GATE BY RK Kanodia signals and systems

download GATE BY RK Kanodia signals and systems

of 41

Transcript of GATE BY RK Kanodia signals and systems

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    1/41

    30. y t u t h t( ) ( ) * ( )= , where h te t

    e t

    t

    t( )

    ,

    ,=

    -

    2

    3

    0

    0

    (A)1

    21

    5

    6

    1

    3

    2 3e u t e u tt t- -- - + - -( ) ( )

    (B)1

    21

    5

    6

    1

    3

    2 3e u t e u tt t( ) ( )- - + - --

    (C)1

    2

    1

    65 3 22 2 3e e e u tt t t+ - - -[ ] ( )

    (D)1

    2

    1

    65 3 22 2 3e e e u tt t t+ - - --[ ] ( )

    Statement for Q.31-34:

    The impulse response of LTI system is given.

    Determine the step response.

    31. h t e t( ) | |= -

    (A) 2 + - -e et t (B) e u t et t( )- + + - -1 2

    (C) e u t e u tt t( ) [ ] ( )- + + - -1 2 (D) e e e u tt t t+ - --[ ] ( )2

    32. h t t( ) ( )( )= d 2

    (A) 1 (B) u t( )

    (C) d( )( )3 t (D) d( )t

    33. h t u t u t( ) ( ) ( )= - - 4

    (A) tu t t u t( ) ( ) ( )+ - -1 4 (B) tu t t u t( ) ( ) ( )+ - -1 4

    (C) 1 + t (D) ( ) ( )1 + t u t

    34. h t y t( ) ( )=

    (A) u t( ) (B) t

    (C) 1 (D) tu t( )

    Statement for Q.35-38:

    The system described by the differential equations

    has been specified with initial condition. Determine the

    output of the system and choose correct option.

    35.

    dy t

    dx y t x t( )

    ( ) ( )+ =10 2 , y x t u t( ) , ( ) ( )0 1- = =

    (A) 15

    101 4( ) ( )+ -e u tt (B) 15

    101 4( )+ -e t

    (C) - + -15

    101 4( ) ( )e u tt (D) - + -15

    101 4( )e t

    36.d y t

    dt

    dy t

    dty t

    dx t

    dt

    2

    25 4

    ( ) ( )( )

    ( )+ + = ,

    y ( )0 0- = ,dy t

    dt

    ( )

    0

    1-

    = , x t t u t( ) sin ( )=

    (A)5

    34

    3

    34

    1

    6

    13

    61

    4sin cost t e et t+ + -- - , t 0

    (B)5

    34

    3

    34

    13

    51

    1

    6

    4sin cost t e et t+ - +- - , t 0

    (C)3

    34

    5

    34

    13

    51

    1

    6

    4sin cost t e et t+ - +- - , t 0

    (D)3

    34

    5

    34

    1

    6

    13

    51

    4 4sin cost t e et t+ + -- - , t 0

    37.d y t

    dt

    dy t

    dty t x t

    2

    26 8 2

    ( ) ( )( ) ( )+ + = ,

    y ( ) ,0 1- = -dy t

    dt

    ( )

    0

    1-

    = , x t e u tt( ) ( )= -

    (A)2

    3

    5

    2

    5

    6

    2 4e e et t t- - -- + , t 0

    (B)2

    3

    5

    2

    5

    6

    2 4+ +- -e et t , t 0

    (C) 4 5 3 2 4+ +- -( )e et t , t 0

    (D) 4 5 3 2 4- +- -( )e et t , t 0

    38.d y t

    dty t

    dx t

    dt

    2

    2

    3( )( )

    ( )+ = ,

    y ( ) ,0 1- = -dy t

    dt

    ( )

    0

    1-

    = , x t te u tt( ) ( )= -2

    (A) sin cost t te tt+ - +-4 3 3 , t 0

    (B) 4 3sin cost t te t- - - , t 0

    (C) sin cost t te tt

    - + +-

    4 33

    , t 0(D) 4 3sin cost t te t+ - - , t 0

    39. The raised cosine pulse x t( ) is defined as

    x tt t

    ( )(cos ) ,

    ,

    =+ -

    1

    21

    0

    wp

    w

    p

    wotherwise

    The total energy of x t( ) is

    (A)3

    4

    p

    w(B)

    3

    8

    p

    w

    (C) 3pw

    (D) 32

    pw

    40. The sinusoidal signal x t t( ) cos ( )= +4 200 6p is

    passed through a square law device defined by the

    input output relation y t x t( ) ( )= 2 . The DC component in

    the signal is

    (A) 3.46 (B) 4

    (C) 2.83 (D) 8

    Page252

    UNIT 5 Signal & SystemGATE EC BY RK Kanodia

    www.gatehelp.com

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    2/41

    41. The impulse response of a system is h t t( ) ( . )= -d 0 5 .

    If two such systems are cascaded, the impulse response

    of the overall system will be

    (A) 0.58( . )t - 0 25 (B) d( . )t - 0 25

    (C) d( )t - 1 (D) 0 5 1. ( )d t -

    42. Fig. P5.1.40 show the input x t( ) to a LTI system and

    impulse response h t( ) of the system.

    The output of the system is zero every where

    except for the

    (A) 0 5<

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    3/41

    SOLUTIONS

    1. (A)2

    60p

    pT

    = T =p

    30

    2. (C) T12

    5=

    ps, T2

    2

    7=

    ps, LCM

    2

    5

    2

    72

    p pp,

    =

    3. (D) Not periodic because of t.

    4. (D) Not periodic because least common multiple is

    infinite.

    5. (C) y t( ) is not periodic although sin t and 6 2cos pt are

    independently periodic. The fundamental frequency

    cant be determined.

    6. (C) This is energy signal because

    | |E x t dt-

    = < ( ) = --

    e u t dtt4 ( ) = =-

    e dtt40

    1

    4

    7. (A) | |x t( ) = 1, | |E x t dt-

    = = ( )2

    So this is a power signal not a energy.

    | |P T x t dtTT

    T

    -

    = =lim ( )12 12

    8. (D) v t( ) is sum of 3 unit step signal starting from, 1, 2,

    and 3, all signal ends at 4.

    9. (A) The function 1 does not describe the given pulse.

    It can be shown as follows :

    10. (B)

    11. (C)

    12. (D) Multiplication by 5 will bring contraction on

    time scale. It may be checked by x x( . ) ( )5 0 8 4 = .

    13. (A) Division by 5 will bring expansion on time scale.

    It may be checked by y t x x( ) ( )=

    =

    20

    54 .

    14. (C) y t

    t

    t( )

    ,

    ,

    ,

    =

    - < < -

    - < 3 3 0or , y n nk

    n[ ] = = +

    =-

    - 1 13

    3,

    y n n u n[ ] ( ) [ ]= + 1

    31. (A) For n n- <

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    10/41

    (Time variant)

    At any discrete time, n no= the response depends only

    on the excitation at that same time. (Causal)

    If the excitation is a constant, the response is

    unbounded as n approaches infinity. (Unstable)

    34. (C) y n v m y n kv mm

    n

    m

    n

    1

    1

    2

    1

    [ ] [ ] , [ ] [ ]= ==-

    +

    =-

    +

    y n ky n2 1[ ] [ ]= (Homogeneous)

    y n v mn

    n

    1

    1

    [ ] [ ],==-

    +

    y n w mn

    n

    2

    1

    [ ] [ ]==-

    +

    y n v n w mm

    n

    3

    1

    [ ] ( [ ] [ ])= +=-

    +

    = + = +=-

    +

    =-

    +

    v m w n y n y nm

    n

    m

    n

    [ ] [ ] [ ] [ ]1 1

    1 2 (Additive)

    Since the system is homogeneous and additive it is also

    linear

    y n v n y n v m nm

    n

    om

    n

    1

    1

    2

    1

    [ ] [ ] , [ ] [ ]= = -=-

    +

    =-

    +

    y n n v m v q n y nom

    n n

    oq

    no

    1

    1 1

    2[ ] [ ] [ ] [ ]- = = - ==-

    - +

    =-

    +

    (Time Invariant)

    At any discrete time, n no= , the response depends on

    the excitation at the next discrete time in future.

    (Anti causal)

    If the excitation is a constant, the response increases

    without bound. (Unstable)

    35. (A) y n v n y kv n k v n1 2[ ] [ ] , [ ] [ ]= = =

    ky n k v n y n1 2[ ] [ ] [ ]= (Not Homogeneous Not linear)

    y n v n y n v n no1 2[ ] [ ] , [ ] [ ]= = -

    y n n v n n y no o1 2[ ] [ ] [ ]- = - = (Time Invariant)

    At any discrete time n no= , the response depends only

    on the excitation at that time (Causal)

    If the excitation is bounded, the response is bounded.

    (Stable).

    36. (B) y n x n[ ] [ ]= 2 2

    Let x n v n1[ ] [ ]= then y n v n122[ ] [ ]=

    Let x n kv n2[ ] [ ]= then y n k v n22 22[ ] [ ]=

    ky n y n[ ] [ ] 2 (Not homogeneous Not linear)

    Let x n v n1[ ] [ ]= then y n v n122[ ] [ ]=

    Let x n v n no2[ ] [ ]= - then y n v n no222[ ] [ ]= -

    y n n v n n y no o1 22[ ] [ ] [ ]- = - = (Time invariant)

    At any discrete time, n no= , the response depends only

    on the excitation at that time. (Causal)

    If the excitation is bounded, the response is bounded.

    (Stable).

    37. (B) y n v n1 10 5[ ] [ ]= - , y n kv n2 10 5[ ] [ ]= -

    y n ky n2 1[ ] [ ] (Not Homogeneous so not linear)

    y n v n y n v n no1 2

    10 5 10 5[ ] [ ] , [ ] [ ]= - = - -

    y n n v n n y no o1 210 5[ ] [ ] , [ ]- = - - = (Time Invariant)

    At any discrete time, n no= the response depends only

    on the excitation at that discrete time and not on any

    future excitation. (Causal)

    If the excitation is bounded, the response is bounded.

