Gel 201 lecture 13

83
Precambrian Geology

Transcript of Gel 201 lecture 13

Page 1: Gel 201 lecture 13

Precambrian Geology

Page 2: Gel 201 lecture 13

Step 1: Earth, Sun, and planets form out of collapsing, spinning,

gassy nebula

Page 3: Gel 201 lecture 13

Step 2: Solar wind

“blows” away close most

gases; proto-planets form by accretion

Page 4: Gel 201 lecture 13

Step 3: Planets grow,

collapse under own gravity producing

heat

Page 5: Gel 201 lecture 13

Step 4: Contraction, plus impacts and fission

melt planet; materials

differentiate

Page 6: Gel 201 lecture 13

Step 4: Contraction, plus impacts and fission

melt planet; materials

differentiateMantle & core by 4.5 Ga

Page 7: Gel 201 lecture 13

Step 5: Outgassing:

H2O, etc. released

producing primitive

atmosphere/ocean

Page 8: Gel 201 lecture 13

Zircon Step 5: Outgassing:

H2O, etc. released

producing primitive

atmosphere/ocean

Page 9: Gel 201 lecture 13

Water by 4.4 Ga

Step 5: Outgassing:

H2O, etc. released

producing primitive

atmosphere/ocean

Page 10: Gel 201 lecture 13

• Earth cools: rapid loss of short half-life isotopes, slowing of impacts, etc.

Cooling not linear

Page 11: Gel 201 lecture 13

When does plate tectonics start?

Page 12: Gel 201 lecture 13

When does plate tectonics start?

What is plate tectonics?

Page 13: Gel 201 lecture 13

What is plate tectonics?

?

Page 14: Gel 201 lecture 13

What is plate tectonics?

1) Rigid plates (lithosphere)2) Sea floor spreading (move apart

& create new crust)3) Subduction (slide beneath, get

recycled)

Page 15: Gel 201 lecture 13

What is plate tectonics?

1) Rigid plates (lithosphere)2) Sea floor spreading (move

apart, create new crust)3) Subduction (slide beneath, get

recycled)

Page 16: Gel 201 lecture 13

Precambrian explorers circa 1885

Page 17: Gel 201 lecture 13

Cross-section: North Shore Lake Superior

Ages worked out through Stenonian principles

BE

C

D A

Page 18: Gel 201 lecture 13

Cross-section: North Shore Lake Superior

Ages worked out through Stenonian principles

BE

C

D A

Page 19: Gel 201 lecture 13

Cross-section: North Shore Lake Superior

Radiometric dating allowed correlation within NA/world

Page 20: Gel 201 lecture 13

Orogeny = Mountain building

(‘oros’ = ‘mountain’ + ‘genesis’ = ‘creation’)

Page 21: Gel 201 lecture 13

Orogeny = Mountain building

Orogenic belt = Linear/arc-shaped zones of deformation/ volcanism

Page 22: Gel 201 lecture 13

Orogeny = Mountain building

Orogenic belt = Collision zones!(Mountain ranges)

Page 23: Gel 201 lecture 13

Stable interior of NA

= craton

Page 24: Gel 201 lecture 13

Geological provinces

(defined by radiometric dates)

Page 25: Gel 201 lecture 13

Dates = Archean to late Protereozoic;Concentrically arranged by age

Page 26: Gel 201 lecture 13

OLDEST

Dates = Archean to late Protereozoic;Concentrically arranged by age

Page 27: Gel 201 lecture 13

What are the provinces made of?

Page 28: Gel 201 lecture 13

X-bedded sandstone

Page 29: Gel 201 lecture 13

X-bedded sandstone

Graded, immature seds (i.e., volcanics eroded/deposited near source)

Page 30: Gel 201 lecture 13

X-bedded sandstone

Also: LOTS of granite, volcanics, etc., often

very metamorphosed

Page 31: Gel 201 lecture 13

Thick, widespread flood basalt: ca. 1.2 Ga

Plus…

Page 32: Gel 201 lecture 13

Oldest rocks = two kinds: Greenstones and Gneiss belts

Page 33: Gel 201 lecture 13

Greenstone belts: named for green minerals produced when ultra mafic volcanic rocks metamorphosed

Komatiite

Page 34: Gel 201 lecture 13

Suggest oceanic volcanism, with associated sediments

Komatiite

Page 35: Gel 201 lecture 13

Suggest oceanic volcanism, with associated sediments

Komatiite:Only form in Archean—hot process

Page 36: Gel 201 lecture 13

Gneiss belts: granites, volcanics, & seds

Page 37: Gel 201 lecture 13

Continental-style material

Oldest zircons (4.4

Ga) and oldest rocks (>4.03 Ga)

