Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. &...

81
Geobiology 2007 Lecture 4 The Antiquity of Life on Earth Homework #2 Topics (choose 1): Describe criteria for biogenicity in microscopic fossils. How do the oldest described fossils compare? How has the Brasier-Schopf debate shifted in five years? OR What are stromatolites; where are they found and how are they formed? Articulate the two sides of the debate on antiquity and biogenicity. Up to 4 pages, including figures. Due 3/01/2006

Transcript of Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. &...

Page 1: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Geobiology 2007 Lecture 4The Antiquity of Life on Earth

Homework #2

Topics (choose 1): Describe criteria for biogenicity in microscopic fossils. How do the oldest described fossils compare? How has the Brasier-Schopf debate shifted in five

years?

OR

What are stromatolites; where are they found and how are they formed? Articulate the two sides of the debate on antiquity and biogenicity.

Up to 4 pages, including figures.

Due 3/01/2006

Page 2: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Required readings for this lectureNisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature

409, 1083.Schopf J.W. et al., (2002) Laser Raman Imagery of Earth’s earliest fossils.

Nature 416, 73.Brasier M.D. et al., (2002) Questioning the evidence for Earth’s oldest fossils.

Nature 416, 76.Garcia-Ruiz J.M., Hyde S.T., Carnerup A. M. , Christy v, Van Kranendonk M. J.

and Welham N. J. (2003) Self-Assembled Silica-Carbonate Structures and Detection of Ancient Microfossils Science 302, 1194-7.

Hofmann, H.J., Grey, K., Hickman, A.H., and Thorpe, R. 1999.Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia.

Geological Society of America, Bulletin, v. 111 (8), p. 1256-1262.

Allwood et al., (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441|, 714

J. William Schopf, Fossil evidence of Archaean life (2006) Phil. Trans. R. Soc. B 361, 869–885.

Martin Brasier, Nicola McLoughlin, Owen Green and David Wacey (2006) A fresh look at the fossil evidence for early Archaean cellular life. Phil. Trans. R. Soc. B 361, 887–902

Page 3: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

What is Life?

“Life can be recognized by its deeds — life is disequilibrium, leaving behind the signatures of disequilibrium such as fractionated isotopes or complex molecules. It is more besides, but the larger question ‘what is life?’ is perhaps beyond natural science. Continuum exists between chemistry, autocatalysis and what every one would agree is life. But defining the point at which autocatalysis becomes life is like searching for the world’s smallest giant.”

Required Reading:

E. G. Nisbet & N. H. Sleep (2001) The habitat and nature of early life, NATURE409, 1083

Page 4: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

• Origin of the stuff life is made of• The prevailing environment in Hadean times• Conditions conducive to:

energy-yielding metabolism (redox gradients)replicatingnatural selection

• Conditions leading to further development and complexity of life

• Tools and concepts used to understand these issues and their validity

• Evidence for Earth’s earliest life forms

Nature and Habitats of Early Life

Page 5: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

– Evidence for Earth’s earliest life forms and validity of that evidence

• Microfossils• Stromatolites

– Facts about redox couples– Consequences of oxygenic photosynthesis? Respiration– Early record of preserved organic carbon and carbon isotopes– Early record of molecular oxygen in the environment

• The Earliest Biogeochemical Cycles

Nature and Habitats of Early Life

Page 6: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Oldest Microfossils on Earth?WarrawoonaGroup, N. PoleDome/ MarbleBar, WA; 3.5 Ga

Lowe & Hoffman stromatolite Courtesy Joe Kirschvink, CalTechCourtesy of Joe Kirschvink. Used with permission.

Page 7: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

3.5-2.3 Ga Pilbara Craton, NW Australia

3.8 2.5 0.54 Ga1.6 1.0

Paleo- Meso- Neo-Phanero-

zoicArchean Proterozoic

Zircon age of host rock Stratigraphy of the North Pole area

Fossils

Euro Basalt

Strelley pool chert

Panorama Formation

Apex Basalt

Apex Basalt

Chert

Dresser formation

Coonterunah group

Talga Talga Subgroup

Duffer formation

3,458 million years

3,465 million years

3,468 million years

3,469 million years

3,515 million years

Trendall locality stromatolites (best preserved)

Schopf locality microfossils

Awramik locality microfossilsNorth Pole stromatolites(first discovery)

Conical stromatolites

Domical stromatolitesMicrofossils

Precise age from U-Pb isotope geochronology(accurate to about 3 million years)

Figure by MIT OCW.