    (Stable).

    38. (B) y n x n y n[ ] [ ] [ ]= + - 1 , y n x n y n[ ] [ ] [ ]- = - + -1 1 2

    y n x n x n y n[ ] [ ] [ ] [ ]= + - + -1 2 , Then by induction

    y n x n x n x n k[ ] [ ] [ ] [ ]= - + - + - +1 2K K

    = -=

    x n kk [ ]0Let m n k= - then y n x m x m

    m n m

    n

    [ ] [ ] [ ]= ==

    -

    =-

    y n v m y n kv m ky nm

    n

    m

    n

    1 2 1[ ] [ ] , [ ] [ ] [ ]= = == - = -

    (Homogeneous)

    ( )y n v m w m v m w mm

    n

    m m

    n

    3[ ] [ ] [ ] [ ] [ ]= + = += - = -

    =-

    = +y n y n1 2[ ] [ ] (Additive)

    System is Linear.

    y n v m y v n nm

    om

    n

    1 2[ ] [ ] , [ ]= = -=-

    =- y n1 [ ] can be written as

    y n n v m v q n y nom

    n n

    oq

    no

    1 2[ ] [ ] [ ] [ ]- = = - ==-

    -

    =-

    (Time Invariant)

    At any discrete time n no= the response depends only

    on the excitation at that discrete time and previous

    discrete time. (Causal)

    If the excitation is constant, the response increase

    without bound. (Unstable)

    39. (C) Only statement (b) is false. For example

    S1 : y n x n b[ ] [ ]= + , and S2 : y n x n b[ ] [ ]= - , where b 0

    S x n S S x n S x n b x n{ } { { }} { }[ ] [ ] [ ] [ ]= = + =2 1 2Hence S is linear.

    40. (B) For example

    S1 : y n nx n[ ] [ ]= and S2 : y n nx n[ ] [ ]= + 1

    If x n n[ ] [ ]= d then S S n S2 1 2 0 0{ { }}d[ ] [ ]= = ,

    Chap 5.2Discrete-Time Systems

    Pa267

    GATE EC BY RK Kanodia

    www.gatehelp.com

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    11/41

    Statement for Q.1-12:

    Determine the Laplace transform of given signal.

    1. x t u t( ) ( )= - 2

    (A)- -e

    s

    s2

    (B)e

    s

    s-2

    (C)e

    s

    s-

    +

    2

    1(D) 0

    2. x t u t( ) ( )= + 2

    (A)1

    s(B) -

    1

    s

    (C)e

    s

    s-2

    (D)- -e

    s

    s2

    3. x t e u tt( ) ( )= +-2 1

    (A)1

    2s +(B)

    e

    s

    s-

    + 2

    (C)e

    s

    s- +

    +

    ( )2

    2(D)

    -

    +

    -e

    s

    s

    2

    4. x t e u tt( ) ( )= - +2 2

    (A)e

    s

    s2 2 1

    2

    ( )- -

    -(B)

    e

    s

    s-

    +

    2

    2

    (C)1

    2

    2 2-

    -

    - -e

    s

    s( )

    (D)e

    s

    s-

    -

    2

    2

    5. x t t( ) sin= 5

    (A)5

    52s +(B)

    s

    s2 5+

    (C)5

    252s +(D)

    s

    s2 25+

    6. x t u t u t( ) ( ) ( )= - - 2

    (A)e

    s

    s- -2 1(B)

    1 2- -e

    s

    s

    (C)2

    s(D)

    -2

    s

    7. x td

    dtte u tt( ) { ( )}= -

    (A)1

    1 2s s( )+(B)

    s

    s( )+ 1 2

    (C)e

    s

    s-

    + 1

    (D)e

    s

    s-

    +( )12

    8. x t tu t t u t( ) ( ) * cos ( )= 2p

    (A)1

    42 2s s( )+ p(B)

    2

    42 2 2p

    ps s( )+

    (C)1

    42 2 2s s( )+ p(D)

    s

    s

    3

    2 24+ p

    9. x t t u t( ) ( )= 3

    (A)

    34s (B)

    -34s

    (C)6

    4s(D) -

    64s

    10. x t u t e u tt( ) ( ) * ( )= - --1 12

    (A)e

    s

    s- +

    +

    2 1

    2 1

    ( )

    (B)e

    s

    s- +

    +

    2 1

    1

    ( )

    (C)e

    s

    s- +

    +

    ( )2

    2(D)

    e

    s

    s- +

    +

    2 1

    2

    ( )

    CHAPTER

    5.3

    THE LAPLACE TRANSFORM

    Pa269

    GATE EC BY RK Kanodia

    www.gatehelp.com

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    12/41

    11. x t e dt

    ( ) cos= -3

    0

    2t t t

    (A)- +

    + +

    ( )

    (( ) )

    s

    s s

    3

    3 42(B)

    ( )

    (( ) )

    s

    s s

    +

    + +

    3

    3 42

    (C)s s

    s

    ( )

    ( )

    +

    + +

    3

    3 42(D)

    - +

    + +

    s s

    s

    ( )

    ( )

    3

    3 42

    12. x t td

    dte t u tt( ) { cos ( )}= -

    (A)- + +

    + +

    ( )

    ( )

    s s

    s s

    2

    2 2

    4 2

    2 2(B)

    ( )

    ( )

    s s

    s s

    2

    2 2

    4 2

    2 2

    + +

    + +

    (C)( )

    ( )

    s s

    s s

    2

    2 2

    2 2

    4 2

    + +

    + +(D)

    - + +

    + +

    ( )

    ( )

    s s

    s s

    2

    2 2

    2 2

    4 2

    Statement for Q.1324:

    Determine the time signal x t( ) corresponding to

    given X s( ) and choose correct option.

    13. X ss

    s s( ) =

    +

    + +

    3

    3 22

    (A) ( ) ( )2 2e e u tt t- -+ (B) ( ) ( )2 2e e u tt t- --

    (C) ( ) ( )2 2e e u tt t- -- (D) ( ) ( )2 2e e u tt t- -+

    14. X ss s

    s s( ) =

    + +

    + +

    2 10 11

    5 6

    2

    2

    (A) 2 3 2d( ) ( ) ( )t e e u tt t+ -- -

    (B) 2 2 3d( ) ( ) ( )t e e u tt t+ -- -

    (C) 2 2 3d( ) ( ) ( )t e e u tt t+ +- -

    (D) 2 2 3d( ) ( ) ( )t e e u tt t- +- -

    15. X ss

    s s( ) =

    -

    + +

    2 1

    2 12

    (A) ( ) ( )3 2e te u tt t- --

    (B) ( ) ( )3 2e te u tt t- -+

    (C) ( ) ( )2 3e te u tt t- --

    (D) ( ) ( )2 3e te u tt t- -+

    16. X ss

    s s s( ) =

    +

    + +

    5 4

    3 23 2

    (A) ( ) ( )2 3 2+ +- -e e u tt t

    (B) ( ) ( )2 3 2+ -- -e e u tt t

    (C) ( ) ( )3 3 2+ -- -e e u tt t

    (D) ( ) ( )3 3 2+ +- -e e u tt t

    17. X ss

    s s s( )

    ( )( )=

    -

    + + +

    2

    2

    3

    2 2 1

    (A) ( ) ( )e te u tt t- --2 2 (B) ( ) ( )e te u tt t- -+2 2

    (C) ( ) ( )e te u tt t- -- 2 2 (D) ( ) ( )e te u tt t- -+ 2 2

    18. X s ss s( ) =

    +

    + +

    3 2

    2 102

    (A) 3 31

    33e t e t u tt t- --

    cos sin ( )

    (B) 3 31

    33e t e t u tt t- --

    sin cos ( )

    (C) ( cos sin ) ( )3 3 3e t e t u tt t- --

    (D) ( sin cos ) ( )3 3 3 3e t e t u tt t- -+

    19. X ss s

    s s s( )

    ( )( )=

    + +

    + + +

    4 8 10

    2 2 5

    2

    2

    (A) ( sin cos ) ( )2 2 2 2 22e e t e t u tt t t- - -+ -

    (B) ( cos sin ) ( )2 2 2 2 22e e t e t u tt t t- - -+ -

    (C) ( cos sin ) ( )2 2 2 22e e t e t u tt t t- - -+ -

    (D) ( sin cos ) ( )2 2 2 22e e t e t u tt t t- - -+ -

    20. X ss s

    s s s( )

    ( )( )=

    + +

    + + +

    3 10 10

    2 6 10

    2

    2

    (A) ( cos sin ) ( )e e t e t u tt t t- - -+ +2 3 32 2

    (B) ( cos sin ) ( )e e t e t u tt t t- - -+ -2 3 32 6

    (C) ( cos sin ) ( )e e t e t u t

    t t t- - -+ -2 3 3

    2 2(D) ( cos sin ) ( )9 6 32 3 3e e t e t u tt t t- - -- +

    21. X ss s e

    s s

    s

    ( )( )

    =+ + +

    + +

    -2 11 16

    5 6

    2 2

    2

    (A) 2 3 2 22 3d( ) ( ) ( )t e e u tt t+ - -- -

    (B) 2 2 2 3 2 2 3 2d( ) ( ) ( )( ) ( )t e e e e u tt t t t+ - + +- - - - - -

    (C) 2 2 22 3 2 3d( ) ( ) ( ) ( ) ( )t e e u t e e u tt t t t+ - + - -- - - -

    (D) 2 2 22 3 2 2 3 2d( ) ( ) ( ) ( ) ( )( ) ( )t e e u t e e u tt t t t+ - + - -- - - - - -

    22. X s s

    d

    ds s s( ) = +

    + +

    2

    2 2

    1

    9

    1

    3

    (A) et

    tt

    t u tt- + +

    322

    33

    93sin cos ( )

    (B) ( sin cos ) ( )e t t t t u tt- + +3 22 3 3

    (C) et

    t t t u tt- + +

    3 22

    33 3sin cos ( )

    (D) ( sin cos ) ( )e t t t t u tt- + +3 2 3 2 3

    Page270

    UNIT 5 Signal & SystemGATE EC BY RK Kanodia

    www.gatehelp.com

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    13/41

    23. X ss

    ( )( )

    =+ +

    1

    2 1 42

    (A) e t u tt-0 5. sin ( ) (B)1

    2e t u tt- sin ( )

    (C)1

    4

    0 5e t u tt- . sin ( ) (D) e t u tt- sin ( )

    24. X s ed

    ds s

    s( )( )

    =+

    -2

    2

    1

    1

    (A) - --te u tt ( )1 (B) - --te u tt ( )1

    (C) - - -- -( ) ( )( )t e u tt2 22 2 (D) te u tt- -( )1

    Statement for Q.2529:

    Given the transform pair below. Determine the

    time signal y t( ) and choose correct option.

    cos ( ) ( )2t u t X s

    L .

