Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution...

40
Generating Scale Free Networks S Konini and EJ Janse van Rensburg Mathematics & Statistics, York University Toronto, Ontario Barabasi-Albert Vazquez Sol ´ e iSite

Transcript of Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution...

Page 1: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

Generating Scale Free Networks

S Konini and EJ Janse van RensburgMathematics & Statistics, York University

Toronto, Ontario

Barabasi-Albert Vazquez Sole iSite

Page 2: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– Protein interaction network

Saskatoon 2016 2 / 40

Page 3: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

Source: Albert Scalefree networks in cell biology(Journal of Cell Science 2005 118: 4947-4957; doi: 10.1242/jcs.02714)

Saskatoon 2016 3 / 40

Page 4: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– Scale free networks

Degree distribution P(k) = Prob(degree of node is k )Normally P(k) is binomially distributedScale free if P(k) obeys a power law:

P(k) ' Co k−γ

Saskatoon 2016 4 / 40

Page 5: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

Finite network of n nodes:

P(k) ' Co k−γ

P(k) is not integrable if γ ≤ 1 as n→∞However

n∑k=0

P(k) '∫ n

1P(k) dk ' C0

1− n1−γ

γ − 1

if γ 6= 1, is finite for finite nThe average degree sequence {〈dk 〉}n

〈dk 〉 ' n P(k) if n is large

Saskatoon 2016 5 / 40

Page 6: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

Assume that for finite networks (of order n)

P(k) ' Co k−γ , 1 ≤ k ≤ n

—The average degree (connectivity ) for networks of size n is

〈k〉n =∑n

k=1 k P(k)∑nk=1 P(k)

'∫ n

1 k P(k) dk∫ n1 P(k) dk

'(γ−1γ−2

)nγ−n2

nγ−n

'

(1−γ2−γ

)n, if γ < 1;

nlog n , if γ = 1;(γ−12−γ

)n2−γ , if 1 < γ < 2;

log n, if γ = 2;(γ−1γ−2

), if γ > 2.

Saskatoon 2016 6 / 40

Page 7: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

Number of edges (by handshaking)

En = 12n 〈k〉n

En '

(1−γ

2(2−γ)

)n2, if γ < 1 (dense);

n2

2 log n , if γ = 1 (marginally dense);(γ−1

2(2−γ)

)n3−γ , if 1 < γ < 2 (super linear);

12n log n, if γ = 2 (marginally sparse);(

γ−12(γ−2)

)n, if γ > 2 (sparse).

(1)

Saskatoon 2016 7 / 40

Page 8: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– Barabasi-Albert clusters

Barabasi & Albert in Science; 286:509–512 (1999)Attach new nodes preferentially to vertices of high degree

—Barabasi-Albert algorithm – Growth by preferential attachment:

1 Initiate the network with one node x0;2 Suppose that the network consists of nodes {x0, x1, . . . , xn−1} of

degrees {k0, k1, . . . , kn−1};3 Append a new node xn by executing step 3(a) or step 3(b):

3(a) With probability p: Select xj uniformly and attach xn to it by insertingthe edge 〈xj∼xn〉;

3(b) With default probability 1− p: Attach xn by adding edges 〈xj∼xn〉with probability

kj∑j kj

for 1 ≤ j ≤ n − 1;

4 Stop the algorithm when the network has order n.Saskatoon 2016 8 / 40

Page 9: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– Modified Barbasi-Albert clusters

Modify the algorithm by introducing a parameters (λ,A);Attach xn by adding edges 〈xj∼xn〉 with probability

qj = min{λ kj +A∑

j kj,1}

—Recover the canonical algorithm when λ = 1 and A = 0—Replace step 3(b) by

Modified Barabasi-Albert algorithm:Grow Barabasi-Albert clusters of order n:

3(b) With default probability 1− p: Attach xn by adding edges 〈xj∼xn〉with probability qj = min{λ kj +A∑

j kj,1}, and λ and A are non-negative

parameters of the algorithm;Saskatoon 2016 9 / 40

Page 10: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

Growing a cluster with p = 0.5 and of order n = 100000

Barabasi-Albert Cluster with p = 0.5

Saskatoon 2016 10 / 40

Page 11: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

Barabasi-Albert clusters

Saskatoon 2016 11 / 40

Page 12: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

Modified Barabasi-Albert Clusters (λ = 0.1 left, and λ = 1.5 right)

Saskatoon 2016 12 / 40

Page 13: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– Mean field theory for the Modified Barabasi-Albert algorithm

Barabasi-Albert clusters are relatively sparse networks—

kj(n) = degree of node j after n iterationsMean field: kj(n) = 〈kj(n)〉Elementary move of the algorithm:3(a) Probability p append a random edge and node

Probability =pn

3(b) Default: append edges 〈xj∼xn〉 with probability

Probability = (1− p)×λ kj (n) + A∑

j kj (n)

Saskatoon 2016 13 / 40

Page 14: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

Edges added:3(a) p

n3(b)

∑jλ kj (n)+A∑

j kj (n) = (1− p)× (λ+ nA∑j kj (n) )

Number of edges En = 12∑

j kj(n)

∆En = p + (1− p)λ+ (1− p) nA2En

.