Page 38: Gel 201 lecture 13

Story? Joining of independent continental & oceanic blocks

A collage

Page 39: Gel 201 lecture 13

Greenstone belts = “captured” basins

Page 40: Gel 201 lecture 13

Greenstone belts = “captured” basins

Page 41: Gel 201 lecture 13

Greenstone belts = “captured” basins

Page 42: Gel 201 lecture 13

A Timeline

Page 43: Gel 201 lecture 13

Approx. 2 billion years ago, Archean terranes collide (Superior, etc.,

stitched by Trans-Hudson Belt)

Page 44: Gel 201 lecture 13

Process continues: Approx. 1.5 Ga, Archean

frags & Proterzoic terranes arrive

Proterozoic

Proterozoic

Page 45: Gel 201 lecture 13

Then… approx. 1.2 Ga the craton rifts,

forms flood basalts

Page 46: Gel 201 lecture 13

Finally: Approx. 1 Ga Grenville arrives, Laurentia

assembled

Page 47: Gel 201 lecture 13

Finally: Approx. 1 Ga Grenville arrives, Laurentia

assembled

Voila! Ancient North America! Simple!

Page 48: Gel 201 lecture 13

More realistic depiction

Whitmeyer and Karlstrom, 2007

Page 49: Gel 201 lecture 13

So, do we have tectonics?

Page 50: Gel 201 lecture 13

So, do we have tectonics?

When?

Page 51: Gel 201 lecture 13

What is plate tectonics?

1) Rigid plates (lithosphere)2) Sea floor spreading (move apart

& create new crust)3) Subduction (slide beneath, get

recycled)

Page 52: Gel 201 lecture 13

What is plate tectonics?

1) Rigid plates (lithosphere)2) Sea floor spreading (move apart

& create new crust)3) Subduction (slide beneath, get

recycled)

Page 53: Gel 201 lecture 13

What is plate tectonics?

1) Rigid plates (lithosphere)2) Sea floor spreading (move apart

& create new crust)3) Subduction (slide beneath, get

recycled)

Page 54: Gel 201 lecture 13

What is plate tectonics?

1) Rigid plates (lithosphere)2) Sea floor spreading (move apart

& create new crust)3) Subduction (slide beneath, get

recycled)

Are you sure?

Page 55: Gel 201 lecture 13

June, 2006: Wyoming

All the smart and famous scientists

Page 56: Gel 201 lecture 13

June, 2006: Wyoming

Estimates?

Page 57: Gel 201 lecture 13

June, 2006: Wyoming

Estimates? 4 Ga to 1 Ga

Page 58: Gel 201 lecture 13

4 Ga to 1 Ga—Why?

Page 59: Gel 201 lecture 13

4 Ga to 1 Ga—Why?

Conclusive proof: Ophiolite suites (scooped up oceanic crust) and blueschist (metamorphic rocks assoc. with high

pressures). None till ~1 Ga

Page 60: Gel 201 lecture 13

3 Ga to 4 Ga

End of meeting

Page 61: Gel 201 lecture 13

Final resolution?

Page 62: Gel 201 lecture 13

Diamonds!

Page 63: Gel 201 lecture 13

Kimberlites: Mantle derived

Page 64: Gel 201 lecture 13

Kimberlites: 125-175 km

Page 65: Gel 201 lecture 13

Mineral inclusions

Page 66: Gel 201 lecture 13

>3 Ga peridotite minerals

Page 67: Gel 201 lecture 13

>3 Ga peridotite minerals

<3 Ga eclogite minerals

Page 68: Gel 201 lecture 13

>3 Ga peridotite minerals

<3 Ga eclogite minerals

<100 km

Page 69: Gel 201 lecture 13

Big picture

Page 70: Gel 201 lecture 13
Page 71: Gel 201 lecture 13

Earth forms

Page 72: Gel 201 lecture 13

Differentiation

Page 73: Gel 201 lecture 13

Water and initial crust

Page 74: Gel 201 lecture 13

Pseudo-tectonics and

accretion

Page 75: Gel 201 lecture 13

Pseudo-tectonics and

accretion

Page 76: Gel 201 lecture 13

• ~3 Ga modern-style plate tectonics

• ~2.5-2 Ga large, stable cratons

Page 77: Gel 201 lecture 13

Microplates, plumes, direct down-going

>3 Ga

Page 78: Gel 201 lecture 13

Analogy for early Archean

Page 79: Gel 201 lecture 13

Analogy for early Archean

Page 80: Gel 201 lecture 13

Analogy for early Archean

Page 81: Gel 201 lecture 13

Microplates, plumes, direct downgoing

<3 Ga

Page 82: Gel 201 lecture 13

2.5-2 Ga continents

formed(Wilson

cycle begun)

Page 83: Gel 201 lecture 13

Next class:Proterozoic