Gas Turbine Blade Superalloy Material Property

326
Gas Turbine Blade Superalloy Material Property Handbook Technical Report L I C E N S E D M A T E R I A L WARNING: Please read the License Agreement on the back cover before removing the Wrapping Material.

Transcript of Gas Turbine Blade Superalloy Material Property

Page 1: Gas Turbine Blade Superalloy Material Property

Gas Turbine Blade Superalloy MaterialProperty Handbook

Technical Report

LI

CE

NS E D

M A T E

RI

AL

WARNING:Please read the License Agreementon the back cover before removingthe Wrapping Material.

Page 2: Gas Turbine Blade Superalloy Material Property
Page 3: Gas Turbine Blade Superalloy Material Property

EPRI Project ManagerR. Viswanathan

EPRI • 3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 • USA800.313.3774 • 650.855.2121 • [email protected] • www.epri.com

Gas Turbine Blade SuperalloyMaterial Property Handbook

1004652

Topical Report, July 2001

Page 4: Gas Turbine Blade Superalloy Material Property

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS ANACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCHINSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THEORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I)WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, ORSIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESSFOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON ORINTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUALPROPERTY, OR (III) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'SCIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER(INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVEHAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOURSELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD,PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT.

ORGANIZATION(S) THAT PREPARED THIS DOCUMENT

Southwest Research Institute

ORDERING INFORMATION

Requests for copies of this report should be directed to EPRI Customer Fulfillment, 1355 Willow Way,Suite 278, Concord, CA 94520, (800) 313-3774, press 2.

Electric Power Research Institute and EPRI are registered service marks of the Electric PowerResearch Institute, Inc. EPRI. ELECTRIFY THE WORLD is a service mark of the Electric PowerResearch Institute, Inc.

Copyright © 2001 Electric Power Research Institute, Inc. All rights reserved.

Page 5: Gas Turbine Blade Superalloy Material Property

iii

CITATIONS

This report was prepared by

Southwest Research Institute6220 Culebra RoadSan Antonio, Texas 78238

Principal InvestigatorsJ. H. FeigerV. P. Swaminathan

This report describes research sponsored by EPRI.

The report is a corporate document that should be cited in the literature in the following manner:

Gas Turbine Blade Superalloy Material Property Handbook, EPRI, Palo Alto, CA: 2001.1004652.

Page 6: Gas Turbine Blade Superalloy Material Property
Page 7: Gas Turbine Blade Superalloy Material Property

REPORT SUMMARY

Published material property data on superalloy bucket (blade) materials used in land-basedcombustion turbines is meager and widely scattered in literature. This handbook provides acomprehensive resource of all available material property data for superalloys used incombustion turbine buckets. Such data are critical for use in remaining life assessmentcalculations, failure analysis, comparison of various alloys, and alloy selection. The material datapresented in this handbook were developed from experimental alloys and actual turbinecomponents.

BackgroundUnder EPRI direction, Southwest Research Institute (SwRI™) created a material propertydatabase for superalloys used in rotating blades of industrial gas turbines. SwRI consolidated thematerial property data from many sources in a computerized relational database. In the early1990s, dBase IV software was widely used for this purpose, and the subject database wasdeveloped using this software. However, due to rapid changes in software architecture andvariability in computer operating systems, users found it difficult to take full advantage of thedatabase. EPRI initiated this project to compile and update in a single handbook all availabledata for the nickel-base superalloys used in hot section blade applications in land-based gasturbines.

ObjectiveTo provide combustion turbine (CT) owners with a ready reference handbook of materialproperty data on superalloy bucket materials.

ApproachIncluded in the handbook are tables of raw data as well as several plots and tables from theoriginal database references. Users may scan plots using a digitizer for further processing andcomparative plotting. For each subject alloy, the handbook describes the alloy propertyrepresented, and where available, lists codes for heat treatment, chemical composition,refurbishment identification, and coating identification. The handbook provides separate tabs fororiginal database references, chemical composition, and heat treatment details. Rather thanrelying on a computerized database, EPRI decided to present all available data in a loose-leafnotebook format for ease of access, use, and update as new data becomes available.

ResultsThe superalloy material property handbook provides data for the following alloys—Inconel 700,Inconel 939, Inconel X-750, Inconel 738, Inconel 738 LC, Inconel 792, MAR-M002, MAR-

Page 8: Gas Turbine Blade Superalloy Material Property

M200, MAR-M247, Nimonic 115, Rene 80, Udimet 500, Udimet 520, Udimet 700, Udimet 710,Udimet 720, GTD 111 DS, and GTD 111 EA. The handbook cites physical properties such asdensity, dynamic and static moduli of elasticity, and coefficient of thermal expansion for eachalloy. It also presents mechanical properties—including tensile, stress rupture, creep, andthermal-mechanical fatigue properties—as well as high-cycle fatigue, low-cycle fatigue, andimpact strength in graphical and tabular format. Limited data that became available following in-service degradation of some of the base alloys are included in the handbook. Finally, wherepossible, the handbook lists property variation as a function of temperature.