Page 8: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf
Page 9: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf
Page 10: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf
Page 11: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Black Chert Breccia

black chert veins and clasts

Complex ‘Dyke’ Breccia

Page 12: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Chromite

Unalteredkomatiitic basalt

Stratiform chert

Hydrothermal chert breccia vein

Felsic tuff

Zone of hydrothermal alteration

Pillow basalt

Iron oxide

TiO2BaSO4

Alunite-jarosite

Aluminosilicates

Metals, sulphides

Sulphur (p.p.m.)

Graphite

Carbon (p.p.m.)

δ13CPDB(%)

δ18OSMOW(% )

1 2 3 4 4 4 4 5 6 7 8 9

CuCu CuCuPb

Pb

NiNiFe

ZnZn

Cu

Pb

Pb Pb

NiFeFe

FeFe

Zn CuCu

CuFe Fe

Ni,As

SnZn

Zn

Sb

CuFeFe

SbZn

*

*

* *

126-1206 1413

162 79 330 607

36 34 2545 2162

-30.3-26.5 -29.9 -28.4 -25.6 -25.6

+13.7+14.1+14.3+14.6+14.7+14.5+14.5

+14.7

-29.5

In shards, clasts In matrix In veinsArsenic-rich

Around shards, clasts

A-C, Fabrics recognized in thin section Open box, not analysed

1

2 3

5

6 7

9

8

50 Meters NChi

nam

an C

reek

Schopf 'microfossil'locality4

A1/B1 A2/B2 A3/B3 C/A4

Figure by MIT OCW. After Brasier et al., 2002.

Page 13: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Stephen Hyde

Page 14: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

WARRAWOONA PROKARYOTIC MICROFOSSIL PILBARA CRATON WA ~ 3.5 Ga (J.W. SCHOPF, 1983)

Image removed due to copyright restrictions.

Image of the original Warrawoona microfossil (J.W. Schopff, 1983).

Page 15: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

What Constitutes Compelling Evidence?

• Geologic source of material and probable age limits well-defined… eg pedigree and a sediment and not an igneous rock!

• Provenance of several comparably-aged assemblages similarly well established

• Fossils demonstrably indigenous to, and syngenetic, with deposition

• Demonstrably biogenic– ‘biological’ size distribution– morphologically comparable to specific modern taxa

from: Schopf, Hayes and Walter, Ch 15 Earth’s Earliest Biosphere, 1983

Page 16: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Text and image removed due to copyright restrictions.Abstract and Fig. 2 in Brasler, Martin D., et al. "Questioning the Evidence for Earth's Oldest Fossils." Nature

416 (2002): 76-81.

Page 17: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Copyright ©2001 by the National Academy of Sciences

Fig. 1. Optical images (column 1), Raman images (column 2), and spectral bands used for Raman imaging (column 3) of permineralizedcarbonaceous fossils at or near the upper surfaces of polished chert thin sections: (A) Cell wall in the conductive tissue (lignified xylem) of an aquatic fern cf. Dennstaedtia from the essentially unmetamorphosed 45-Ma-old Clarno Formation of Oregon. (B) Tangential section of the tubular sheath of a Lyngbya-like oscillatoriaceancyanobacterium in a conical stromatolite(Conophyton gaubitza) from the subgreenschistfacies 650-Ma-old Chichkan Formation of Kazakstan. (C) Transverse cell wall of a broad cellular trichome (Gunflintia grandis), and (D) a narrow prokaryotic filament (G. minuta), in domical stromatolites of the greenschist facies 2,100-Ma-old Gunflint Formation of Ontario, Canada. Each Raman image was produced by combining several hundred pixel-assigned point spectra ("spexels"), like those shown for each specimen in column 3, acquired over a small square part of the total area analyzed. The resolution of the Raman images is defined by the pixel dimensions of their component spexels; for A-C, 2 µm per pixel, and for D, 0.5 µm per pixel.

Kudryavtsev, Anatoliy B. et al. (2001) Proc. Natl. Acad. Sci. USA 98, 823-826

Courtesy of National Academy of Sciences, U. S. A. Used with permission. Source: Kudryavtsev, Anatoliy B., J. William Schopf, David G. Agresti, and Thomas J. Wdowiak. "In Situ

Laser-Raman Imagery of Precambrian Microscopic Fossils." PNAS 98 (2001): 823-826. (c) 2001 National Academy of Sciences, U.S.A.

