Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

38
Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola

Transcript of Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Page 1: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Generation of short pulses

Jörgen Larsson,

Fysiska Instutionen

Lunds Tekniska Högskola

Page 2: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Generation of short pulses• Cavity modes• Locked cavity modes• Time-bandwidth product• Active mode-locking• Acousto-optic modulation• Passive modelocking• Hybrid modelocking techniques• Kerr lens modelocking• SESAM • Synchrnously pumped dye lasers• Distributed feedback lasers• Fiber lasers• Short-pulse accelerator sources• Group velocity dispersion• Group velocity dispersion compensation• Prism compressor• Chirped mirrors

Page 3: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Representation of short pulsesGaussian pulses

tjat eeEt 02

*)( 0E

CarrierEnvelopeAmplitudeFrequency

2220

020

2)(

2atrr eE

ct

cI(t)

E

Page 4: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Representing ”chirp”)(

0

20

2

*)( bttjat eeEt E

btdt

btt

dtt 2

)()( 0

20

Page 5: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Group velocity dispersion

Page 6: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Modes in a cavity

Gain profile

(Gain) bandwidth

Mode spacing

Page 7: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Single Mode

Inte

nsi

ty

40

50

30

20

10

0

(a)

Two Modes

40

50

30

20

10

0

(b)

8 ModesRandom Phases

40

50

30

20

10

0

(c)

8 modesPhases=0 @ t=0

40

50

30

20

10

(d)

Inte

nsi

tyIn

ten

sity

Inte

nsi

ty

0

Page 8: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Fresnel diagrams

(c)

t= m

2

m

m (c)

m

2

1

t=0

(a) (b)

(d)

m

2

1

t=T=

E 2E mE

E 2E mE

t=t

m

2

1

t

Page 9: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Time-bandwidth product

time

Frequency

T=2L/c

t

FOURIER TRANSFORM LIMITED

1/T

Page 10: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Time-bandwidth product- How short pulses can we get?

tjat eeEt 02

*)( 0E

2220

020

2)(

2atrr eE

ct

cI(t)

E

FWHM of the intensity in the temporal domain

2

12212 at

e

atatat

2

2ln2ln2

2

1ln2 21

221

221

atFWHM 2

2ln2

Page 11: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Time-bandwidth product- How short pulses can we get?

atjat eEeeEt 4

)(

0

20

02

)*))(

F(F(E

aeE)I( 4

)(22

0

)(~

E

FWHM of the intensity in the spectral domain

Next we determine the width in the spectral plane

)2ln(2)(2

1ln

4

)(2

2

1021

20214

)(2

2021

aa

e a

)2ln(22 aFWHM )2ln(2a

vFWHM

Page 12: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Time-bandwidth product- How short pulses can we get?

Now lets calculate the time-bandwidth product for a gaussian (unchirped) pulse

441.0)2ln(2

2

2ln2

)2ln(2

a

avt FWHMFWHM

If the pulse is chirped it is wider in the temporal domain

441.0FWHMFWHMvt

Page 13: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Time-bandwidth product- How short pulses can we get?

Task for the interested student:

A Ti:Sapphire laser operating at 800 nm has a 120 nm FWHM spectrum. What is the shortest pulse we can get from this laser?

Page 14: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Classes of methods for modelockingActive modelocking:

From an active component in the cavity (typically an optic modulator driven by an RF-frequency)

Passive Modelocking

From a passive component in the cavity (Saturable absorber, kerr lens ......)

Page 15: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Active modelocking Acousto-optic modulation

Page 16: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Active modelocking Acousto-optic modulation

Page 17: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Active modelocking Acousto-optic modulationGeneration of sidebands in an AOM

• Optical wave

• Acoustic wave• Optical wave in presence of acoustic wave

)sin()(0

KztiakxtieEE

)sin(0 KztPP

)(0

kxtieEE

nl

a

2

ln

Kztnikkxtidxztkikxti

eEeEEl )sin(

)(

0

),(')(

00

)})sin(2

{)(

0

ln

Kztnnikxti

eE

Page 18: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Generation of sidebands in an AOM (travelling wave)

)sin()(0

Kztiakxti eeEE

If a<<1

}){2

1( )()()(0

KztiKztikxti eei

iaeEE

Euler’s formulae

))sin(1()(0 KztiaeEE kxti

)22

{ )}({)}({)(0

KzkxtiKzkxtikxti ea

ea

eEE

Page 19: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Generation of sidebands in an AOM (travelling wave-strong Rf- field)

)sin()(0

Kztiakxti eeEE

m

Kztmim

kxti eaJeEE )()(0 )(

))sin(1()(0 KztiaeEE kxti

m

mKzkxitmm eaJEE )()(

0 )(

Page 20: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Generation of sidebands in an AOM (standing wave)

)cos()sin()(0

Kztiakxti eeEE

If a<<1

}){2

1}{

21( ))()())()()(

0KziKzititikxti eeee

i

iaeEE

Euler’s formulae

))cos()sin(1()(0 KztiaeEE kxti

}{4

}{4

}{4

}{4

))}({))}({))}({))}({)(0

KzkxtiKzkxtiKzkxtiKzkxtikxti ea

ea

ea

ea

eEE

Page 21: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Active modelocking

Fig 3.7

Page 22: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Active modelocking

Fig 3.8

Page 23: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Passive modelockingSaturable absorber

Fig 3.12

Page 24: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Passive modelockingSaturable absorber

Fig 3.13

Page 25: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Gain vs intensity

Fig 3.14

Page 26: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Passive modelocking

Page 27: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Passive modelocking-saturable absorber

Fig 3.17

Page 28: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Passive modelockingSaturable absorber

Page 29: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Passive modelockingKerr lens

High intensitysmall losses

Low intensitieslarge losses

n=n1+n2I

The beams spatial profile creates the "Kerr lens"

I

x

Titanium sapphirecrystal

Laser beam

Aperture

Page 30: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Passive modelocking - Saturable semiconductor mirror (SESAM)

Page 31: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Synchronous pumping

Page 32: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Frequency filtering

Page 33: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Passive modelocking-saturable absorber

Fig 3.19

Page 34: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Hybrid modelocking

Fig 3.20

Page 35: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Hybrid modelocking

Fig 3.21

Page 36: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Titanium Sapphire energy level diagram

Page 37: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Passive modelocking-Kerr lens (early design)

Page 38: Generation of short pulses Jörgen Larsson, Fysiska Instutionen Lunds Tekniska Högskola.

Modern Titanium Sapphire laser

P1P2

C MCM2

CM1OC

P1,P2 prismsCM1, CM2 curved mirror, krökt spegel(these are transparent for the pump radiation)M mirror, spegelC crystal, kristallOC output coupler utkopplingsspegelL lens for the pump laser

Lpump from Nd-laser