EPRI PerspectiveCT owners must make informed decisions about reuse, repair, or replacement of hot sectioncomponents. Most often, original equipment manufacturer recommendations are conservative,allowing valuable, unused remaining life of the components to go untapped due to prematurereplacement. CT operators who wish to make remaining life assessments require materialproperty data. This handbook serves as a one-step ready reference for CT bucket materialproperties and is expected to prove valuable in remaining life assessment calculations, alloycomparisons, and materials selection. The ring binder format permits easy addition of new data,as they become available. EPRI hopes that in future years, the handbook will be expanded toinclude nozzle, combustor, transition piece, and other hot section components.

KeywordsCombustion turbinesBladesAlloysMaterial properties

Page 9: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

vii

DISCUSSION OF HANDBOOK CONTENTS

In the current competitive and deregulated environment, turbine users are forced to explore waysof reducing the cost of maintenance and operation of their engines. They need to make informeddecisions about reuse, repair, or replacement of the hot section components. Most often, therecommendations of the original equipment manufacturers are conservative. Very valuable andunused remaining life of the components may go untapped when the components areprematurely replaced. The gas turbine operators with these alloy buckets have a need for thematerial data to conduct condition and remaining life assessment of their buckets and to makeindependent decisions about their gas turbine components.

Southwest Research Institute (SwRI™) created a material property database for EPRI underproject RP2775-6 for superalloys used in rotating blades of industrial gas turbines. Variousmaterial properties were gathered from many sources and consolidated in a computerizedrelational database. In the early 1990’s dBase IV software was widely used for this purpose andthe subject database was created using this software. However, due to rapid changes in thesoftware architecture and variability in the computer operating systems, users found it difficult totake full advantage of this database. Thus, EPRI initiated this project to compile and update allthe available data for the nickel base superalloys used in hot section blading application in land-based gas turbines. Instead of computer software, it was decided to present all of the availabledata in a format similar to that used in the Aerospace Structural Metals Handbook for ease ofaccess and use. Updating of this manual with additional data will be more practical as new databecomes available.

The database includes physical properties such as density, dynamic and static modulii ofelasticity, and coefficient of thermal expansion. Mechanical properties such as tensile properties,stress rupture properties, creep properties, impact strength, high-cycle fatigue, low-cycle fatigueand thermal mechanical fatigue properties are also presented in graphical and tabular format.Limited data was also available after in-service degradation of some of the base alloys. Propertyvariation as a function of temperature is presented when available. This database was intendedto provide a good source of data that can be used in remaining life assessment calculations,comparison of various alloys, and material selection. The material data presented in thishandbook were developed both from experimental alloys and actual turbine components.

The following alloys are included in this handbook:

Inconel 700, Inconel 939, Inconel X750, Inconel 738, Inconel 738 LC, Inconel 792,MAR-M002, MAR-M200, MAR-M247, Nimonic 115, Rene 80, Udimet 500, Udimet520, Udimet 700, Udimet 710, Udimet 720, GTD 111 DS, and GTD 111 EA.

Page 10: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

viii

The data for this handbook was collected, collated and plotted to generate hard copy plots similarto those published in the Aerospace Structural Metals Handbook. Tables of raw data gatheredwhenever available are also printed and included in the manual. Several plots and tables weredirectly scanned in from the original references and a new page was created to fit the format ofthis handbook. If the user wishes, the plots can be scanned using a digitizer for furtherprocessing and comparative plotting. Each page includes alloy identification, the propertyrepresented, and whenever available, codes for heat treatment, chemical composition,refurbishment identification, and coating identification. The units on the axes are shown in boththe English and SI units wherever possible. If the plots are directly scanned in from the source,the units are the same as in the references since no further modifications were made to theseplots. At the end of the handbook, separate tabs are provided for original references, chemicalcomposition, and heat treatment details.

Page 11: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

ix

CONTENTS

1 INCONEL 700...................................................................................................................... 1-1

2 INCONEL 939...................................................................................................................... 2-1

3 INCONEL X750 ................................................................................................................... 3-1

4 INCONEL 738...................................................................................................................... 4-1

5 INCONEL 738 LC ................................................................................................................ 5-1

6 INCONEL 792...................................................................................................................... 6-1

7 MAR-M002........................................................................................................................... 7-1

8 MAR-M200........................................................................................................................... 8-1

9 MAR-M247........................................................................................................................... 9-1

10 NIMONIC 115 .................................................................................................................. 10-1

11 RENE 80.......................................................................................................................... 11-1

12 UDIMET 500 .................................................................................................................... 12-1

13 UDIMET 520 .................................................................................................................... 13-1

14 UDIMET 700 .................................................................................................................... 14-1

15 UDIMET 710 .................................................................................................................... 15-1

16 UDIMET 720 .................................................................................................................... 16-1

17 GTD 111 DS .................................................................................................................... 17-1

Page 12: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

x

18 GTD 111 EA .................................................................................................................... 18-1

19 SOURCE REFERENCES ................................................................................................ 19-1

20 CHEMICAL COMPOSITION............................................................................................ 20-1

Chemical Composition IDs ............................................................................................... 20-3

21 HEAT TREATMENT ........................................................................................................ 21-1

Heat Treatment IDs .......................................................................................................... 21-1

Page 13: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

xi

LIST OF FIGURES

Figure 1-1 Tensile Strength as a Function of Temperature for Inconel 700. ............................ 1-3

Figure 1-2 Tensile Elongation as a Function of Temperature for Inconel 700. ......................... 1-4

Figure 1-3 Larson-Miller Plot for Inconel 700........................................................................... 1-5