Page 18: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Text and images removed due to copyright restrictions.Abstract and Fig. 2 in Schopf, J. William, Anatoliy B. Kudryavtsev, David G. Agresti, Thomas J. Wdowiak, and Andrew D. Czaja. "Laser-Raman Imagery of Earth's Earliest Fossils." Nature 416

(2002): 73-76.

Page 19: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Text and images removed due to copyright restrictions.Fig. 3 in Schopf, J. William, Anatoliy B. Kudryavtsev, David G. Agresti, Thomas J. Wdowiak,

and Andrew D. Czaja. "Laser-Raman Imagery of Earth's Earliest Fossils." Nature 416 (2002): 73-76.

Page 20: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Brief CommunicationsNature 420, 476-477 (5 December 2002) | doi:

10.1038/420476bLaser−Raman spectroscopy (Communication

arising): Images of the Earth's earliest fossils?Jill Dill Pasteris and Brigitte WopenkaAbstract

Text removed due to copyright restrictions.(Abstract of above article).

Page 21: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Astrobiology. 2005 Jun;5(3):333-71.

Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized precambrian fossils.

Schopf JW, Kudryavtsev AB, Agresti DG, Czaja AD, Wdowiak TJ.

Laser-Raman imagery is a non-intrusive, non-destructive analytical technique, recently introduced to Precambrian paleobiology, that can be used to demonstrate a one-to-one spatial correlation between the optically discernible morphology and kerogenous composition of permineralized fossil microorganisms. Made possible by the submicron-scale resolution of the technique and its high sensitivity to the Raman signal of carbonaceous matter, such analyses can be used to determine the chemical-structural characteristics of organic-walled microfossils and associated sapropelic carbonaceous matter in acid-resistant residues and petrographic thin sections. Here we use this technique to analyze kerogenous microscopic fossils and associated carbonaceous sapropel permineralized in 22 unmetamorphosed or little-metamorphosed fine-grained chert units ranging from approximately 400 to approximately 2,100 Ma old.

Courtesy of Mary Ann Liebert, Inc. Used with permission.

Page 22: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Astrobiology. 2005 Jun;5(3):333-71.

The lineshapes of the Raman spectra acquired vary systematically with five indices of organic geochemical maturation: (1) the mineral-based metamorphic grade of the fossil-bearing units; (2) the fidelity of preservation of the fossils studied; (3) the color of the organic matter analyzed; and both the (4) H/C and (5) N/C ratios measured in particulate kerogens isolated from bulk samples of the fossil-bearing cherts. Deconvolution of relevant spectra shows that those of relatively well-preserved permineralized kerogens analyzed in situ exhibit a distinctive set of Raman bands that are identifiable also in hydrated organic-walled microfossils and particulate carbonaceous matter freed from the cherts by acid maceration. These distinctive Raman bands, however, become indeterminate upon dehydration of such specimens. To compare quantitatively the variations observed among the spectra measured, we introduce the Raman Index of Preservation, an approximate measure of the geochemical maturity of the kerogens studied that is consistent both with the five indices of organic geochemical alteration and with spectra acquired from fossils experimentally heated under controlled laboratory conditions. The results reported provide new insight into the chemical-structural characteristics of ancient carbonaceous matter, the physicochemical changes that accompany organic geochemical maturation, and a new criterion to be added to the suite of evidence by which to evaluate the origin of minute fossil-like objects of possible but uncertain biogenicity.

Courtesy of Mary Ann Liebert, Inc. Used with permission.

Page 23: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

FIG. 4. Areas of the fossils outlined by white rectangles in Fig. 3, shown here in digitized images (denoted bysuffix “1”) and Raman images of the same areas (denoted by suffix “2”), with the prefix letters indicating the geologicsource of the fossils as indicated in Figs. 3 and 9.

Astrobiology. 2005 Jun;5(3):333-71.

Courtesy of Mary Ann Liebert, Inc.Used with permission.

Page 24: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Pick the Fossils?

Images removed due to copyright restrictions.

Photographs of real fossils alongside photos of nonliving microstructures that resemble fossils.

Page 25: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Self-Assembled Silica-CarbonateStructures and Detection ofAncient MicrofossilsJuan M. Garcia-Ruiz, Stephen T. Hyde, A. M. Carnerup,A. G. Christy, M. J. Van Kranendonk and N. J. Welham

SCIENCE 302, 14 NOVEMBER 2003, 1194-1197

Text removed due to copyright restrictions.Article abstract.