    25. Y s s X s( ) ( ) ( )= + 1

    (A) [cos sin ] ( )2 2 2t t u t- (B) cossin

    ( )22

    2t

    tu t+

    (C) [cos sin ] ( )2 2 2t t u t+ (D) cossin

    ( )22

    2t

    tu t-

    26. Y s X s( ) ( )= 3

    (A) cos ( )2

    3

    t u t

    (B)1

    3

    2

    3

    cos ( )t u t

    (C) cos ( )6t u t (D)1

    36cos ( )t u t

    27. Y s X s( ) ( )= + 2

    (A) cos ( ) ( )2 2t u t- (B) e t u tt2 2cos ( )

    (C) cos ( ) ( )2 2t u t+ (D) e t u tt-2 2cos ( )

    28. Y sX s

    s( )

    ( )=

    2

    (A) 4 2cos ( )t u t (B)

    1 2

    4

    - cos

    ( )

    t

    u t

    (C) t t u t2 2cos ( ) (D)cos

    ( )2

    2

    t

    tu t

    29. Y sd

    dse X ss( ) [ ( )]= -3

    (A) t t u tcos ( ) ( )2 3 3- - (B) t t u tcos ( ) ( )2 3-

    (C) - - -t t u tcos ( ) ( )2 3 3 (D) - -t t u tcos ( ) ( )2 3

    Statement for Q.3033:

    Given the transform pair

    x t u ts

    s

    L( ) ( ) +

    2

    22.

    Determine the Laplace transform Y s( ) of the given

    time signal in question and choose correct option.

    30. y t x t( ) ( )= - 2

    (A)2

    2

    2

    2

    se

    s

    s-

    +(B)

    2

    2

    2

    2

    se

    s

    s

    +

    (C)2 2

    2 12( )

    ( )

    s

    s

    -

    - +(D)

    2 2

    2 12( )

    ( )

    s

    s

    +

    + +

    31. y t x tdx t

    dt( ) ( ) *

    ( )=

    (A) 42

    3

    2 2s

    s( )+(B) 4

    22 2( )s +

    (C)-

    +

    4

    2

    3

    2 2

    s

    s( )(D)

    4

    22 2( )s +

    32. y t e x tt( ) ( )= -

    (A)2 1

    1 22( )

    ( )

    s

    s

    +

    + +(B)

    2 1

    2 22( )s

    s s

    +

    + +

    (C)2 1

    2 42( )s

    s s

    +

    + +(D)

    2 1

    22( )s

    s s

    +

    +

    33. y t tx t( ) ( )= 2

    (A)8 4

    2

    2

    2 2

    -

    +

    s

    s( )(B)

    4 8

    2

    2

    2 2

    s

    s

    -

    +( )

    (C)4

    1

    2

    2

    s

    s +(D)

    s

    s

    2

    2 1+

    Statement for Q.3443:

    Determine the bilateral laplace transform and

    choose correct option.

    34. x t e u tt( ) ( )= +- 2

    (A)e

    s

    s2 1

    1

    ( )+

    +, Re ( )s > -1

    (B)1

    1 + s, Re ( )s < - 1

    (C)e

    s

    s2 1

    1

    ( )+

    +, Re ( )s < - 1

    (D)1

    1 + s, Re ( )s > -1

    Chap 5.3The Laplace Transform

    Pa271

    GATE EC BY RK Kanodia

    www.gatehelp.com

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    14/41

    35. x t u t( ) ( )= - + 3

    (A)1 3- -e

    s

    s

    , Re ( )s > 0

    (B)- -e

    s

    s3

    , Re ( )s < 0

    (C) 1

    3- -

    es

    s

    , Re ( )s < 0

    (D)- -e

    s

    s3

    , Re ( )s > 0

    36. y t t( ) ( )= +d 1

    (A) es, Re( )s > 0 (B) es, Re ( )s < 0

    (C) es, all s (D) None of above

    37. x t t u t( ) sin ( )=

    (A)1

    1 2( )+ s , Re ( )s < 0

    (B)1

    1 2( )+ s, Re ( )s > 0

    (C)-

    +

    1

    1 2( )s, Re ( )s < 0

    (D)-

    +

    1

    1 2( )s, Re ( )s > 0

    38. x t e u t e u t e u tt

    t t( ) ( ) ( ) ( )= + + --

    -2

    (A) 6 2 22 1 1

    2

    2s s

    s s+ -

    + -( )( ), Re ( ) .s < - 0 5

    (B)6 2 2

    2 1 1

    2

    2

    s s

    s s

    + -

    + -( )( ), - >1 Re ( )s > 1

    (C)1

    0 5

    1

    1

    1

    1s s s++

    ++

    -., -1 < Re ( )s < 1

    (D)1

    0 5

    1

    1

    1

    1s s s++

    +-

    -., - 0

    (B)-

    + +

    s

    s s( )( )1 92, - 1

    (B)e

    s

    s2 1

    21 4

    ( )

    ( )

    -

    - +, Re ( )s < 1

    (C)e

    s

    s( )

    ( )

    -

    - +

    2

    21 4, Re ( )s > 1

    (D)e

    s

    s( )

    ( )

    -

    - +

    2

    21 4, Re ( )s < 1

    43. x t ed

    dte u tt t( ) [ ( )]= --2

    (A)1

    1

    -

    +

    s

    s, Re ( )s < - 1

    (B)1

    1

    -

    +

    s

    s, Re ( )s > -1

    (C)s

    s

    -

    +

    1

    1, Re ( )s < - 1

    (D)s

    s

    -

    +

    1

    1, Re ( )s > -1

    Statement for Q.4449:

    Determine the corresponding time signal for given

    bilateral Laplace transform.

    44. X se

    s

    s

    ( ) =+

    5

    2with ROC: Re ( )s < -2

    (A) e u tt- + +2 5 5( ) ( )

    Page272

    UNIT 5 Signal & SystemGATE EC BY RK Kanodia

    www.gatehelp.com

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    15/41

    (A)1

    2e t u tt- sin ( ) (B) 2e t u tt- cos ( )

    (C) 21

    2e t u t e t u tt t- -+cos ( ) sin ( )

    (D)1

    21 2 1e t u t e t u tt t- -- + -cos ( ) sin ( )

    58.d y t

    dt

    d y t

    dt

    dy t

    dtx t

    3

    3

    2

    24 3

    ( ) ( ) ( )( )+ + =

    All initial condition are zero, x t e t( ) = -10 2

    (A)5

    35 5

    5

    3

    2 3+ - +

    - - -e e e u tt t t ( )

    (B)5

    35 5

    5

    3

    2 3- + +

    - - -e e e u tt t t ( )

    (C)5

    35 1 5 2

    5

    33u t u t u t u t( ) ( ) ( ) ( )- - + - + -

    (D) 53

    5 1 5 2 53

    3u t u t u t u t( ) ( ) ( ) ( )+ - - - + -

    59. The transform function H s( ) of a causal system is

    H ss s

    s( ) =

    + -

    -

    2 2 2

    1

    2

    2

    The impulse response is

    (A) 2d( ) ( ) ( )t e e u tt t- + --

    (B) 2d( ) ( ) ( )t e e u tt t- +-

    (C) 2d( ) ( ) ( )t e u t e u tt t+ - --

    (D) 2d( ) ( ) ( )t e e u tt t+ +-

    60. The transfer function H s( ) of a stable system is

    H ss

    s s( ) =

    -

    + +

    2 1

    2 12

    The impulse response is

    (A) 2 1 3 1u t tu t( ) ( )- + - - +

    (B) ( ) ( )3 2te e u tt t- --

    (C) 2 1 3 1u t tu t( ) ( )+ - +

    (D) ( ) ( )2 3e te u tt t- --

    61. The transfer function H s( ) of a stable system is

    H ss s

    s s s( )

    ( )( )=

    + -

    + - +

    2

    2

    5 9

    1 2 10

    The impulse response is

    (A) - + +-e u t e t e t u tt t t( ) ( sin cos ) ( )3 2 3

    (B) - - + --e u t e t e t u tt t t( ) ( sin cos ) ( )3 2 3

    (C) - - +-e u t e t e t u tt t t( ) ( sin cos ) ( )3 2 3

    (D) - + + --e u t e t e t u tt t t( ) ( sin cos ) ( )3 2 3

    62. A stable system has input x t( ) and output

    y t e t u tt( ) cos ( )= -2 . The impulse response of the system

    is

    (A) d( ) ( cos sin ) ( )t e t e t u tt t- +- -2 2

    (B) d( ) ( cos sin ) ( )t e t e t u tt t- + -- -2 2 2

    (C) d( ) ( cos sin ) ( )t e t e t u tt t- +2 2

    (D) d( ) ( cos sin ) ( )t e t e t u tt t- + +2 2 2

    63. The relation ship between the input x t( ) and output

    y t( ) of a causal system is described by the differential

    equation

    dy t

    dty t x t

    ( )( ) ( )+ =10 10

    The impulse response of the system is

    (A) - - +-10 1010e u tt ( ) (B) 10 10e u tt- ( )

    (C) 10 1010e u tt- - +( ) (D) - -10 10e u tt ( )

    64. The relationship between the input x t( ) and output

    y t( ) of a causal system is defined as

    d y t

    dt

    dy t

    dty t x t

    dx t

    dt

    2

    22 4 5

    ( ) ( )( ) ( )

    ( )- - = - + .