Figure 2-1 Tensile Strengths for Inconel 939 at Room Temperature. ...................................... 2-3

Figure 2-2 Tensile Elongation at Room Temperature for Inconel 939...................................... 2-4

Figure 2-3 Reduction in Area (Tensile) at Room Temperature for Inconel 939. ....................... 2-5

Figure 2-4 Tensile Properties of the Alloy as a Function of Temperature. ............................... 2-6

Figure 2-5 Room Temperature Impact Properties After Soakingat ElevatedTemperatures. ................................................................................................................. 2-7

Figure 2-6 Fatigue Crack Growth at R = 0.1 and 0.9 (Room Temperature). ............................ 2-8

Figure 2-7 Elevated Temperature Fatigue Crack Growth at R = 0.3. ....................................... 2-9

Figure 2-8 Elevated Temperature Fatigue Crack Growth at R = 0.1 and 0.3 (Vacuum). ........ 2-10

Figure 2-9 The Stress Rupture Properties at 850°C; Standard Heat Treatment. ................... 2-11

Figure 2-10 The Stress Rupture Properties with Two-Stage Heat Treatment. ....................... 2-12

Figure 2-11 Larson-Miller Plot for Inconel 939....................................................................... 2-13

Figure 2-12 Stress to Rupture vs. Time at Elevated Temperatures. ...................................... 2-14

Figure 2-13 Strain to 1% Creep as a Function of Stress........................................................ 2-15

Figure 2-14 High Cycle Fatigue Properties at 750°C and 850°C. .......................................... 2-16

Figure 2-15 High Cycle Fatigue Properties at 600°C. Results from INCO Europe. ................ 2-17

Figure 2-16 Low Cycle Fatigue Properties of IN939 with Results for IN738LC forComparison................................................................................................................... 2-18

Figure 3-1 Specific Heat as a Function of Temperature for Inconel X750................................ 3-3

Figure 3-2 Thermal Conductivity as a Function of Temperature for Inconel X750. .................. 3-4

Figure 3-3 Thermal Expansion as a Function of Temperature................................................. 3-5

Figure 3-4 Yield and Tensile Strengths vs. Temperature for Inconel X750. ............................. 3-6

Figure 3-5 Tensile Elongation vs. Temperature....................................................................... 3-7

Figure 3-6 Dynamic Modulus as a Function of Temperature. .................................................. 3-8

Figure 3-7 100 hr Rupture Strength as a Function of Temperature. ........................................ 3-9

Figure 3-8 Fatigue Crack Growth Behavior at 650°C and 540°C Under Air and VacuumConditions. .................................................................................................................... 3-10

Figure 4-1 Specific Heat as a Function of Temperature. ......................................................... 4-3

Figure 4-2 Thermal Conductivity as a Function of Temperature. ............................................. 4-4

Page 14: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

xii

Figure 4-3 Coefficient of Thermal Expansion as a Function of End Temperature. ................... 4-5

Figure 4-4 Yield and Tensile Strengths as a Function of Temperature. ................................... 4-6

Figure 4-5 Tensile Elongation as a Function of Temperature. ................................................. 4-7

Figure 4-6 Yield and Tensile Strengths as a Function of Temperature. ................................... 4-8

Figure 4-7 Dynamic Modulus as a Function of Temperature. .................................................. 4-9

Figure 4-8 Charpy Impact Energy as a Function of Aging Time............................................. 4-10

Figure 4-9 Charpy Impact Energy as a Function of Aging Temperature. ............................... 4-11

Figure 4-10 Fatigue Crack Growth Behavior at Room Temperature Under VacuumConditions. (Low R). ..................................................................................................... 4-12

Figure 4-11 Fatigue Crack Growth Behavior at R = 0.1 and 0.85 (Room Temperature,Air). ............................................................................................................................... 4-13

Figure 4-12 Fatigue Crack Growth Behavior at 1562°F. ........................................................ 4-14

Figure 4-13 Fatigue Crack Growth Rate as a Function of ∆K in IN-738 at 927°C in Airand in Vacuum. ............................................................................................................. 4-15

Figure 4-14 Comparison of Fatigue Crack Growth Rate for Three Alloys. ............................. 4-16

Figure 4-15 Fatigue Crack Growth Rate in Superalloys at 927°C in Vacuum. ....................... 4-17

Figure 4-16 100 hr Rupture Strength as a Function of Temperature. .................................... 4-18

Figure 4-17 1000 hr Rupture Strength as a Function of Temperature.................................... 4-19

Figure 4-18 Larson-Miller Plot for Inconel 738....................................................................... 4-20

Figure 4-19 Stress vs. Rupture Time at Three Elevated Temperatures. ................................ 4-21

Figure 4-20 Stress vs. Strain-Rate at Three Temperatures Including Repeat Runs............... 4-22

Figure 4-21 Multiple Relaxation Runs at 850°C Showing Transient Effects for LowStresses. ....................................................................................................................... 4-23

Figure 4-22 Creep Data at 850°C for Various Initial Thermal Treatments.............................. 4-24

Figure 4-23 IN-738 VPS Coated Creep Test Results at 900°C/124 MPa............................... 4-25

Figure 4-24 IN-738 VPS Coated Creep Test Results at 982°C/69 MPa................................. 4-26