Page 26: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Self-Assembled Silica-Carbonate Structures and Detection of Ancient MicrofossilsJuan M. Garcia-Ruiz, Stephen T. Hyde, A. M. Carnerup, A. G. Christy, M. J. Van Kranendonk and N. J. Welham

Fig. 2. Comparison of synthetic filaments with purported ancient microfossils. (A to D) FESEM images of inorganic in vitro filaments. (A), (B), and (D) As-prepared filaments, containing silica and witherite. [Adapted with permission from (

SCIENCE 302, 14 NOVEMBER 2003, 1194-1197

12).] (C) Bare barium carbonate (witherite) crystallite aggregate after dissolution of silica in mild alkaline solution. (D) Silica skin, coating the exterior of the aggregates. (E and F) Microfilaments found in the Warrawoona chert. [(E) Adapted with permission from (6); (F) adapted with permission from (19).] (G to I) Optical micrographs of synthetic filaments, showing the progressive dissolution of the solid (witherite) interior of the biomorphs in dilute ethanoic acid, leaving a hollow silica membrane whose morphology is that of the original witherite-silica composite. [Adapted with permission from (12).] Scale bars in (A) and (B), 40 µm; in (C), 10 µm; in (D), 4 µm; in (F) to (I), 40 µm [(G) and (I) are at the same magnification as (H)]. A more detailed sequence is available in movie S3.

Image removed due to copyright restrictions.Figure 2 in Garcia-Ruiz Science article.

Page 27: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Self-Assembled Silica-Carbonate Structures and Detection of Ancient MicrofossilsJuan M. Garcia-Ruiz, Stephen T. Hyde, A. M. Carnerup, A. G. Christy, M. J. Van Kranendonk and N. J. Welham

SCIENCE 302, 14 NOVEMBER 2003, 1194-1197

Text removed due to copyright restrictions.Article abstract.

Page 28: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Self-Assembled Silica-Carbonate Structures and Detection of Ancient MicrofossilsJuan M. Garcia-Ruiz, Stephen T. Hyde, A. M. Carnerup, A. G. Christy, M. J. Van Kranendonk and N. J. Welham

SCIENCE 302, 14 NOVEMBER 2003, 1194-1197

Fig. 3. (A to C) Optical micrographs of the silica-witherite structure before and after exposure to organic species, all taken under identical illumination. (A) Inorganic structure as prepared. (B) Structure after hydrothermal adsorption of organics. (C) Cured material produced by baking the sample that was preexposed to the organic mixture [as in (B)]. Scale bars, 50 µm. (D) (Upper curve) Raman spectrum of heatcured biomorphs (similar to Fig. 3C) compared with kerogen-like Raman spectrum reported by Schopfet al. (lower curve), collected from a microfilament in the ArcheanWarrawoona chert [reproduced with permission from fig. 3H of (6)]

Image removed due to copyright restrictions.Figure 3 in Garcia-Ruiz Science article.

Page 29: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

3.2 Ga HyperthermophilicMicrobes from W.Aust.

Rasmussen 2001

Image removed due to copyright restrictions.

Fig. 3 in Rasmussen, Birger. “Filamentous Microfossils in a 3,235-million-year-old Volcanogenic Massive Sulphide Deposit.” Nature 405 (2001): 676-679.

Page 30: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Putative cyanobacteria and anaerobic bacteria from the 3.1 Gy Fig Tree Group overlying the Swaziland Group of South Africa.

Image removed due to copyright restrictions.

Page 31: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Image removed due to copyright restrictions.

Page 32: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

The oldest unequivocal visible remains of a diversity of microorganisms occur in the 2.0 BYO Gunflint Chert of the Canadian Shield

Gunflint Chert Fossils. A-C. blue-green algae; Animikia, Entosphaeroides, and Gunflintia; D. Huroniospora, an algal spore; E. Gunflintia and Hurionospora; F. Euastrion, a bacterium, and enigmatic forms, G. Kakabekia; H. Eosphaera.

Images removed due to copyright restrictions.

Page 33: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Stromatolites

Hofmann, H.J., Grey, K., Hickman, A.H., and Thorpe, R. 1999.Origin of 3.45 Ga coniformstromatolites in Warrawoona Group, Western Australia.GeologicalSociety of America, Bulletin, v. 111 (8), p. 1256-1262.

Images removed due to copyright restrictions.