    The impulse response of system is

    (A) 3 2 2e u t e u tt t- + -( ) ( )

    (B) ( ) ( )3 2 2e e u tt t- +

    (C) 3 2 2e u t e u tt t- - -( ) ( )

    (D) ( ) ( )3 2 2e e u tt t- - -

    *******

    Page274

    UNIT 5 Signal & SystemGATE EC BY RK Kanodia

    www.gatehelp.com

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    16/41

    SOLUTIONS

    1. (B) X s x t e dtst( ) ( )= -

    0

    = =- -

    e dte

    s

    sts

    2

    2

    2. (A) X s x t e dtt( ) ( )= -

    3

    0

    = + -

    u t dtt( )2 3

    0

    = =-

    e dt st3

    0

    1

    3. (A) X s e e dts

    t st( ) = =+

    - -

    2

    0

    1

    2

    4. (C) X s x t e dtst( ) ( )= -

    0

    = - + -

    e u t e dtt st2

    0

    2( )

    = =-

    --

    -

    e dte

    s

    t ss

    ( )( )

    2

    0

    2 2 2 1

    2=

    -

    -

    - -1

    2

    2 2e

    s

    s( )

    5. (C) X se e

    je dt

    s

    j t j tst( )

    ( )=

    -=

    +

    --

    5 5

    0

    22

    5

    25

    6. (B) X s e dtst( ) = -0

    2

    =- -1 2e

    s

    s

    7. (B) p t te u t P ss

    t L( ) ( ) ( )( )

    = =+

    - 1

    1 2

    x td

    dtp t X s

    s

    s

    L( ) ( ) ( )( )

    = =+ 1 2

    8. (A) p t tu t P ss

    L( ) ( ) ( )= =1

    2

    q t t u t Q ss

    s

    L( ) cos ( ) ( )= =+

    242 2

    pp

    x t p t q t X s P s Q sL( ) ( ) * ( ) ( ) ( ) ( )= =

    =+

    X ss s

    ( )( )

    1

    42 2p

    9. (C) p t tu t P ss

    L( ) ( ) ( )= =1

    2

    q t tp t Q s dds

    P ss

    L( ) ( ) ( ) ( )= - = = -23

    x t tq t X sd

    dsQ s

    s

    L( ) ( ) ( ) ( )= - = =6

    4

    t u tn

    s

    n L

    n( )

    !

    + 1

    10. (D) p t u t P ss

    L( ) ( ) ( )= =1

    q t u t Q se

    s

    Ls

    ( ) ( ) ( )= - =-

    12

    r t e u t R ss

    t L( ) ( ) ( )= =+

    -2 1

    2

    v t e u t V se

    s

    t Ls

    ( ) ( ) ( )( )

    = - =-- +

    22

    21

    x t q t v t X s Q s V sL( ) ( ) * ( ) ( ) ( ) ( )= =

    = +

    - +

    X s

    e

    s

    s

    ( )

    ( )2 1

    2

    11. (B) p t e t u t P ss

    s

    t L( ) cos ( ) ( )( )

    = =+

    + +-3

    22

    3

    3 4

    p ds

    p dP s

    s

    tL( ) ( )

    ( )t t t t

    - - +

    10

    =+

    + +X s

    s

    s s( )

    ( )

    [( ) ]

    3

    3 42

    12. (A) p t e t u t P ss

    s

    t L( ) cos ( ) ( )( )

    = =+

    + +- 1

    1 12

    q td

    dtp t Q s

    s s

    s

    L( ) ( ) ( )( )

    ( )= =

    +

    + +

    1

    1 12

    x t tq t X sd

    dsQ sL( ) ( ) ( ) ( )= = -

    =- + +

    + +X s

    s s

    s s( )

    ( )

    ( )

    2

    2 2

    4 2

    2 2

    13. (B) X ss

    s s

    A

    s

    B

    s( )

    ( )=

    +

    + +=

    ++

    +

    3

    3 2 1 22

    As

    s s=

    +

    +=

    = -

    3

    22

    1

    , Bs

    s s=

    +

    += -

    = -

    3

    11

    2

    x t e e u tt t( ) [ ] ( )= -- -2 2

    14. (A) X ss s s s

    ( )( ) ( ) ( ) ( )

    = -+ +

    = -+

    ++

    21

    2 32

    1

    2

    1

    3

    x t t e e u tt t( ) ( ) ( ) ( )= + -- -2 3 3d

    15. (C) X ss

    s s

    A

    s

    B

    s( )

    ( ) ( )=

    -

    + +=

    ++

    +

    2 1

    2 1 1 12 2

    B ss

    = - = -= -

    ( )2 2 31

    , A = 2

    x t( ) = x t e te u tt t( ) [ ] ( )= -- -2 3

    16. (B) X ss

    s s s

    A

    s

    B

    s

    C

    s( ) =

    +

    + += +

    ++

    +

    5 4

    3 2 1 23 2

    A sX ss

    = ==

    ( )0

    2, B s X ss

    = + ==-

    ( ) ( )1 11

    ,

    C s X ss

    = + = -=-

    ( ) ( )2 32

    x t e e u tt t( ) [ ] ( )= + -- -2 3 2

    17. (C) X ss

    s s s( )

    ( )( )=

    -

    + + +

    2

    2

    3

    2 2 1

    =+

    ++

    ++

    A

    s

    B

    s

    C

    s( ) ( ) ( )2 1 1 2

    Chap 5.3The Laplace Transform

    Pa275

    GATE EC BY RK Kanodia

    www.gatehelp.com

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    17/41

    A s X ss

    = + == -

    ( ) ( )2 12

    , C s X ss

    = + = -=-

    ( ) ( )1 221

    A B+ = 1 B = 0

    x t e te u tt t( ) [ ] ( )= -- -2

    18. (A) X ss

    s s( ) =

    +

    + +

    3 2

    2 102=

    +

    + +-

    + +

    3 1

    1 3

    1

    1 32 2 2 2( )

    ( ) ( )

    s

    s s

    x t e t e t u tt t( ) cos sin ( )= -

    - -3 3

    1

    33

    19. (C) X ss s

    s s s( )

    ( )( )=

    + +

    + + +

    4 8 10

    2 2 5

    2

    2

    =+

    ++

    + ++

    + +

    A

    s

    B s

    s

    C

    s( )

    ( )

    ( ) ( )2

    1

    1 2 1 22 2 2 2

    A s X ss

    = + == -

    ( ) ( )2 22

    A B B+ = =4 2

    5 2 2 10A B C+ + = C = -2

    x t e e t e t u tt t t

    ( ) [ cos sin ] ( )= + -- - -

    2 2 2 22

    20. (B) X ss s

    s s s( )

    ( )( )=

    + +

    + + +

    3 10 10

    2 6 10

    2

    2

    =+

    ++

    + ++

    + +

    A

    s

    B s

    s

    C

    s( )

    ( )

    ( ) ( )2

    3

    3 1 3 12 2

    A s X ss

    = + == -

    ( ) ( )2 12

    , A B B+ = =3 2

    10 6 2 10A B C+ + = C = -6

    x t e e t e t u tt t t( ) [ cos sin ] ( )= + -- - -2 3 32 6

    21. (D) X ss s e

    s s

    s

    ( )

    ( )

    =+ + +

    + +

    -2 11 16

    5 6

    2 2

    2

    = ++

    ++

    ++

    -+

    - -

    22 3 2 3

    2 2A

    s

    B

    s

    e

    s

    e

    s

    s s

    ( ) ( ) ( ) ( )

    As s s

    s ss

    =+ + +

    + +=

    = -

    ( )( )

    ( )

    2 2 11 16

    5 62

    2

    2

    2

    Bs s s

    s ss

    =+ + +

    + += -

    = -

    ( )( )

    ( )

    3 2 11 16

    5 61

    2

    2

    3

    x t t e e u t e e u tt t t t( ) ( ) [ ] ( ) [ ] (( ) ( )= + - + -- - - - - -2 2 2 3 2 2 3 2d - 2)

    22. (C) P s

    s

    p t t u tL( ) ( ) sin ( )=

    +

    =1

    9

    1

    3

    32

    Q sd

    dsP s q tL( ) ( ) ( )=

    2

    2= - =( ) ( ) sin ( )1

    332 2

    2

    t p tt

    t u t

    R s sQ s r td

    dtq t qL( ) ( ) ( ) ( ) ( )= = - -0

    = +2

    33 32

    tt u t t t u tsin ( ) cos ( )

    V ss

    v t e u tL t( ) ( ) ( )=+

    = -1

    3

    3

    x t v t r t( ) ( ) ( )= + = + +

    -2

    33 32 3

    tt u t t t u t e u ttsin ( ) cos ( ) ( )

    23. (C) Ps

    aap atL

    ( )

    1

    1 4

    1

    22

    2( )sin ( )

    se t u tL t

    + + -

    x t e t u tL t( ) sin ( ). -1

    4

    0 5

    24. (C) P ss

    p t te u tL t( )( )

    ( ) ( )=+

    = -1

    1 2

    Q sd

    dsP s q t tp t t e u tL t( ) ( ) ( ) ( ) ( )= = - = - -2

    X s e Q s x t q ts L( ) ( ) ( ) ( )= = --2 2

    = - - --x t t e u tt( ) ( ) ( )( )2 22

    25. (A) sX s X sdx t

    dtx tL( ) ( )

    ( )( )+ +

    = - +y t t t u t( ) ( sin cos ) ( )2 2 2

    26. (B) Xs

    aax atL

    ( )

    X s t u tL( ) cos ( )31

    3

    2

    3

    27. (D) X s e x tL t( ) ( )+ -2 2

    28. (B) P sX s

    sx dL

    t

    ( )( )

    ( )= - t t

    L

    t

    u d

    t =

    - cos ( )sin

    2

    2

    2t t t

    P s

    sd

    tu tL

    t( ) sin cos

    ( ) =-

    2

    2

    1 2

    40

    tt ,

    29. (C) P s e X s p t x ts L( ) ( ) ( ) ( )= = --3 3

    = - -cos ( ) ( )2 3 3t u t

    Q sd

    dsP s q t p tL( ) ( ) ( ) ( )= = -

    = - - -t t u tcos ( ) ( )2 3 3 .

