se acepta generalmente como hipotesis que la fuente del agua geo­termica de Cerro Prieto, es el agua del RIo Colorado que ha experimentado una fuerte evaporacion y que interac­ciona con las rocas que la rodean.

Pueden compararse las razones de los elementos mas estables como Na y CI que est{m menos afectados por la interaccion agua-roca:

Agua de mar Na/CI = 0.55

Rio Colorado Na/CI7 = 1.24 (1975) - 1.25 (1977)

Precipitacion Na/Cll0 = 1

Manantiales de Cerro Prieto: N28 Na/CI 0.58 N51 Na/CI 0.45 N60 Na/CI 0.55

promedio 0.55

Esta relacion es similar a la del agua de mar y puede indi­car recarga del sistema por la misma (0 agua fosil). Com­paraciones de las razones CI/Br7 y la relacion de cloruro y deuterio en aguas de pozos9 sugirieron previamente es18 hipotesis. Lo que para los manantiales es otro argumento en favor de ella.

CONCLUSIONES Y RESUMEN

En los resultados que se presentan aquI, se hace hinca­pie en los dos puntas siguientes: 1) en Cerro Prieto pare­ce haber una estrecha relacion entre los manantiales ca­

lientes y el yacimiento y 2) a la explotacion del campo desde 1973 parecen haber seguido cambios en la quimi­ca de los manantiales. Esto ofrece posibil idades para mo­nitorear la historia y la vida del yacimiento. EI modele propuesto muestra la complejidad de los procesos que ocurren en la parte superior del sistema. Para mejorar este modelo se necesita mas investigacion en general y, tra­tar de comprender los problemas de mezclas, en particular.

AGRADECIMIENTOS

Se agradece al personal de la Superintendencia General de Estudios de la Coordinadora Ejecutiva de Cerro Prieto por la ayuda brinda­da en el campo y en su laboratorio y por toda la informacion pro­porcionada. Tambhin. a W. Elders. J. Hoagland y los miembros del lGPP·UCR por las muchasy fructuosas discusiones. a Linda Jankov por las graticas y a J. Bischoff. A. Truesdell, M. Lippmann, P. Bennett y J. Henning por editar el maniscrito. Este trabajo se rea· lizo con el apoyo de la CFE y del U. S. Department of Energy Geothermal Reservoir Management Program (subvencion W. Eldersl University of California, Riverside).

TITULO DE FIGURAS Y TABLAS

Figura 1. Mapa de ubicacion de las emisiones superficiales del campo geotermico de Cerro Prieto.

Figura 2. Composicion de deuterioy oxigeno 18 de las emisiones superficiales de los campos de Cerro Prieto y Tule Check.

Figura 3. Modificaciones de la actividad de las emisiones superfi· ciales del campo de Cerro Prieto; P·1, P·2, M·3 pozos productivos.

Figura 4. Mapa de distribucion de la razon atOmica NalK en las emisiones superficiales de Cerro Prieto. Los pequenos cfrculos sombreados representan las emisiones superfi· ciales, los grandes representan los pozos productivos.

Figura 5. Mapa de distribucion de la relacion atomica Na/K en las aguas de manantiales de Cerro Prieto. Los pequenos cfrculos sombreados representan las emisiones superfi­ciales; los gran des representan los pozos productivos.

Figura 6. Diagramas de Schoeller de las aguas de pozo obtenidas en el lado occidental del campo productivo.

Figura 7. Diagramas de Schoeller de los manantiales de Cerro Prieto.

Figura 8. Diagramas de Schoeller de los manantiales de Tule Check.

Figura 9. Modelo hipotetico para las emisiones superficiales de Cerro Prieto. 1 = Aguas del yacimiento. 2 = Procesos de recarga '" lento-rapido. 3 = Aguas concentradas por ebullicion. 4 = Produccion de gas y vapor despues de la ebullicion. 5 = Condensacion de vapor. 6 = Precipitacion pluvial. 7 = Evaporacion. m = Procesos de mezcla.

Tabla 1. Composicion quimica de las emisiones superficiales de Cerro Prieto y Tule Check.

Tabla 2. Composicion de deuterio y oxigeno 18 de las emisiones superficiales de los campos de Cerro Prieto y Tule Check.

Tabla 3. Composicion qufmica de vapores condensados obteni· dos en el campo de Cerro Prieto.

Tabla 4. Caracterlsticas qu {micas de las diferentes categorias de aguas obtenidas del campo de Cerro Prieto.