Photographs of stromatolites. See these examples:http://upload.wikimedia.org/wikipedia/commons/1/1b/Stromatolites_in_Sharkbay.jpghttp://upload.wikimedia.org/wikipedia/commons/0/02/Lake_Thetis-Stromatolites-LaRuth.jpg

Figure by MIT OCW.

Zircon age of host rock Stratigraphy of the North Pole area

Fossils

Euro Basalt

Strelley pool chert

Panorama Formation

Apex Basalt

Apex Basalt

Chert

Dresser formation

Coonterunah group

Talga Talga Subgroup

Duffer formation

3,458 million years

3,465 million years

3,468 million years

3,469 million years

3,515 million years

Trendall locality stromatolites (best preserved)

Schopf locality microfossils

Awramik locality microfossilsNorth Pole stromatolites(first discovery)

Conical stromatolites

Domical stromatolitesMicrofossils

Precise age from U-Pb isotope geochronology(accurate to about 3 million years)

Page 34: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Small (0.5) club-shaped subtidal stromatolites, Telegraph Station

‘Classic’ picture of stromatolites, Telegraph Station, Hamelin Pool WA. These are effectively stranded above high water and ‘dead’.

1m domal subtidal stromatolites, Carbla Point, Hamelin Pool ‘Reef’ of 1m stromatolites, Carbla Point

Page 35: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Examples of 800 million year-old stromatolitesfrom the Officer Basin, Western Australia.

LEFT: Acaciella australica - a form with narrow columns in bioherms up to 1 metre in diameter.

ABOVE: Baicalia burra - a form with broad, irregular branching columns

Page 36: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Warrawoona Group3.5-3.4 Ga

volcanics & sediments

Zircon age of host rock Stratigraphy of the North Pole area

Fossils

Euro Basalt

Strelley pool chert

Panorama Formation

Apex Basalt

Apex Basalt

Chert

Dresser formation

Coonterunah group

Talga Talga Subgroup

Duffer formation

3,458 million years

3,465 million years

3,468 million years

3,469 million years

3,515 million years

Trendall locality stromatolites (best preserved)

Schopf locality microfossils

Awramik locality microfossilsNorth Pole stromatolites(first discovery)

Conical stromatolites

Domical stromatolitesMicrofossils

Precise age from U-Pb isotope geochronology(accurate to about 3 million years)

Figure by MIT OCW.

Page 37: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Grotzinger & Knoll ’99 argue that Archean stromatolites could

be simple inorganic precipitates!

Warrawoona Stromatolites Are Perhaps the Oldest Evidence for Life on Earth.

Adapted from TheCarlSaganLecture By Joe Kirschvinkhttp://www.gps.caltech.edu/users/jkirschvink/

Courtesy of Joe Kirschvink. Used with permission.

Page 38: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

cones ca 1m highwith lensoid

laminae

http://www.dme.wa.gov.au/

Image removed due to copyright restrictions.

Stromatolite photograph.

Page 39: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

RIGHT: Detail of a branching column formed on the side of a stromatolite cone. Complex structures such as these rule out formation by means such as the folding of soft sediments.

LEFT: The outcrop of "egg-carton" stromatolites when first discovered, before removal of the overlying rocks.

(Click to enlarge.)RIGHT: The "egg-carton" rock face after the overlying rocks were removed. Although today the "egg-cartons" are tilted at an angle of about 70 degrees, they were

originally flat lying.

Page 40: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf
Page 41: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Large Domical StromatoliteDresser Fm

Page 42: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Large Dresser Fm dome from above

Page 43: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Wave ripplesDresser Fm

Page 44: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Strelley Pool Chert

Zircon age of host rock Stratigraphy of the North Pole area

Fossils

Euro Basalt

Strelley pool chert

Panorama Formation

Apex Basalt

Apex Basalt

Chert

Dresser formation

Coonterunah group

Talga Talga Subgroup

Duffer formation

3,458 million years

3,465 million years

3,468 million years

3,469 million years

3,515 million years

Trendall locality stromatolites (best preserved)

Schopf locality microfossils

Awramik locality microfossilsNorth Pole stromatolites(first discovery)

Conical stromatolites

Domical stromatolitesMicrofossils

Precise age from U-Pb isotope geochronology(accurate to about 3 million years)

Figure by MIT OCW.

Page 45: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf
Page 46: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf
Page 47: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf
Page 48: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf
Page 49: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf
Page 50: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Oldest Marine Transgression??