Figure 4-25 Strain Rate vs. Stress for IN738LC at 850°C in Tests Containing (i) pp andpc and (ii) pp and cp. ..................................................................................................... 4-27

Figure 4-26 Influence of Environment on Creep Crack Growth Rate in IN-738 at 927°Cand Comparison with Fatigue Crack Growth Rate Converted to Time Domain. ............. 4-28

Figure 4-27 Total Strain Range vs. Life to Failure. ................................................................ 4-29

Figure 4-28 Total Strain Range vs. Life to Crack Initiation..................................................... 4-30

Figure 4-29 Elastic Strain Range vs. Life to Failure............................................................... 4-31

Figure 4-30 Elastic Strain Range vs. Life to Crack Initiation. ................................................. 4-32

Figure 4-31 Inelastic Strain Range vs. Life to Failure. ........................................................... 4-33

Figure 4-32 Inelastic Strain Range vs. Life to Crack Initiation................................................ 4-34

Figure 4-33 Typical Test Results and Partitioned Strain Ranges........................................... 4-35

Figure 4-34 (HTLCF) Results of IN 738 in the Standard and the Exposed Conditions,Inelastic Strain Range (∆ε in %) vs. Number of Cycles to Failure (Nf)............................ 4-36

Page 15: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

xiii

Figure 4-35 (HTLCF) Results of IN 738 at 1123 K, for the Two Types of SpecimensTested Under Continuous Strain Cycling and Cycling with Tensile Hold Times,Inelastic Strain range (∆ε in %) vs. Number of Cycles to Failure (Nf). ............................ 4-37

Figure 4-36 Inelastic Strain Range vs. Cycles to Failure for Cast IN 738 LC (a) ppcomponents only; 750°C and 850°C, (b) pp and pc components 850°C (c) pp andcp components; 850°C. ................................................................................................. 4-38

Figure 4-37 Inelastic Strain Range vs. Cycles to Failure for Cast IN 738 at 870°C. ............... 4-39

Figure 4-38 Inelastic Strain Range vs. Cycles to Failure for Cast IN 738 at 870°C, pp andcp components. ............................................................................................................. 4-40

Figure 4-39 Inelastic Strain Range vs. Cycles to Failure for Cast IN 738 at 870°C, pp andpc components. ............................................................................................................. 4-41

Figure 4-40 Low Cycle Fatigue at 1600°F with Three Hold Times Investigated (TotalStrain Range). ............................................................................................................... 4-42

Figure 5-1 Tensile Strengths as a Function of Temperature.................................................... 5-3

Figure 5-2 Tensile Elongation as a Function of Temperature. ................................................. 5-4

Figure 5-3 Reduction in Area (Tensile) as a Function of Temperature..................................... 5-5

Figure 5-4 Impact Resistance of IN-738 at Room Temperature and 900°C as a Functionof Aging Time at 950°C. .................................................................................................. 5-6

Figure 5-5 Loss of High Temperature Impact Resistance Correlation in Terms of a Time-Temperature Parameter Analogous to that of Larson-Miller............................................. 5-7

Figure 5-6 Fatigue Crack Growth Behavior at R = 0 (Room Temperature, Lab AirConditions). ..................................................................................................................... 5-8

Figure 5-7 Fatigue Crack Growth Behavior at 1382°F at R = 0.1 (Lab Air). ............................. 5-9

Figure 5-8 Fatigue Crack Growth Behavior at 1562°F for R = 0.25 and 0.3 (Lab Air). ........... 5-10

Figure 5-9 Crack Growth for Nimocast 738 LC and 739 at Cyclic Frequencies Between60 and 100 Hz and R = 0.1; δ is Crack Tip Opening Displacement................................ 5-11

Figure 5-10 Influence of Environment on Fatigue Crack Growth of Nimocast 738 LC and739 at 850°C and Cyclic Frequencies Between 10 and 100 Hz and R = 0.1.................. 5-12

Figure 5-11 Larson-Miller Plot for Inconel 738 LC. ................................................................ 5-13

Figure 5-12 Larson-Miller Plot at Two Test Temperatures (Light Oil Conditions)................... 5-14

Figure 5-13 Stress vs. Rupture Time at Two Elevated Temperatures (Light OilConditions). ................................................................................................................... 5-15

Figure 5-14 Larson-Miller Plot (P = T (20 + log t f) x 10-3, where T is in K and t

f in hr) of

Cast and Hipped IN-738LC Turbine Blades Showing Unexposed and ServiceExposed Creep-Rupture Properties............................................................................... 5-16

Figure 5-15 Dependence of the Time to Rupture on the Minimum Creep Rate, for IN-738LC (Monkman-Grant Relationship). ......................................................................... 5-17

Figure 5-16 Dependence of Primary Plus Secondary, Creep Life on the Minimum CreepRate for Cast IN-738LC. ................................................................................................ 5-18

Figure 5-17 Time to Rupture Dependence on the Tertiary Life for Cast IN-738LC................. 5-19

Figure 5-18 Low Cycle Fatigue at 1699°F (Total Strain Range). ........................................... 5-20

Figure 5-19 Low Cycle Fatigue Behavior at Two Elevated Temperatures (Total StrainRange). ......................................................................................................................... 5-21

Page 16: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

xiv

Figure 5-20 Low Cycle Initiation and Failure at Four Elevated Temperatures........................ 5-22