    30. (A) x t e X sL s( ) ( )- -

    2 2 , Y sse

    s

    s

    ( ) = +

    -2

    2

    2

    2

    31. (A) p td

    dtx t P s sX sL( ) ( ) ( ) ( )= =

    y t x t p t Y s P s X s s X sL( ) ( ) * ( ) ( ) ( ) ( ) ( ( ))= = = 2

    32. (A) e x t X ss

    s

    t L- + =+

    + +( ) ( )

    ( )

    ( )1

    2 1

    1 22

    Page276

    UNIT 5 Signal & SystemGATE EC BY RK Kanodia

    www.gatehelp.com

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    18/41

    33. (B) 2 24 8

    2

    2

    2 2tx t

    d

    dsX s

    s

    s

    L( ) ( )( )

    - =-

    +

    34. (A) X s x t e dtst( ) ( )= -

    -

    = = = +- -

    -

    - +

    -

    +

    e e dt e dte

    s

    t st t ss

    2

    1

    2

    2 1

    1

    ( )( )

    , Re( )s > - 1

    35. (B) X s u t e dt e dte

    s

    st sts

    ( ) ( )= - + = =--

    -

    -

    -

    -

    33 3

    Re ( )s < 0

    36. (C) Y s t e dt est s( ) ( )= + =-

    -

    d 1 , All s

    37. (B) X se e

    je dt

    jt jtst( )

    ( )=

    - - -

    20

    = --

    - +

    121

    20 0

    je dt

    je dtt j s t j s( ) ( ) =

    +1

    1 2s, Re ( )s > 0

    38. (D) X s e e e e dt e e dtt

    st t st t st( ) = + +-

    -

    - -

    -

    - 20 0

    0

    =+

    ++

    --

    1

    0 5

    1

    1

    1

    1s s s.

    Re ( ) .s > -0 5, Re ( )s > -1, Re ( )s < 1

    - -1, Re ( ) .s > 0 5

    Therefore 0.5 < Re ( )s < 1

    X ss

    s s s( )

    ( ) ( ) .= -

    -

    - ++

    ++

    -

    1

    1 4

    1

    1

    1

    0 52

    40. (C) x t e e u tt( ) ( )( )= +- - +3 3 3 3

    p t e u t P ss

    t L( ) ( ) ( )= =-

    3 1

    3

    q t p t Q s e P s e

    s

    L ss

    ( ) ( ) ( ) ( )= + = =-

    33

    33

    X se

    s

    s

    ( )( )

    =-

    -3 1

    3, Re ( )s > 3

    41. (B) p t q t P s Q sL( ) * ( ) ( ) ( )

    X ss

    s s( ) =

    -

    + +

    2 9

    1

    1

    Re ( )s > -1, Re ( )s < 0

    - 1

    43. (A) p t e u t P s s

    t L

    ( ) ( ) ( )= - =

    -

    +-2 1

    2, Re ( )s < - 2

    q td

    dtp t Q s sP sL( ) ( ) ( ) ( )= =

    x t e q t X s Q ss

    s

    t L( ) ( ) ( ) ( )= = - =-

    +1

    1

    1

    Re ( )s < - 1 thus left-sided .

    44. (C) Left-sided

    P ss

    p t e u tL t( ) ( ) ( )=+

    = - --1

    2

    2

    X s e P s x t p ts L( ) ( ) ( ) ( )= = +5 5

    = - - +- +x t e u tt( ) ( ( ))( )2 5 5

    45. (A) Right-sided

    P ss

    p t e u tL t( )( )

    ( ) ( )=-

    =1

    3

    3

    X sd

    dsP s x t t e u tL t( ) ( ) ( ) ( )= =

    2

    2

    2 3

    46. (D) Left-sided

    x t u t u t t( ) ( ) ( ) ( )= - - + - + + +1 2d

    47. (C) Right-sided, P ss

    p t u tL( ) ( ) ( )= =1

    Q s e P s q t p t u ts L( ) ( ) ( ) ( ) ( )= = - = --3 3 3

    R sd

    dsQ s r t tq t tu tL( ) ( ) ( ) ( ) ( )= = - = - - 3

    V ss

    R s v t r dLt

    ( ) ( ) ( ) ( )= =-

    1t t

    = - = - -v t tdt tt

    ( ) ( )3

    21

    29

    X ss

    v s x t tLt

    ( ) ( ) ( ) ( )= = - -

    -

    1 1

    292

    =-

    - + -

    -x t t t u t( ) ( ) ( ) ( )

    1

    627

    9

    23 33

    48. (B) X ss

    s s s s( )

    ( )=

    - -

    + +=

    -

    ++

    +

    4

    3 2

    3

    1

    2

    22

    Left-sided, x t e u t e u tt t( ) ( ) ( )= - - -- -3 2 2

    49. (A) X ss s

    ( )( ) ( )

    =+

    -+

    5

    1

    1

    1 2

    Left-sided, x t u t te u tt( ) ( ) ( )= - - + --5

    Chap 5.3The Laplace Transform

    Pa277

    GATE EC BY RK Kanodia

    www.gatehelp.com

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    19/41

    50. (D) x sX ss

    s sx( ) lim ( )0

    5 20

    2

    +

    = =

    + -=

    51. (A) x sX ss s

    s ss( ) lim ( )0

    2

    2 31

    2

    2

    +

    = =

    +

    + -=

    52. (D) x sX s e s ss ss

    s( ) lim ( ) ( )0 6

    2 20

    2 3 2

    2

    +

    -= = ++ -

    =

    53. (A) x sX ss s

    s ss( ) lim ( ) = =

    +

    + +=

    0

    3

    2

    2 3

    5 10

    54. (C) x sX ss

    s ss( ) lim ( ) = =

    +

    + +=

    0 2

    2

    3 12

    55. (B) x sX se s

    s ss

    s

    ( ) lim ( )( )

    = =+

    + +=

    -

    0

    3 2

    2

    2 1

    5 4

    1

    4

    56. (C) sY s y Y s s( ) ( ) ( ) ( )- + =-0 10 10

    y X ss

    ( ) , ( )0 11- = =

    Y ss s s s

    ( )( ) ( )

    =+

    ++

    =10

    1

    1

    1

    1

    y t u t( ) ( )=

    57. (C) s Y s s sY s Y s2 2 2 2 5 1( ) ( ) ( )- + - + =

    ( ) ( )s s Y s s2 2 5 3 2+ + = +

    Y ss

    s s

    s

    s s

    ( )( )

    ( ) ( )

    =+

    + +

    =+

    + +

    +

    + +

    2 3

    2 5

    2 1

    1 2

    1

    1 22 2 2 2 2

    = +- -y t e t u t e t u tt t( ) cos ( ) sin ( )21

    2

    58. (B) s Y s s Y s sY ss

    3 24 310

    2( ) ( ) ( )

    ( )+ + =

    +

    Y ss s s s

    A

    s

    B

    s

    C

    s

    D

    s( )

    ( )( )( ) ( ) ( )=

    + + += +

    ++

    ++

    +

    10

    1 2 3 1 2 3

    A sY ss

    = ==

    ( )0

    5

    3, B s Y s

    s= + = -

    = -( ) ( )1 5

    1,

    C s Y ss

    = + == -

    ( ) ( )2 52

    , D s Y ss

    = + ==

    ( ) ( )35

    30

    = - + +

    - - -y t e e e u tt t t( ) ( )

    5

    35 5

    5

    3

    2 3

    59. (D) For a causal system h t( ) = 0 for t < 0

    H ss s

    ( ) = ++

    +-

    21

    1

    1

    1

    h t t e e u tt t( ) ( ) ( ) ( )= + +-2d

    60. (D) H ss s

    ( )( )

    =+

    -+

    2

    1

    3

    1 2, System is stable

    h t e te u tt t( ) ( ) ( )= -- -2 3 .