Domalstromatolite

growing on in situ pebbles of

Marble Bar Chert

Page 51: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Allwood et al., (2006) Stromatolitereef from the Early Archaean era of Australia. Nature 441|, 714

Page 52: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Mathematical models have ... been used to cast doubt on the biotic origin of stromatolites. Here ... we propose a biotic model for stromatolite morphogenesis which considers the relationship between upward growth of a phototropic or phototactic biofilm (v) and mineral accretion normal to the surface (λ). These

processes are sufficient to account for the growth and form of many ancient stomatolites. Domical stromatolites form when v ≤ λ. Coniform structures with thickened apical zones, typical of Conophyton, form when v >> λ. More angular coniform structures, similar to the stomatolites claimed as the oldest

macroscopic evidence of life, form when v >>> lambda.

Abstract of Batchelor, M.T., R.V. Burne, B. I. Henry, M. J. Jackson. "A Case for Biotic Morphogenesis ofConiform Stromatolites." Physica A 337 (2004): 319-326.

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Page 53: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Variation modeled by two processes, upward growth and vertical accretion, applied at different ratesCourtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Page 54: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Biogeochemical Redox Couples

CO2 + H2O CH2 O + O2

CH2 O + O2 CO2 + H2O

oxygenic photosynthesis

aerobic respiration

CH4 + 2O2 CO2 + 2H2O oxidative methanotrophy

CO2 + HS- + H2O biomass + SO42- anoxygenic photosynthesis

CO2 + 2H2 CH4 + 2H2O methanogenesis

Interdependency?

Page 55: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

ΔG = ΔG°(T) + RT·ln KAdapted from TheCarlSaganLecture By Joe Kirschvinkhttp://www.gps.caltech.edu/users/jkirschvink/

Standard RedoxPotentials

& Energy YieldsThe electron tower……..

Strongest reductants, or e donors, on top LHS

Electrons ‘fall’ until they are ‘caught’ by available acceptors

The further they fall before being caught, the greater the difference in reduction potential and energy released by the coupled reactions

Note electron fall from CH2O to O2is the among the largest here

+0.5

0

-0.5

+1.0

ΔGkJ/mol e-

0

50

100

Eo(V)

CO CO2 CO2 CO

CO2 CH2O

pe(W)

OXIDATION REDUCTION

–10

0

+10

–10

0

+10

CH2O CO2

CH4 CO2 CO2 CH4

H2 H H H2

Fe Fe(OH)3 Fe(OH)3 Fe

P680* P680+

P680+

P680

H2S S S H2S

NH4 N2+

+ +

N2 NH4+

2–H2S SO42–SO4 H2S

NO3 NO2–

2+ 2+

Mn2+ MnO2 MnO2 Mn2+

N NO32H2O O2 O2 H2O

NH4 NO3+ +

–NO3 N2

NO2 NO3–

– –NO3 NH4

(Last Common Ancestor)

Courtesy of Joe Kirschvink. Used with permission.

Page 56: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Biogeochemical Redox Couples

CH2 O + O2 CO2 + H2O

aerobic respiration

1 mole glucoseO2

32 mole ATP

1 mole glucosefermentation

2-4 mole ATP

Biosynthesis requires approx. 1mole ATP per 4g of cell carbon

Page 57: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Biogeochemical Redox Couples

CO2 + H2O CH2 O + O2

oxygenic photosynthesis

Page 58: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Light Element Isotope Abundances & EffectsIsotope Atom%

1H 99.9852H (D) 0.015

12C 98.8913C 1.1114N 99.6315N 0.3716O 99.75917O 0.03718O 0.20432S 95.0033S 0.7634S 4.2236S 0.014

C

13C

C 12C

1313

12

1212

12

An Isotope Effectis a phenomenon

arising from the mass difference between two isotopes

Fractionationan observable quantity

Reactant Product

Question: what’s incongruent about this?

Page 59: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Equilibrium in a reversible reaction, where the heavier isotope concentrated in the more strongly bonded form:

13CO2(g) + H12CO3-(aq) = 12CO2(g) + H13CO3-(aq)

Different rates of diffusive transport where:12CO2 diffuses ~1% faster than 13CO2

Different rates of reaction in kinetically controlled conversions - the light isotope tends to react faster:

most biochemistry

Origins of Mass Dependent Isotopic Fractionation

Page 60: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Principles of Isotopic Measurement

Focusing Plates

Mass AnalyserElectromagnet Collector Array of Farady Cups

for simultaneous measurement of all ions of interest

Inlet

Either a pure gas via a duel inlet system for sample and standard

Or a stream of gas containing sample ‘slugs’ interspersed with standard ‘slugs’

Image courtesy the U.S. Geological Survey.