Approximate by a differential equation

2Enddn En = 2(p + (1− p)λ)En + (1− p)nA.

Solve

En = n2 ((p + (1− p)λ) +

√(p + (1− p)λ)2 + 2(1− p)A) = C n

γ > 2 (the network is sparse)

Saskatoon 2016 14 / 40

Page 15: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

To determine the value of γ:Recurrence for kj(n):

kj(n + 1) = kj(n) + pn +

(1−p)(λkj (n)+A)2En

where En = C nDifferential equation approximation (node j is added at nj )

ddn kj(n) = p

n +(1−p)(λkj (n)+A)

2Cn ; IC: kj(nj) = 1

Solve the equation

kj(n) = (1 + QP ) (n/nj)

P − QP , where Q = p + (1−p)A

2C and P = (1−p)λ2C

But P(kj(n) < κ) & P(

njn >

(Q/P+κ1+Q/P

)−1/P)

for 0 ≤ nj ≤ n

That is,

P(kj(n) < κ) & 1−(

Q/P+κ1+Q/P

)−1/P

Saskatoon 2016 15 / 40

Page 16: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

Take the derivative to find

P(κ) = P[kj(t) = κ] = ∂∂κP[kn(t) < κ] ' (P+Q)1/P

(Pκ+Q)1+1/P ∼ κ−1−1/P

γ = 1 + 1P = 1 +

((p+(1−p)λ)+√

(p+(1−p)λ)2+2(1−p)A)(1−p)λ

Canonical Barabasi-Albert clusters (λ = 1 and A = 0) are sparse

γ = 3 + 2p1−p ≥ 3

If A = 0 thenγ = 3 + 2p

(1−p)λ ≥ 3

If λ = 1 thenγ = 1 + 1

1−p +

√1+2(1−p)A

1−p ≥ 3

Saskatoon 2016 16 / 40

Page 17: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

Plotting log P(k)log k against 1

log k for Barabasi-Albert Clusters

If p = 0 then γ = 3.026〈k〉n → Constant and the clusters are sparse

Saskatoon 2016 17 / 40

Page 18: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– Duplication-Divergence clusters

Vazquez etal in ComplexUS 2003; 1:38–44 (2003)

Saskatoon 2016 18 / 40

Page 19: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

Duplication-Divergence algorithm:1 Initiate the network with one node x0;2 Duplication: Choose vertex υ uniformly, and duplicate it to υ′;3 For all edges 〈w∼υ〉 incident with υ, add 〈w∼υ′〉;4 With probability p add the edge 〈υ∼υ′〉;5 Divergence: Delete one of {〈w∼υ〉, 〈w∼υ′〉} with probability q;6 Stop the algorithm when a network of order n is grown.

Saskatoon 2016 19 / 40

Page 20: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

Growing a cluster with p = 0.1, q = 0.3 and of order n = 50000

Duplication-Divergence cluster with p = 0.1, q = 0.3

Saskatoon 2016 20 / 40

Page 21: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

Growing a cluster with p = 0.1, q = 0.7 and of order n = 500000

Duplication-Divergence cluster with p = 0.1, q = 0.7

Saskatoon 2016 21 / 40

Page 22: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– Duplication-Divergence clusters

Left: p = 1, q = 0.4, n = 300; Right: p = 1, q = 0.6, n = 300

Saskatoon 2016 22 / 40

Page 23: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– Mean field theory for Duplication-Divergence clusters

En+1 = En + p + kj(n)− q kj(n)

Put 2En =∑

j kj(n) = n an

En+1 = En + p + 2(1−q)n En

Approximate by a differential equation and solve

En = 1−2(q−p)2(1−2q) n2(1−q) − pn

1−2q

Three regimes:

En '

1−2(q−p)2(1−2q) n2(1−q), if q < 1

2 ;

pn log n, if q = 12 ;

pn2q−1 , if q > 1

2 .