    61. (A) H ss

    s

    s s( )

    ( )

    ( )

    ( ) ( )=

    -

    ++

    -

    - ++

    - +

    1

    1

    2 1

    1 3

    3

    1 32 2 2 2

    System is stable

    h t e u t e t e t u tt t t( ) ( ) ( cos sin ) ( )= - + + -- 2 3 3

    62. (A) X ss

    ( ) =+

    1

    1, Y s

    s

    s( )

    ( )

    ( )=

    +

    + +

    2

    2 12

    H sY s

    X s

    s s

    s( )

    ( )

    ( )

    ( )( )

    ( )= =

    + +

    + +

    1 2

    2 12

    = -+

    + +-

    + +1

    2

    2 1

    1

    2 12 2( )

    ( ) ( )

    s

    s s

    h t t e t e t u tt t( ) ( ) ( cos sin ) ( )= - +- -d 2 2

    63. (B) sY s Y s X s( ) ( ) ( )+ =10 10

    H sY s

    X s s( )

    ( )

    ( )= =

    +

    10

    10

    h t e u tt( ) ( )= -10 10

    64. (B) Y s s s X s s( )( ) ( )( )2 2 5 4- - = -

    H sY s

    X s

    s

    s s s s( )

    ( )

    ( )= =

    -

    - -=

    ++

    -

    5 4

    2

    3

    1

    2

    22

    h t e u t e u tt t( ) ( ) ( )= +-3 2 2 .

    ***********

    Page278

    UNIT 5 Signal & SystemGATE EC BY RK Kanodia

    www.gatehelp.com

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    20/41

    Statement forQ.1-12:

    Determine the z-transform and choose correct

    option.

    1. x n n k k[ ] [ ] ,= - >d 0

    (A) z zk , > 0 (B) z zk- >, 0

    (C) z zk , 0 (D) z zk- , 0

    2. x n n k k[ ] [ ] ,= + >d 0

    (A) z zk- , 0 (B) z zk , 0

    (C) z k- , all z (D) zk , all z

    3. x n u n[ ] [ ]=

    (A)1

    11

    1->

    -zz, | | (B)

    1

    11

    1-

    .

    ( . ), . (B)

    z

    z zz

    5 5

    4

    0 25

    0 250

    -

    ->

    .

    ( . ),

    (C)z

    z zz

    5 5

    3

    0 25

    0 250 25

    -

    -, | | (B)

    4

    4 1

    1

    4

    z

    zz

    -

    zz, | | (D)

    1

    1 4

    1

    4-, | | (B)

    z

    zz

    33

    -

    zz, | | (D)

    3

    33

    - 112

    58. Consider the following three systems

    y n y n x n x n x n1 0 2 1 0 3 1 0 02 2[ ] . [ ] [ ] . [ ] . [ ]= - + - - + -

    y n x n x n2 0 1 1[ ] [ ] . [ ]= - -

    y n y n x n x n3 0 5 1 0 4 0 3 1[ ] . [ ] . [ ] . [ ]= - + - -

    The equivalent system are

    (A) y n1[ ] and y n2[ ] (B) y n2[ ] and y n3[ ]

    (C) y n3[ ] and y n1[ ] (D) all

    59. The z-transform of a causal system is given as

    X zz

    z z( )

    .

    . .=

    -

    - +

    -

    - -

    2 15

    1 15 0 5

    1

    1 2

    The x[ ]0 is

    (A) -15. (B) 2

    (C) 1.5 (D) 0

    60. The z-transform of a anti causal system is

    X zz

    z z( ) =

    -

    - +

    12 21

    3 7 12 2

    The value of x[ ]0 is

    (A) -7

    4(B) 0

    (C) 4 (D) Does not exist

    61. Given the z-transforms

    X zz z

    z z( )

    ( )=

    -

    - +

    8 7

    4 7 32

    The limit of x[ ] is

    (A) 1 (B) 2

    (C) (D) 0

    62. The impulse response of the system shown in fig.

    P5.4.62 is

    (A) 2 1 11

    2

    22

    n

    n u n n-

    + - +( ( ) ) [ ] [ ]d

    (B)2

    21 1

    1

    2

    nn u n n( ( ) ) [ ] [ ]+ - + d

    (C) 2 1 11

    2

    22

    n

    n u n n-

    + - -( ( ) ) [ ] [ ]d

    (D)2

    21 1

    1

    2

    nn u n n[ ( ) ] [ ] [ ]+ - - d

    63. The system diagram for the transfer function

    H zz

    z z( ) =

    + +2 1

    is shown in fig. P5.4.63. This system diagram is a

    (A) Correct solution

    (B) Not correct solution

    (C) Correct and unique solution

    (D) Correct but not unique solution

    *****************

    Chap 5.4The z-Transform

    Pa285

    X z( ) Y z( )

    z-1

    z-1

    + z-1

    Fig. P5.4.62

    X z( ) Y z( )

    z-1

    z-1

    +

    ++

    Fig. P5.4.63

    GATE EC BY RK Kanodia

    www.gatehelp.com

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    25/41

    24. (A) X zz z

    z z

    z

    z z

    ( ) =-

    +

    =-

    + --

    -

    - -

    2

    2 1

    1

    1 2

    3

    3

    2

    1 3

    13

    2

    =+

    -

    --

    -

    2

    1 2

    1

    11

    2

    11z z

    , ROC :1

    22< >, gives z1 2>

    x n2[ ] is left-sided signal

    z z2 221

    2< and z3 2< gives

    1

    223< 1

    2(Right-sided) = -

    -

    x n u n u nn

    n

    [ ] [ ] [ ]2

    2

    1

    3

    | |z 1

    4.1

    21

    2

    0

    2

    x t dt( ) =

    The signal, that satisfy these condition, is

    (A) 2 sin pt and unique

    (B) 2 sin pt but not unique

    (C) 2 sin pt and unique

    (D) 2 sin pt but not unique

    26. Consider a continuous-time LTI system whose

    frequency response is

    H j h t e dtj t( ) ( )sin

    ww

    ww= =-

    -

    4

    The input to this system is a periodic signal

    x tt

    t( )

    ,

    ,=

    -

    2 0 4

    2 4 8

    with period T = 8. The output y t( ) will be

    (A) 14

    2+

    sin

    pt(B) 1

    4

    2+

    cos

    pt

    (C) 14 4

    +

    +

    sin cos

    p pt t(D) 0

    27. Consider a continuous-time ideal low pass filter

    having the frequency response

    H j( ), | |

    , | |w

    w

    w=

    >

    1 80

    0 80

    When the input to this filter is a signal x t( ) with

    fundamental frequency wo = 12 and Fourier series

    coefficients X k[ ], it is found that x t y t x tS( ) ( ) ( ) = .

    The largest value of| |k, for which X k[ ] is nonzero, is

    (A) 6 (B) 80

    (C) 7 (D) 12

    28. A continuous-time periodic signal has a

    fundamental period T = 8. The nonzero Fourier series

    coefficients are as,

    X X j X X[ ] [ ] , [ ] [ ]*1 1 5 5 2= - = = - = ,

    The signal will be

    (A) 44

    24

    cos sinp p

    t t

    -

    (B) 24

    44

    cos sinp p

    t t

    +

    (C) 24

    24

    cos sinp pt t

    +

    (D) None of the above

    Statement for Q.29-31:

    Consider the following three continuous-time

    signals with a fundamental period of T = 1

    x t t( ) cos= 2p , y t t( ) sin= 2p , z t x t y t( ) ( ) ( )=

    29. The Fourier series coefficient X k[ ] of x t( ) are

    (A) 12

    1 1( [ ] [ ])d dk k+ + -

    (B) 12

    1 1( [ ] [ ])d dk k+ - -

    (C) 12

    1 1( [ ] [ ])d dk k- - +

    (D) None of the above

    30. The Fourier series coefficient of y t( ), Y k[ ] will be

    (A)j

    k k2

    1 1( [ ] [ ])d d+ + +

    (B)j

    k k2

    1 1( [ ] [ ])d d+ - -

    (C)j

    k k2

    1 1( [ ] [ ])d d- - +

    (D) 12 1 1j k k( [ ] [ ])d d+ + +

    31. The Fourier series coefficient of z t Z k( ) , [ ] will be

    (A) 14

    2 2j

    k k( [ ] [ ])d d- - +

    (B) 12

    2 2j

    k k( [ ] [ ])d d- - +

    (C) 12

    2 2j

    k kd d[ ] [ ])+ - -

    (D) None of the above

    32. Consider a periodic signal x t( ) whose Fourier series

    coefficients are

    X k

    k

    j

    k[ ]

    ,

    ,

    | |==

    2 0

    1

    2otherwise

    Consider the statements

    1. x t( ) is real. 2. x t( ) is even 3.dx t

    dt

    ( )is even

    The true statements are

    (A) 1 and 2 (B) only 2

    (C) only 1 (D) 1 and 3

    Chap 5.7The Continuous-Time Fourier Series

    Pa311

    GATE EC BY RK Kanodia

    www.gatehelp.com

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    36/41

    Statement for Q.33-36:

    A waveform for one peroid is depicted in figure in

    question. Determine the trigonometric Fourier series

    and choose correct option.

    33.

    (A)2 1

    22

    1

    33

    1

    44

    p(cos cos cos cos ....)t t t t+ + + +

    (B)2 1

    22

    1

    33

    1

    44

    p(sin sin sin sin ....)t t t t- + - +

    (C)2 1

    22

    1

    22

    1

    33

    p(sin cos sin cos sin ....)t t t t t+ - - + +

    (D)2 1

    33

    1

    33

    1

    55

    p(sin cos sin cos sin ....)t t t t t+ + + + +

    34.

    (A)A A

    t t t2

    4 1

    22

    1

    33+ + + +

    psin sin sin ....

    (B)A A

    t t t2

    4 1

    33

    1

    55+ + + +

    pcos cos cos ....

    (C)4 1

    33

    1

    55

    At t t

    psin sin sin ....+ + +

    (D)

    4 1

    2 2

    1

    3 3

    A

    t t tp cos cos cos ....+ + +

    35.

    (A)A A

    t t t2

    2 1

    33

    1

    55+ - +

    p(sin sin sin ....)

    (B)A A

    t t t2

    2 1

    22

    1

    33+ - +

    p(cos cos cos ....)