Page 61: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

R = X heavyX light

Terminology

Primary Standards Isotope Ratios

Ratios x 106

Standard mean ocean water

2H/1H 155.76

“ 18O/16O 2005.20“ 17O/16O 373

PeeDee belemnite (PDB)

13C/12C 11237.2

Air 15N/14N 3676.5Canyon Diablo meteorite (CDT)

32S/34S 22.22

δXheavy = R spl - R std x 1000Rstd

NB Standard for δ18O/16O in carbonates is PDB

Page 62: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

TerminologydXh,p/Xh,s

dXl,p/Xl,s

α = is the kinetic fractionation actor =

Where p is product, s is substrate, h is heavy and l is light.

ε = δP – δR or δP = δR – ε

ε = 103 (α-1)α = [(δR + 1000) / (δP + 1000)]

Written precisely this is

A general approximation is

ε is also called the isotope effect or epsilon !!Equilibrium isotope effects are simply related to kinetic effects by

α = k2/k1

Page 63: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Some Equilibrium Isotope Effects

Reaction Isotope α equilib* εCO2 (g) ↔ CO2 (aq) 13C 0.9991 0.9CO2 (g) ↔ CO2 (aq) 18O 0.9989 1.1CO2 + H2O ↔ HCO3

- + H+ 13C 0.9921 7.9

O2 (g) ↔ O2 (aq) 18O 1.000 0H2O (s) ↔ H2O (l) 18O 1.003 -3H2O (s) ↔ H2O (l) 2H 1.019 -19NH4

+ ↔ NH3 + H+ 15N 1.020 -20

* Measured for 20-25 °C except phase transition of water

Page 64: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Fractionation of C-Isotopes during AutotrophyPathway, enzyme React & substr Product ε ‰ OrganismsC3 10-22Rubisco1 Rubisco2 PEP carboxylasePEP carboxykinase

CO2 +RUBPCO2 +RUBP

-HCO3 +PEPCO2 +PEP

3-PGA x 23-PGA x 2oxaloacetateoxaloacetate

30222

plants & algaecyanobacteriaplants & algaeplants & algae

C4 and CAM 2-15PEP carboxylaseRubisco1

-HCO3 +PEP CO2+RUBP

oxaloacetate3-PGA x 2

230

plants & algae (C4)

Acetyl-CoACO dehydrogPyruvate synthasePEP carboxylasePEP carboxykinase

CO2 + 2H+ CoASHCO2 + Ac-CoA

-HCO3 +PEPCO2 +PEP

AcSCoApyruvateoxaloacetateOxaloacetate

15-3652

2

bacteria

Reductive or reverse TCA

CO2 + succinyl-CoA (+ others)

α-ketoglutarate

4-13 Bacteria espgreen sulfur

3-hydroxypropionate HCO3- +

acetylCoAMalonyl-CoA Green non-S

Page 65: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

13C Evidence for Antiquity of Earthly Life

Figure by MIT OCW.

+5± 0 ± 0

-10

0

0

-40

-50

Isua meta sediments (∼3.8x109yr)

Francevillian series(∼2.1x109yr)

Fortescue group(∼2.7x109yr)

Approximate mean

Archaean Proterozoic Phanerozoic

4 2.5 0.5

Recent marine carbonateMarine bicarbonate

-50

-40

-30

-20

-10

+5

1

2CO2

34

5a

5b

6a

6b

6c 6d

7

Corg

δ13C

autotrophs

sedimentsSpan of

modern valuesTime Ga

Page 66: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

S.J.Mojzsis et al., “Evidence for life on Earth before 3,800 million

years ago” …based on isotopically light carbon in

graphite in apatite ..

But …..Sano et al. ’99 report the apatite had U/Pb and Pb/Pb ages of only ~ 1.5 Ga.

And……….

Image removed due to copyright restrictions.

Cover of Nature, Volume 384, Issue 6604, November 1996.

Page 67: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Tracing Life in the Earliest Terrestrial Rock Record, Eos Trans. AGU, 82(47), Fall Meet. Suppl., Abstract P22B-0545 , 2001Lepland, A., van Zuilen, M., Arrhenius, G

Text removed due to copyright restrictions.