Saskatoon 2016 23 / 40

Page 24: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

The mean field degree distribution is

P(k) ∼

(1− 2(q − p)) k−1−2q, if q < 1

2 ;

2p k−2, if q = 12 ;

C0 k−γ , if q > 12 ,

This gives the γ exponent

γ = 1 + 2q, provided that q ≤ 12

Test this by plotting

log P(k)log(k+1) = −γ + C

log(k+1) + o( 1k )

Saskatoon 2016 24 / 40

Page 25: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– Duplication-Divergence clusters

p = 1, q = 0.4

(Red) log P(k)log(k+1) against 1

log(k+1) for n ≤ 200000

(Blue) log(P(2k)/P(k))log 2 against log(k+1)

k for n ≤ 200000

Saskatoon 2016 25 / 40

Page 26: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– Duplication-Divergence clusters

p = 1, q = 0.6

(Red) log P(k)log(k+1) against 1

log(k+1) for n ≤ 200000

(Blue) log(P(2k)/P(k))log 2 against log(k+1)

k for n ≤ 200000

Saskatoon 2016 26 / 40

Page 27: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

Connectivity of Duplication-Divergence clusters:

〈k〉n '

1−2(q−p)

1−2q n1−2q − 2p1−2q , if q < 1

2 ;

2p log n + 1, if q = 12 ;

Constant, if q > 12 .

(2)

In the case that q > 12 ,

En ' pn2q−1 =

(γ−1

2(γ−2)

)n

This gives the tentative prediction

γ = 1 + 2p1+2p−2q , if q > 1

2

Saskatoon 2016 27 / 40

Page 28: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– Connectivity data for Duplication-Divergence clusters (p = 0.75)

n q = 0.4 q = 0.5 q = 0.63125 25.9 11.4 5.936250 31.3 12.6 6.1412500 37.3 13.6 6.3325000 44.8 14.4 6.5550000 51.9 15.5 6.64100000 60.1 16.8 6.75200000 70.3 17.7 6.88

q = 0.4: 〈k〉n ≈ 8.5× n−0.2 (the data give 8.0)q = 0.5: 〈k〉n ' 1.5 log n (the data give 1.45 log n)q = 0.6: The data give γ ≈ 2.13 (and γ = 1 + 2p

1+2p−2q = 2.15)

Saskatoon 2016 28 / 40

Page 29: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– Sole clusters

Pastor-Satorrasa, Smith & Sole inJournal of Theoretical Biology ; 222:199210 (2003)

Saskatoon 2016 29 / 40

Page 30: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– iSite evolutionary clusters

Gibson & Goldberg in BioInformatics; 27:376–382 (2011)

progenitor

iSite.................................................................................................................

........................................

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

••••••••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••••••••••••••••••••

..

... ... .. ....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

. ..

. .. ....•

•••A

B

progenitor

........................................................................................................................................................ ....................................................................................................

....................................................................................................................................

........................................................................................................................................

...........................

...........................

.........

............................................................................................

.........................................................................................................................................................................................................................................................

....................................................................................................................................................

. ..

. .. ....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

. ..

. .. ....•

•A

successor(duplicate)

........................................................................................................................................

...........................

.......................................................................................................

.........................................................................................................................................................................................................................................................

....................................................................................................................................................

. ..

. .. ....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

. ..

. .. ....•

•A′

q..............................................................................................................................................................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................

p

............................................................................................................

............................................................................................................................................................................................................................................................

................................................................................................................................................................................................................

........................................................................................................................................................• •B••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

1−r

Saskatoon 2016 30 / 40

Page 31: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

The iSite evolutionary algorithm:Isites are self-interacting with probability pand are active with probability qInteractions are lost with probability r

1 Initiate the network with one node x0 with I active iSites;2 Choose a progenitor protein υ uniformly and duplicate it to a

successor protein υ′:A duplicated iSite A′ ∈ υ′ is active with probability q;A duplicated iSite A′ ∈ υ′ is self-interacting with probability p;

3 Add new interactions as follows if A′ is active:If iSite A′ ∈ υ′ is self-interacting then add the edge 〈A∼A′〉;If 〈A∼B〉 is an interaction, then duplicate it to 〈A′∼B〉 withprobability 1−r ;

4 Iterate the algorithm until a network of order N is grown.

Saskatoon 2016 31 / 40

Page 32: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– iSite clusters

Saskatoon 2016 32 / 40

Page 33: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– Mean field theory for iSite clusters

ij(n) = # active iSites on node j after n iterationsThe average number of iSites per protein is

i(n) = 1n

∑j

ij(n)

kj(n) = degree of node j after n iterations

2 En =∑

j

kj(n)

Saskatoon 2016 33 / 40

Page 34: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

Mean field: i(n) iSites are created and q i(n) are silencedRecurrence for i(n):

(n + 1) i(n + 1) = n i(n) + (1− q) i(n)

since n i(n) = # iSites and (1− q) i(n) are added in the mean fieldExact solution

i(n) =i(0) Γ(1− q + n)

n! Γ(1− q)' I n−q

Γ(1− q)

if i(0) = I

Saskatoon 2016 34 / 40

Page 35: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

The number of edges increases in the mean field

En+1 = En + 2(1−r)n En + p i(n)

since 〈kj(n)〉 = 2n En edges are duplicated with probability 1− r

and p i(n) edges are created by self-interacting iSitesApproximate this with a DE

ddn En = 2(1−r)

n En + pIΓ(1−q) t−q

Solve this with IC E1 = 0:

En = pI(1+q−2r) Γ(1−q)

(n2−2r − n1−q

).