    (C)A A

    t t t2

    2 1

    33

    1

    55+ - +

    p(cos cos cos ....)

    (D)A A

    t t t t2

    2 1

    33

    1

    33+ + + +

    p(sin cos sin cos ....)

    36.

    (A)1

    2

    12 1

    93

    1

    255

    2+ + + +

    pp p p(cos cos cos ....)t t t

    (B) 312 1

    93

    1

    255

    2+ + + +

    pp p p(cos cos cos ....)t t t

    (C)1

    2

    12 1

    93

    1

    255

    2+ - + -

    pp p p(sin sin sin ....)t t t

    (D) 312 1

    93

    1

    255

    2+ - + -

    pp p p(sin sin sin ....)t t t

    *****

    Page312

    UNIT 5 Signal & System

    x t)

    p t-p

    A

    -A

    Fig. P5.7.34

    2 2

    -p p

    x t( )

    pt

    -p

    A

    Fig. P5.7.35

    x t)

    2

    -1

    -1

    1 t

    Fig. P5.7.36

    x t( )

    1

    -1

    p t-p

    Fig. P5.7.33

    GATE EC BY RK Kanodia

    www.gatehelp.com

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    37/41

    SOLUTIONS

    1. (D) X kT

    A t e dtA

    T

    jk t

    T

    T

    [ ] ( )= =-

    -

    1

    2

    2

    d w o ,

    A = 10 , T = 5, X k[ ] = 2

    2. (C) X kT

    x t e dtT

    Ae dtjk t

    T

    T

    jk t

    T

    T

    [ ] ( )= =-

    -

    -

    -

    1 1

    2

    2

    4

    4

    w wo o

    =-

    =

    -

    -

    A

    T

    e

    jk

    A

    k

    kjk t

    T

    Tw

    o

    o

    w p

    p

    4

    4

    2sin

    3. (B) T = 2p , wp

    po= =

    2

    21, x t

    A t

    ( )

    ,

    ,

    =<

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    38/41

    13. X k k j k[ ] cos sin=

    +

    10

    192

    4

    19

    p p

    (A)19

    25 5 19 2 2 9( [ ] [ ]) [ ] [ ]),| |d d (d dn n n n n+ + - + + - -

    (B)1

    2

    5 5 2 2 9( [ ] [ ]) [ ] [ ]),| |d d (d dn n n n n+ + - + + - -

    (C)9

    25 5 9 2 2 9( [ ] [ ]) [ ] [ ]),| |d d (d dn n n n n+ + - + + - -

    (D)1

    25 5 2 2 9( [ ] [ ]) [ ] [ ]),| |d d (d dn n n n n+ + - + + - -

    14. X kk

    [ ] cos=

    p

    21

    (A)21

    24 4 10(d d[ ] [ ]),| |n n n+ + -

    (B)1

    2

    4 4 10(d d[ ] [ ]),| |n n n+ + -

    (C)21

    24 4 10(d d[ ] [ ]),| |n n n+ - -

    (D)1

    24 4 10(d d[ ] [ ]),| |n n n+ - -

    Statement for Q.15-20:

    Consider a periodic signal x n[ ] with period N and

    FS coefficients X k[ ]. Determine the FS coefficients Y k[ ]

    of the signal y n[ ] given in question.

    15. y n x n n[ ] [ ]= - o

    (A) e X kj

    Nn k

    2 po

    [ ] (B) e X kj

    Nn k-

    2po

    [ ]

    (C) kX k[ ] (D) -kX k[ ]

    16. y n x n x n[ ] [ ] [ ]= - - 2

    (A) sin [ ]4p

    Nk X k

    (B) cos [ ]

    4p

    Nk X k

    (C) 1

    4

    -

    -

    e X kj

    Nk

    p

    [ ] (D) 1

    4

    -

    e X kj

    Nk

    p

    [ ]

    17. y n x n x n N [ ] [ ] [ ]= + + 2 , (assume that N is even)

    (A) 2 2 1X k[ ],- for 02

    1 -

    k

    N

    (B) 2 2 1X k[ ],- for 02

    kN

    (C) 2 2X k[ ], for 02

    1 -

    k

    N

    (D) 2 2X k[ ], for 02

    kN

    18. y n x n x n N [ ] [ ] [ ]= - - 2 , (assume that N is even)

    (A) ( ( ) ) [ ]1 1 21- - +k X k (B) ( ( ) ) [ ]1 1- - k X k

    (C) ( ( ) ) [ ]1 1 1- - +k X k (D) ( ( ) ) [ ]\1 1 2- - k X k

    19. y n x n[ ] [ ]*= -

    (A) - X k*[ ] (B) - -X k*[ ]

    (C) X k*[ ] (D) X k*[ ]-

    20. y n x nn[ ] ( ) [ ]= -1 , (assume that N is even)

    (A) X kN

    -

    2(B) X k

    N+

    2

    (C) X kN

    - +

    21 (D) X k

    N+ -

    21

    Statement for Q.21-23:

    Consider a discrete-time periodic signal

    x nn

    n[ ]

    ,

    ,=

    1 0 7

    0 8 9

    with period N = 10. Also y n x n x n[ ] [ ] [ ]= - - 1

    21. The fundamental period of y n[ ] is

    (A) 9 (B) 10

    (C) 11 (D) None of the above

    22. The FS coefficients of y n[ ] are

    (A)1

    101

    8

    5-

    ej k

    p

    (B)1

    101

    8

    5-

    -

    ej k

    p

    (C)1

    101

    4

    5-

    ej k

    p

    (D)1

    101

    4

    5-

    -

    ej k

    p

    23. The FS coefficients of x n[ ] are

    (A) -

    -

    j

    ek

    Y k k

    jk

    2 10 010

    pp

    cosec [ ],

    (B)j

    ek

    Y k kj

    k

    2 10010

    -

    pp

    cosec [ ],

    (C) -

    -

    1

    2 10

    10ek

    Y kj

    kpp

    sec [ ]

    (D)1

    2 10

    10ek

    Y kj

    k-

    pp

    sec [ ]

    Page318

    UNIT 5 Signal & SystemGATE EC BY RK Kanodia

    www.gatehelp.com

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    39/41

    Statement for Q.24-27:

    Consider a discrete-time signal with Fourier

    representation.

    x n X kDTFS

    [ ] [ ];

    p

    10

    In question the FS coefficient Y k[ ] is given.

    Determine the corresponding signal y n[ ] and choose

    correct option.

    24. Y k X k X k[ ] [ ] [ ]= - + +5 5

    (A) 25

    sin [ ]p

    n x n

    (B) 2

    5cos [ ]

    pn x n

    (C) 22

    sin [ ]p

    n x n

    (D) 2

    2cos [ ]

    pn x n

    25. Y k

    k

    X k[ ] cos [ ]=

    p

    5

    (A)1

    25 5( [ ] [ ])x n x n+ + + (B)

    1

    22 2( [ ] [ ])x n x n+ + -

    (C)1

    210 10( [ ] [ ])x n x n+ + + (D) None of the above

    26. Y k X k X k[ ] [ ] * [ ]=

    (A)( [ ] )x n 2

    2p(B) j x n2 2p( [ ] )

    (C) ( [ ] )x n 2 (D) 2 2p( [ ] )x n

    27. Y k X[ ] Re{ [= k]}

    (A)x n x n[ ] [ ]+ -

    2(B)

    x n x n[ ] [ ]- -

    2

    (C)x n x n[ ] [ ]- -

    2p(D)

    x n x n[ ] [ ]+ -

    2p

    28. Consider a sequence x n[ ] with following facts :

    1. x n[ ] is periodic with N = 6

    2. x nn

    [ ] ==

    20

    5

    3. ( ) [ ]- =-

    1 12

    7n

    n

    x n

    4. x n[ ] has the minimum power per period among the

    set of signals satisfying the preceding three condition.

    The sequence would be..

    (A) ... , , , , , ...1

    2

    1

    6

    1

    2

    1

    6

    1

    2

    (B) ... , , , , , ...0 11

    2

    1

    3

    1

    4

    (C) ... , , , , , ...1

    3

    1

    6

    1

    3

    1

    6

    1

    3

    (D) { }... , , , , , ...0 1 2 3 4

    29. A real and odd periodic signal x n[ ] has fundamental

    period N = 7 and FS coefficients X k[ ]. Given that

    X j[ ]15 = , X j[ ]16 2= , X j[ ]17 3= . The values of

    X X X[ ], [ ], [ ],0 1 2- - and X [ ]-3 will be

    (A) 0 2 3, , ,j j j (B) 1, 1, 2, 3

    (C) 1, -1, -2, -3 (D) 0, -j , -2j, -3j

    30. Consider a signal x n[ ] with following facts

    1. x n[ ] is a real and even signal

    2. The period of x n[ ] is N = 10

    3. X[ ]11 5=

    4.1

    1050

    2

    0

    9

    X kn

    [ ]=

    =

    The signal x n[ ] is

    (A) 5

    10

    cosp

    n

    (B) 5

    10

    sinp

    n

    (C) 105

    cosp

    n

    (D) 10

    5sin

    pn

    31. Each of two sequence x n[ ] and y n[ ] has a period

    N = 4. The FS coefficient are

    X X X X[ ] [ ] [ ] [ ]0 31

    21

    1

    22 1= = = = and

    Y Y Y Y [ ], [ ], [ ], [ ]0 1 2 3 1=

    The FS coefficient Z k[ ] for the signal

    z n x n y n[ ] [ ] [ ]= will be

    (A) 6 (B) 6| |k

    (C) 6| |k (D) ej k

    p

    2

    32. Consider a discrete-time periodic signal

    x n

    n

    n

    [ ]

    sin

    sin

    =

    11

    20

    20

    p

    p

    with a fundamental period N = 20. The Fourierseries coefficients of this function are