References: Mojzsis,S.J, .Arrhenius,G., McKeegan, K.D.,.Harrison, T.M.,.Nutman, A.P \& C.R.L.Friend.,1996. Nature 384: 55 Schidlowski, M., Appel, P.W.U., Eichmann, R. \& Junge, C.E., 1979. Geochim. Cosmochim. Acta 43: 189-190.

Page 68: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

13C Evidence for Antiquity of Earthly Life

Figure by MIT OCW.

+5± 0 ± 0

-10

0

0

-40

-50

Isua meta sediments (∼3.8x109yr)

Francevillian series(∼2.1x109yr)

Fortescue group(∼2.7x109yr)

Approximate mean

Archaean Proterozoic Phanerozoic

4 2.5 0.5

Recent marine carbonateMarine bicarbonate

-50

-40

-30

-20

-10

+5

1

2CO2

34

5a

5b

6a

6b

6c 6d

7

Corg

δ13C

autotrophs

sedimentsSpan of

modern valuesTime Ga

Page 69: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Biogeochemical Redox Couples

CO2 + H2O CH2 O + O2

oxygenic photosynthesis

Page 70: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

MINERALISATION THROUGH GEOLOGIC TIME4 3 2 1 0AGE( Ga)

( adapte d fro m Lambe rt & Gro ve s ,1981 )

Bedded Cu in clastic strata‘Red-Bed Cu’

Phosphorites

Shale hosted Pb-Zn sulfides

Banded Iron Formations

Conglomeratic Au and U

Page 71: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

A Typical Banded Iron Stone (BIF)

Courtesy of Joe Kirschvink. Used with permission.

Image courtesy of William Schopf. Used with permission.

Page 72: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Precambrian Banded Iron Formations (BIFs) (Adapted from Klein & Beukes, 1992)

Time Before Present (Billion Years)

3.5 2.5 1.5 0.5 01.02.03.04.0Abu

ndan

ce o

f BIF

Rel

ativ

eto

Ham

ersl

yG

roup

as

Max

.

Rapitan, CanadaUrucum, BrazilDamara, Namibia

Labrador, Canada

Krivoy Rog, Russia

Lake Superior, USA

Transvaal, S. Africa

Hamersley, W. AustraliaCanadian Greenstone Belts &Yilgaran Block, W. Australia

Zimbabwe, Ukraine,Venezuela, W. Australia

Isua, WestGreenland

Paleoproterozoic (Huronian) Snowball EarthPongola Glaciation, Swaziland(snowball??)

NeoproterozoicSnowball Earths

Courtesy Joe Kirschvink, CalTech

Courtesy of Joe Kirschvink. Used with permission.

Page 73: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Pyrite (FeS2) is Unstable in O2-Rich Environments

Page 74: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Text and image removed due to copyright restrictions.

Abstract and Fig. 3 from Shen, Yanan, Roger Buick, and Donald E. Canfield. "Isotopic Evidence for Microbial Sulphate Reduction

in the Early Archaean Era." Nature 410 (2000): 77-81.

Page 75: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Habitats for Early Life

Image removed due to copyright restrictions.

Illustration of habitats for early life.

Page 76: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Habitats for Early Life

Image removed due to copyright restrictions.

Illustration.

Page 77: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Octopus Spring

Synechococcus-Chloroflexusmat 55-63 °C

Phormidium mat 40-55 °C

Aquificales-like bacteria’pink streamers’ 87 °C

Page 78: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

OCTOPUS SPRING YELLOWSTONE NP

Page 79: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf
Page 80: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf
Page 81: Geobiology 2007 Lecture 4 - DSpace@MIT Home · Required readings for this lecture Nisbet E. G. & Sleep N. H. (2001) The habitat and nature of early life, Nature 409, 1083. Schopf

Cyanobacteria

Chemolithotrophic S BacteriaPhototrophic

S Bacteria

Fermenters

Sulfate Reducers

MINERAL PHASES

CC S OOrganic and

Mineral Biomarkers

Biomarker Production

Day Night Mat

surface

SO42-

CO2

CH4

OrganicAcids, H2

FeS

HS- IntermediatesS

CH2O

HS-HS-

0

2

4

6

8

Dep

th b

elow

surf

ace,

mm

MICROBIAL MAT BIOGEOCHEMISTRY

O2O2

Representative Microsensor Measurements Cycles:

Biomarker GasesCO2 CH4

Methanogens

CO2 O2 S-Gases

O2

O2

Aerobic Heterotrophs

Figure by MIT OCW.