Figure 5-21 Strain-Amplitude-Life Relations for IN738LC at 650°C as an Effect ofCasting Process. ........................................................................................................... 5-23

Figure 5-22 Strain-Amplitude-Life Relations for IN738LC at 650°C as an Effect ofCasting Process. ........................................................................................................... 5-24

Figure 5-23 Stress vs. Reversals of IN738LC at 650°C (1202°F) as an Effect of CastingProcess. ........................................................................................................................ 5-25

Figure 5-24 Strain-Amplitude-Life Relations for IN738LC at 850°C as an Effect ofCasting Process. ........................................................................................................... 5-26

Figure 5-25 Stress vs. Reversals of IN738LC at 850°C (1532°F) as an Effect of CastingProcess. ........................................................................................................................ 5-27

Figure 5-26 Strain-Amplitude-Life Relations for IN738LC at 850°C as an Effect ofCasting Process. ........................................................................................................... 5-28

Figure 5-27 Low Cycle Fatigue Behavior for Inconel 738 LC................................................. 5-29

Figure 5-28 Thermal-Mechanical Fatigue Behavior of Inconel 738 LC. ................................. 5-30

Figure 6-1 Tensile Strengths as a Function of Temperature.................................................... 6-3

Figure 6-2 Tensile Elongation as a Function of Temperature. ................................................. 6-4

Figure 6-3 Fatigue Crack Growth Rate as a Function of ∆K in IN-792 at 927°C in Air andin Vacuum. ...................................................................................................................... 6-5

Figure 6-4 Comparison of Fatigue Crack Growth Rate in Terms for Three Alloys.................... 6-6

Figure 6-5 Fatigue Crack Growth Rate in Superalloys at 927°C in Vacuum. ........................... 6-7

Figure 6-6 100 hr Rupture Strength as a Function of Temperature. ........................................ 6-8

Figure 6-7 1000 hr Rupture Strength as a Function of Temperature. ...................................... 6-9

Figure 6-8 Larson-Miller Plot for Inconel 792......................................................................... 6-10

Figure 6-9 Influence of Environment on Creep Crack Growth Rate in IN-792 at 927°Cand Comparison with Fatigue Crack Growth Rate (Fatigue Crack Growth RateGiven on a Time Basis). ................................................................................................ 6-11

Figure 7-1 Influence of R on Crack Growth in Directionally Solidified and Single CrystalMaterials at 950°C and a Frequency of 0.1 Hz. ............................................................... 7-3

Figure 7-2 Influence of Grain Structure and R on Crack Growth at 950°C and aFrequency of 20 Hz. ........................................................................................................ 7-4

Figure 7-3 Effect of Frequency on Crack Growth in Directionally Solidified Alloy at 950°Cand R = 0.1...................................................................................................................... 7-5

Figure 7-4 Effect of Temperature on Crack Growth/Cycle in Directionally Solidified andSingle Crystal Materials at a Frequency of 0.1 Hz and R = 0.1. ....................................... 7-6

Figure 7-5 Effect of Prior Creep Damage on Crack Growth in Directionally Solidified andSingle Crystal Material at 950°C at a Frequency of 20 Hz and R = 0.7. ........................... 7-7

Figure 7-6 Effect of R on Crack Growth Per Cycle in the Threshold Region at 950°C. ............ 7-8

Figure 7-7 Effect of Prior Creep Damage on Crack Growth Per Cycle at 950°C for R =0.9. .................................................................................................................................. 7-9

Figure 7-8 Crack Growth for MAR-M002 at Cyclic Frequency of 0.25 Hz and R = 0.1........... 7-10

Page 17: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

xv

Figure 7-9 Influence of R on Crack Growth Rate for MAR-M002 at 950°C and 20 Hz,da/dN versus ∆K............................................................................................................ 7-11

Figure 7-10 Influence of R on Crack Growth Rate for MAR-M002 at 950°C and 20 Hz,da/dt versus K

max. ........................................................................................................... 7-12

Figure 7-11 Influence of Grain Structure and Temperature on Creep Crack Growth Rate. .... 7-13

Figure 7-12 Effect of Prior Creep Damage on Creep Crack Growth Rate at 950°C inDirectionally Solidified Material. ..................................................................................... 7-14

Figure 7-13 Accumulation of Creep Strain at 950°C and a Stress of 256 MPa inDirectionally Solidified and Single Crystal Material. ....................................................... 7-15

Figure 8-1 Comparison of Crack Growth Rates of MAR-M200 Single Crystals at 25 and982°C. (∆K

eff is a Function of Three Nodes of Cracking.) ................................................ 8-3

Figure 8-2 Fatigue Crack Growth Rate Results of MAR-M200 Single Crystals UnderUniaxially Applied Cyclic Loading at 982°C. (∆K

eff is a Function of Three Nodes of

Cracking.)........................................................................................................................ 8-4

Figure 8-3 Comparison of Theoretical and Experimental Thermal Fatigue Lives of MARM200 and MAR M200DS Double Wedges (0.6 and 1.0 mm Radius Edge, Heatingand Cooling in Fluidized Beds at 320 and 1090°C).......................................................... 8-5

Figure 9-1 Prediction of Isothermal Fatigue Data at 500°C...................................................... 9-3

Figure 9-2 Prediction of 871°C Isothermal Fatigue Test Results. ............................................ 9-4