    (A)1

    205 6( [ ] [ ])u k u k+ - - , | |k 10

    (B)1

    205 5( [ ] [ ])u k u k+ - - , | |k 10

    (C) ( [ ] [ ])u k u k+ - +5 6 , | |k 10

    (D) ( [ ] [ ])u k u k+ - -5 6 , | |k 10

    ************

    Chap 5.8The Discrete-Time Fourier Series

    Pa319

    GATE EC BY RK Kanodia

    www.gatehelp.com

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    40/41

    11. (D) N = 7, W o =2p

    7,

    x n X k e ej kn

    n

    j n

    [ ] [ ]( )

    = =

    =-

    -

    2

    7

    3

    3 12

    72

    p p

    - +

    1 21

    2

    7ej n( )

    p

    =

    -4

    2

    71cos

    pn

    12. (C) N = 12, W o =p

    6, X k e

    j k

    [ ] =-

    p

    6

    x n e e ej k j kn

    k

    j

    [ ] = =-

    =-

    p p p

    6 6

    6

    66

    -

    =-

    k n

    k

    ( )1

    6

    6

    =

    -

    -

    - - -

    -

    e e

    e

    j n j n

    j n

    ( ) ( ) ( )

    ( )

    46

    19

    61

    61

    1

    1

    p p

    p

    =-

    -

    sin ( )

    sin ( )

    3

    41

    121

    p

    p

    n

    n

    13. (A) N = 19, Wo =2p19

    X k k j k[ ] cos sin=

    +

    10

    192

    10

    19

    p p

    = +

    + +

    - - - - -1

    2

    52

    195

    2

    192

    2

    19e e e ej k j k j k( ) ( ) ( )

    p p p-

    j k( )22

    19

    p

    By inspection

    x n n n n n[ ] ( [ ] [ ]) ( [ ] [ ])= + + - + + - -19

    25 5 19 2 2d d d d ,

    Where | |n 9

    14. (A) N = 21, W o =2p

    21

    X k k[ ] cos=

    8

    21

    p= +

    - - -1

    2

    42

    214

    2

    21e ej k j k( ) ( )

    p p

    Since X kN

    x n e jk n

    n N

    [ ] [ ]= -=1 Wo , By inspection

    x nn

    n

    [ ],

    , { , , ...... . }

    ==

    - -

    21

    24

    0 10 9 9 10otherwise

    15. (B) Y kN

    x n n en

    N jN

    kn

    [ ] [ ]= -=

    - -

    10

    12

    o

    p

    = =-

    =

    - -

    -

    12

    0

    12

    Ne x n e e

    jN

    kn

    n

    N jN

    knp p

    o

    [ ]j

    Nkn

    X k

    2 po

    [ ]

    16. (C) Y k X k e X k ej

    Nk j

    Nk

    [ ] [ ] [ ]= - = -

    -

    -

    22

    4

    1

    p p

    X k[ ]

    17. (C) Note that y n x n x n N [ ] [ ] [ ]= + + 2 has a period

    of N 2 and N has been assumed to be even,

    Y kN

    x n x n N ej

    Nkn

    n

    N

    [ ] ( [ ] [ ])= + +-

    =

    -

    2 24

    0

    2 1 p

    = 2 2X k[ ] for 0 2 1 -k N( )

    18. (B) y n x n x n N [ ] [ ] [ ]= - - 2

    Y k e X k e X kj

    N

    Nk

    j k[ ] [ ] ( ) [ ]= -

    = --

    -1 1

    2

    2

    pp

    =

    0

    2

    , k

    X k k

    even

    [ ], odd

    19. (C) y n x n[ ] [ ]*= -

    Y kN

    x n e X kj

    Nkn

    n

    N

    [ ] [ ] [ ]* *= - =-

    =

    -

    12

    0

    1p

    20. (A) With N even

    y n x n e x n e x nnj n

    jN

    N

    [ ] ( ) [ ] [ ] [ ]= - = =

    1

    2

    2pp

    Y kN

    e x n ej

    N

    Nj

    Nkn

    n

    N

    [ ] [ ]=

    -

    =

    -

    12

    2

    2

    0

    1p p

    = = --

    -

    =

    -

    1 22

    2

    0

    1

    Nx n e X k N

    jN

    n kN

    n

    N

    [ ] [ ]

    p

    21. (B) y n[ ] is shown is fig. S5.8.21. It has fundamental

    period of 10.

    22. (B) Y k y n en

    j kn

    [ ] [ ]==

    -

    110 0

    92

    10

    p

    = -

    = -

    -

    -

    110

    1 110

    1

    2

    108

    8

    5e ej k j

    p p

    k

    23. (A) y n x n x n[ ] [ ] [ ]= - - 1

    Y k X k e X k X kY k

    e

    j k

    j

    [ ] [ ] [ ] [ ][ ]

    = - =

    -

    -

    -

    2

    10

    51

    p

    p

    k

    Chap 5.8The Discrete-Time Fourier Series

    Pa321

    2 31 4 5 87

    9

    10 11

    y n

    n

    -1

    1

    Fig. S5.8.21

    GATE EC BY RK Kanodia

    www.gatehelp.com

  • 8/22/2019 GATE BY RK Kanodia signals and systems

    41/41

    =

    -

    -

    X k

    e Y k

    e e

    j k

    j k j

    [ ][ ]

    p

    p p

    10

    10 10

    =

    k

    j k

    e Y k

    jk

    p

    p

    10

    210

    [ ]

    sin

    =-

    -

    j

    e k Y kj k

    2 10

    10

    pp

    cosec [ ]

    24. (D) W op

    =10

    , Y k X k X k[ ] [ ] [ ]= - + +5 5

    = +

    =

    -y n e e x n n

    j n j n

    [ ] [ ] cos( ) ( )5

    105

    10 22

    p p p

    x n[ ]

    25. (B) Y k k X ke e

    X k

    j k j k

    [ ] cos [ ] [ ]=

    =

    +

    -p

    p p

    5 2

    5 5

    = +

    -1

    2

    210

    210e e X k

    j k j k( ) ( )

    [ ]p p

    = - + +y n x n x n[ ] ( [ ] [ ])1

    22 2

    26. (C) Y k X k X k[ ] [ ] * [ ]= y n x n x n x n[ ] [ ] [ ] ( [ ])= = 2

    27. (A) Y k[ ] =Re{ [ ] }X k =y n[ ] Ev{ [ ]}x n =+ -x n x n[ ] [ ]

    2

    28. (A) N = 6, W o =2p

    6,

    From fact 2, x nn

    [ ] ==

    20

    5

    = =

    =1

    6

    1

    30

    1

    3

    2

    60

    0

    5

    e x n Xj k

    n

    p( )

    [ ] [ ] ,

    From fact 3, ( ) [ ]- ==

    1 12

    7n

    n

    x n

    = =

    =1

    6

    1

    63

    1

    6

    2

    63

    0

    5

    e x n Xj k

    n

    p( )

    [ ] , [ ]

    By Parsevals relation, the average power in x n[ ] is

    P X kk

    ==

    [ ] 20

    5

    ,

    The value of P is minimized by choosing

    X X X X[ ] [ ] [ ] [ ]1 2 4 5 0= = = =

    Therefore

    x n X X en

    n[ ] [ ] [ ] ( )= + = + -

    0 31

    31

    1

    6

    2

    63

    p

    = + -1

    31

    1

    6( )n

    x n[ ] =

    1 1 1 1 1

    29. (D) Since the FS coefficient repeat every N. Thus

    X X X X X X[ ] [ ], [ ] [ ], [ ] [ ]1 15 2 16 3 17= = =

    The signal real and odd, the FS coefficient X k[ ] will be

    purely imaginary and odd. Therefore X[ ]0 0=

    X X X X X X[ ] [ ], [ ] [ ], [ ] [ ]- = - - = - - = -1 1 2 2 3 3

    Therefore (D) is correct option.

    30. (C) Since N = 10, X X[ ] [ ]11 1 5= =

    Since x n[ ] is real and even X k[ ] is also real and even.

    Therefore X X[ ] [ ]1 1 5= - = .

    Using Parsevals relation X k X kN k

    [ ] [ ]2 2

    1

    8

    50 = ==-

    X X X X kk

    [ ] [ ] [ ] [ ]- + + + ==

    1 1 0 502 2 2 22

    8

    X X kk

    [ ] [ ]0 02 2

    2

    8

    + ==

    Therefore X k[ ] = 0 for k = 0 2 3 8, , , . .... .

    x n X k e X k ej

    Nkn

    N

    j kn

    k

    [ ] [ ] [ ]= =

    =-

    2 2

    10

    p p

    1

    8

    = +

    =-

    5 105

    10

    2

    10e ej n j n

    2p pp

    cos n

    31. (A) z n x n y n X l Y k lDTFS

    k N

    [ ] [ ] [ ] [ ] [ ]= -=< >

    = -=Z k X l Y k ll

    [ ] [ ] [ ]0

    3

    = + - + - + -Z k X Y k X Y k X Y k X Y k[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]0 1 1 2 2 3 3

    = + - + - + -Y k Y k Y k Y k[ ] [ ] [ ] [ ]2 1 2 2 3

    Since Y k[ ] is 1 for all values of k.

    Thus Z k[ ] = 6, for all k.

    32. (A) N = 20 We know that

    1 5

    0 5 10

    11

    2010, | |

    , | |

    sin

    si

    ;n

    n

    kDTFS

    <

    p

    p

    np

    20k

    Using duality

    sin

    sin

    , | |;1120

    20

    1

    20

    110

    p

    p

    pn

    n

    kDTFS

    5

    0 5 10, | |<

    k

    *********

    UNIT 5 Signal & SystemGATE EC BY RK Kanodia