Saskatoon 2016 35 / 40

Page 36: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

Mean field connectivity of iSite clusters

〈k〉n = 2n En ' 2pI

(1+q−2r) Γ(1−q)

(t1−2r − t−q

)〈k〉n is dominated by the larger of −q and 1− 2rThe γ exponent is

γ =

{1 + 2r , if r < 1

2(1 + q);

2 + q, if r > 12(1 + q).

If 2r = (1 + q) then a different solution is obtained

〈k〉n = pIΓ(1−q) n−q log n

so γ = 2 + q with a log n correction

Saskatoon 2016 36 / 40

Page 37: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– iSite clusters

Plot of log P(k)/ log(k + 1) against 1/ log(k + 1)

I = 3, p = 0.5, q = 0.4, r = 0.3For these parameters, γ = 1 + 2r = 1.6

Saskatoon 2016 37 / 40

Page 38: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– Connectivity data for iSite Clusters

n Column 2 Column 3 Column 4 Column 53125 22.385 20.701 4.756 6.6486250 26.524 25.752 4.770 6.55612500 31.395 29.137 4.677 6.57925000 37.808 35.308 4.733 6.35850000 45.931 42.244 4.579 6.299100000 54.830 50.035 4.584 6.204200000 64.668 59.284 4.649 6.071Column 2: I = 3, p = 0.5 q = 0.4, r = 0.3Column 3: I = 5, p = 0.5 q = 0.4, r = 0.3Column 4: I = 3, p = 0.5 q = 0.05, r = 0.8Column 5: I = 5, p = 0.5 q = 0.05, r = 0.8

〈k〉n = γ−12−γ n2−γ

Columns 2 & 3:Least squares: γ = 1.74 and γ = 1.74 (MF γ = 1.6)Columns 4 & 5: γ = 2.1 and γ = 2.02 (MF γ = 2.05)

Saskatoon 2016 38 / 40

Page 39: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– Computational Time Complexity of Implemented Algorithms

Time complexity ∼ nτ

Algorithm n = 6250 n = 12500 n = 25000 n = 50000 τ

Bar-Alb (p = 0) 0.602 2.51 9.03 38.0 1.97Mod Bar-Alb (λ = 2, p = A = 0) 0.618 2.55 10.1 36.3 1.96Dupl-Div (p = 1, q = 0.4) 0.349 0.862 2.04 5.01 1.28Dupl-Div (p = 1, q = 0.6) 0.155 0.319 0.635 1.31 1.02Sole (δ = 0.25, α = 0.005) 4.84 20.5 91.0 436.0 2.16Sole (δ = 0.75, α = 0.005) 6.10 20.0 79.5 323.2 1.92iSite (p = 0.5, q = 0.01, r = 0.8, I = 1) 0.114 0.234 0.454 0.925 1.00iSite (p = 0.5, q = 0.01, r = 0.8, I = 2) 0.110 0.216 0.458 0.878 1.01iSite (p = 0.5, q = 0.01, r = 0.8, I = 3) 0.106 0.217 0.432 0.857 1.00iSite (p = 0.5, q = 0.01, r = 0.8, I = 4) 0.107 0.231 0.422 0.848 0.98iSite (p = 0.25, q = 0.01, r = 0.8, I = 4) 0.104 0.249 0.415 0.844 0.98iSite (p = 0.75, q = 0.01, r = 0.8, I = 4) 0.108 0.216 0.437 0.867 1.00

Saskatoon 2016 39 / 40

Page 40: Generating Scale Free Networks - YorkU Math and Stats · –Scale free networks Degree distribution P(k) = Prob(degree of node is k) Normally P(k) is binomially distributed Scale

– Conclusions

Variety of algorithms in the mean fieldMixed success, in some cases good, other cases perhaps notAlso considered the Sole model – the clusters are not scalefree,but do exhibit a distribution which scalesAlso introduced variants of the models, and considered theirpropertiesA paper is being written and will be on the arXiv when ready

Thank you Chris S for the invitation to Saskatoon!

Saskatoon 2016 40 / 40