Figure 9-3 Prediction of Out-of-Phase TMF (500°C–871°C) Test Results. .............................. 9-5

Figure 9-4 Prediction of In-Phase TMF (500°C–871°C) Test Results. ..................................... 9-6

Figure 9-5 Prediction of Diamond Shape (Nonproportional) Strain-Temperature History......... 9-7

Figure 9-6 Mechanical Strain Range Versus Life for Out-of-Phase and In-Phase TMFExperiments, = 5 x 10-5 s-1 .............................................................................................. 9-8

Figure 10-1 Thermal Conductivity as a Function of Temperature. ......................................... 10-3

Figure 10-2 Coefficient of Thermal Expansion as a Function of Temperature. ...................... 10-4

Figure 10-3 Tensile Strengths as a Function of Temperature................................................ 10-5

Figure 10-4 Tensile Elongation as a Function of Temperature. ............................................. 10-6

Figure 10-5 Dynamic Modulus as a Function of Temperature. .............................................. 10-7

Figure 10-6 100 hr Rupture Strength as a Function of Temperature. .................................... 10-8

Figure 10-7 1000 hr Rupture Strength as a Function of Temperature.................................... 10-9

Figure 10-8 Partial Larson-Miller Plot for Nimonic 115. ....................................................... 10-10

Figure 11-1 Temperature Dependence of Yield Strength (σy) of Unused and Used

Coatings and Substrates in Comparison with Tensile Test Data of UnusedSubstrate....................................................................................................................... 11-3

Figure 11-2 Temperature Dependence of Ductility (ε f) Obtained from SP Tests on

Unused and Used Coatings and Substrates, Compared with Tensile Test Data ofUnused Substrate.......................................................................................................... 11-4

Figure 11-3 Temperature Dependence of Strength and Ductility of the Rene 80 AlloySpecimens. ................................................................................................................... 11-5

Figure 11-4 Fatigue Crack Growth Rate as a Function of ∆K in Rene 80 at 927°C in Airand in Vacuum. ............................................................................................................. 11-6

Page 18: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

xvi

Figure 11-5 Comparison of Fatigue Crack Growth Rate for Three Alloys. ............................. 11-7

Figure 11-6 Fatigue Crack Growth Rate in Superalloys at 927°C in Vacuum. ....................... 11-8

Figure 11-7 Influence of Environment on Creep Crack Growth Rate in Rene 80 at 927°Cand Comparison with Fatigue Crack Growth Rate. (Fatigue Crack Growth RateGive on a Time Basis.) .................................................................................................. 11-9

Figure 11-8 A Larson Miller Plot Comparing the GTD111 Alloy Test Points with Rene 80Data from the Literature and the GTD111 Larson Miller Curve Published by GeneralElectric. ....................................................................................................................... 11-10

Figure 12-1 Thermal Conductivity as a Function of Temperature. ......................................... 12-3

Figure 12-2 Coefficient of Thermal Expansion as a Function of Final Temperature............... 12-4

Figure 12-3 Tensile Strengths as a Function of Temperature................................................ 12-5

Figure 12-4 Tensile Elongation as a Function of Temperature. ............................................. 12-6

Figure 12-5 Dynamic Modulus as a Function of Temperature. .............................................. 12-7

Figure 12-6 100 hr Rupture Strength as a Function of Temperature. .................................... 12-8

Figure 12-7 1000 hr Rupture Strength as a Function of Temperature.................................... 12-9

Figure 12-8 Larson-Miller Plot for Udimet 500. .................................................................... 12-10

Figure 13-1 Tensile Strengths as a Function of Temperature................................................ 13-3

Figure 13-2 Tensile Elongation as a Function of Temperature. ............................................. 13-4

Figure 13-3 100 hr Rupture Strength as a Function of Temperature. .................................... 13-5

Figure 13-4 1000 hr Rupture Strength as a Function of Temperature.................................... 13-6

Figure 13-5 Larson-Miller Plot for Udimet 520. ...................................................................... 13-7

Figure 14-1 Specific Heat as a Function of Temperature....................................................... 14-3

Figure 14-2 Thermal Conductivity as a Function of Temperature. ......................................... 14-4

Figure 14-3 Coefficient of Thermal Expansion as a Function of Temperature. ...................... 14-5

Figure 14-4 Tensile Strengths as a Function of Temperature................................................ 14-6

Figure 14-5 Tensile Elongation as a Function of Temperature. ............................................. 14-7

Figure 14-6 Dynamic Modulus as a Function of Temperature. .............................................. 14-8

Figure 14-7 Fatigue Crack Growth Behavior at R = 0, 0.05, 0.24, and 0.53 (Lab Air,Room Temperature). ..................................................................................................... 14-9

Figure 14-8 Fatigue Crack Growth Behavior Under Vacuum Conditions (RoomTemperature)............................................................................................................... 14-10

Figure 14-9 Elevated Temperature Fatigue Crack Growth Behavior at R = 0. ..................... 14-11

Figure 14-10 Elevated Fatigue Crack Growth Behavior Under Vacuum Conditions............. 14-12

Figure 14-11 Crack Growth for Udimet 700 at 850°C, R = 0.05, and Cyclic Frequency of0.17 Hz........................................................................................................................ 14-13

Figure 14-12 The Effect of the Environment on the Creep Crack Growth in Udimet 700 at850°C: o , 14.2 kN, vacuum, batch 2; Ì , 16.0 kN, vacuum, batch 2; —— air, batch1; ——, air, batch 2. .................................................................................................... 14-14

Figure 14-13 100 hr Rupture Strength as a Function of Temperature.................................. 14-15

Figure 14-14 1000 hr Rupture Strength as a Function of Temperature................................ 14-16

Page 19: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

xvii

Figure 14-15 Larson-Miller Plot for Udimet 700. .................................................................. 14-17

Figure 14-16 Low-Cycle Fatigue at 1400°F (Total Strain Range). ....................................... 14-18

Figure 14-17 High-Cycle Fatigue Behavior at 1500°F (Fully Reversed Loading). ................ 14-19

Figure 15-1 Thermal Conductivity as a Function of Temperature. ......................................... 15-3

Figure 15-2 Coefficient of Thermal Expansion as a Function of Temperature. ...................... 15-4

Figure 15-3 Tensile Strengths as a Function of Temperature................................................ 15-5

Figure 15-4 Tensile Elongation as a Function of Temperature. ............................................. 15-6

Figure 15-5 Dynamic Modulus as a Function of Temperature. .............................................. 15-7

Figure 15-6 Charpy Impact Energy as a Function of Aging Time........................................... 15-8

Figure 15-7 Charpy Impact Energy as a Function of Aging Temperature. ............................. 15-9

Figure 15-8 100 hr Rupture Strength as a Function of Temperature. .................................. 15-10

Figure 15-9 1000 hr Rupture Strength as a Function of Temperature.................................. 15-11

Figure 15-10 Larson-Miller Plot for Udimet 710. .................................................................. 15-12

Figure 15-11 Effect of Mean Stress on the Fatigue Strength of Udimet 710. ( A =σ

ALTERNATING / σ

MEAN ). ........................................................................................................ 15-13

Figure 16-1 Coefficient of Thermal Expansion as a Function of Temperature. ...................... 16-3

Figure 16-2 Tensile Strengths as a Function of Temperature................................................ 16-4

Figure 16-3 Tensile Elongation as a Function of Temperature. ............................................. 16-5

Figure 16-4 Crack Growth Rates in Air and in Vacuum for Single Crystal U720. ................... 16-6

Figure 16-5 Crack Growth Rates in Air and in Vacuum for Polycrystalline U720. .................. 16-7

Figure 16-6 Graph of da/dN Data for SENB Specimens in Vacuum at 20, 300 and600°C. ........................................................................................................................... 16-8

Figure 16-7 Showing da/dN Data at R = 0.5 in Air and Vacuum. ........................................... 16-9

Figure 16-8 100 hr Rupture Strength as a Function of Temperature. .................................. 16-10

Figure 16-9 100 hr Rupture Strength as a Function of Temperature. .................................. 16-11

Figure 16-10 1000 hr Rupture Strength as a Function of Temperature................................ 16-12

Figure 16-11 Larson-Miller Plot for Udimet 720. .................................................................. 16-13

Figure 16-12 High Cycle Fatigue Behavior at 1600°F in Saline and Air Environments. ....... 16-14

Figure 16-13 Effects of Environment and Frequency of Cycling on HCF Strength ofUdimet 720 at 1300°F (704°C) and R = 0.2 to 0.3. ...................................................... 16-15

Figure 16-14 HCF Strength of Udimet 720 in Salt Environment at 1300°F (704°C) for R =-1.0 and 0.6. ................................................................................................................ 16-16

Figure 16-15 Effect of Salt Environment and Low Alternating Stress on Stress Rupture ofUdimet 710 and 720 Alloys at 1300°F (704°C). ........................................................... 16-17

Figure 16-16 Effect of Environment on Creep/Fatigue Strength of Udimet 720 at 1300°F(704°C) and Constant Maximum Stress....................................................................... 16-18

Figure 16-17 Creep/Fatigue Strength of Udimet 720 in Air and Salt Under ConstantMean Stress at 1300°F (704°C)................................................................................... 16-19

Page 20: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

xviii

Figure 16-18 Relationship Between Strain Range and Number of Cycles to FailureObtained During the Low Cycle Fatigue Testing of Udimet 710 and Coated andUncoated Udimet 720 at 1350°F (732°C) at 1 cpm...................................................... 16-20

Figure 16-19 Relationship Between the Strain Range Components and Number ofCycles to Failure Obtained During the Low Cycle Fatigue Testing of Udimet 720 at1350°F (732°C) as a Function of Hold Time and Test Environment............................. 16-21

Figure 16-20 Relationship Between the Strain Range Components and Number ofCycles to Failure Obtained During the Low Cycle Fatigue Testing of RT-22 CoatedUdimet 720 at 1350°F (732°C) at 1 cpm as a Function of Hold Time and TestEnvironment. ............................................................................................................... 16-22

Figure 16-21 Low-Cycle Fatigue Results for Udimet 720 at 1350°F (732°C) and 1 cpm...... 16-23

Figure 16-22 Low-Cycle Fatigue Results for RT-22 Coated Udimet 720 Tested at 1350°F(732°C) and 1 cpm. ..................................................................................................... 16-24

Figure 17-1 Tensile Properties and Hardness in the Service Aged Condition........................ 17-3

Figure 17-2 Tensile and Hardness Properties after Refurbishment. ...................................... 17-4

Figure 17-3 Bucket to Bucket Variation of Yield and Tensile Strengths of GTD-111 DS(Undegraded). ............................................................................................................... 17-5

Figure 17-4 Bucket to Bucket Variation of Percent Elongation and Reduction of Area(Undegraded). ............................................................................................................... 17-6

Figure 17-5 Variation of Yield Strength of the Longitudinal and Transverse Specimens........ 17-7

Figure 17-6 Variation of Tensile Strength for the Longitudinal and TransverseSpecimens. ................................................................................................................... 17-8

Figure 17-7 Variation of Tensile Ductility of Longitudinal and Transverse Specimens as aFunction of Temperature. .............................................................................................. 17-9

Figure 17-8 Airfoil Stress Rupture Data for IN-738, GTD-111EA and GTD-111DS AlloysBefore and After Rejuvenation..................................................................................... 17-10

Figure 17-9 Iso-Stress Creep Rupture Data of Longitudinal Specimens Machined fromthe Shank Section (Unaged)........................................................................................ 17-11

Figure 17-10 Iso-Stress Creep Rupture Data of Transverse Specimens Machined fromthe Shank Section. ...................................................................................................... 17-12

Figure 17-11 LMP Plot of GTD-111 DS and IN-738 LC Creep Data. ................................... 17-13

Figure 17-12 Larson-Miller Plot of Longitudinal Shank (Undegraded) Creep Data............... 17-14

Figure 17-13 LMP Plot of Transverse Specimen Data from Undegraded Shank Location. .. 17-15

Figure 17-14 Influence of Specimen Orientation on Creep Rupture Strength of Unaged(Shank) Material. ......................................................................................................... 17-16

Figure 18-1 Tensile Properties and Hardness in the Service Aged Condition........................ 18-3

Figure 18-2 Tensile and Hardness Properties after Refurbishment. ...................................... 18-4

Figure 18-3 Tensile Strengths as a Function of Temperature................................................ 18-5

Figure 18-4 Tensile Strengths as a Function of Temperature................................................ 18-6

Figure 18-5 Tensile Properties for Root and Airfoil Material at 70°F and 1600°F................... 18-7

Figure 18-6 Tensile Properties for Root and Airfoil Material at 70°F and 1600°F................... 18-8

Figure 18-7 Tensile Elongation as a Function of Temperature. ............................................. 18-9

Page 21: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

xix

Figure 18-8 Tensile Elongation and Reduction in Area as a Function of Temperature. ....... 18-10

Figure 18-9 Stress vs. Rupture Time for Two Material Conditions....................................... 18-11

Figure 18-10 Stress-Rupture Results for Root and Airfoil Material. ..................................... 18-12

Figure 18-11 Stress-Rupture Data for GTD-111 EA and DS Compared to IN-738............... 18-13

Figure 18-12 Stress-Rupture Results for Root and Airfoil Material. ..................................... 18-14

Figure 18-13 Larson-Miller Plot of GTD-111 EA (Standard Heat Treat and ThermallyExposed). .................................................................................................................... 18-15

Figure 18-14 Larson-Miller Plot for GTD-111 EA................................................................. 18-16

Figure 18-15 Larson-Miller Plot for GTD-111 for Different Exposure Conditions.................. 18-17

Figure 18-16 Larson-Miller Plot for GTD-111 EA................................................................. 18-18

Figure 18-17 A Larson Miller Plot Comparing the GTD111 Alloy Test Points with Rene80 Data from the Literature and the GTD111 Larson Miller Curve Published byGeneral Electric........................................................................................................... 18-19

Figure 18-18 A Least Squares Regression Model (Y = β 0 + β

1 X + e ) Fitted to the

GTD111 Creep Rupture Data Illustrating the Fit. The 95% Confidence IntervalsAbout the Mean and the 95% Prediction Interval for an Individual Observation. TestData from the Thermally Exposed GTD111 Material and Select Service ExposedGTD111 Data Points are Plotted. ................................................................................ 18-20

Figure 18-19 A Plot of Percent Creep Deformation (Strain) Versus Time for the CreepRupture Samples in the Standard Heat Treated Condition and After ThermalExposures at 816°C and 899°C................................................................................... 18-21

Figure 18-20 A Plot of Percent Creep Deformation (Strain) Versus Time for the CreepRupture Samples in the Standard Heat Treated Condition and After ThermalExposures at 816°C and 899°C................................................................................... 18-22

Figure 18-21 A Plot of Percent Creep Deformation (Strain) Versus Time for the CreepRupture Samples in the Standard Heat Treated Condition and After ThermalExposures at 816°C and 899°C................................................................................... 18-23

Figure 18-22 A Plot of Percent Creep Deformation (Strain) Versus Time for the CreepRupture Samples in the Standard Heat Treated Condition and After ThermalExposures at 816°C and 899°C................................................................................... 18-24

Figure 18-23 A Plot of Percent Creep Deformation (Strain) Versus Time for the CreepRupture Samples in the Standard Heat Treated Condition and After ThermalExposures at 816°C and 899°C................................................................................... 18-25

Page 22: Gas Turbine Blade Superalloy Material Property
Page 23: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

1-1

1 INCONEL 700

Page 24: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 700

1-2

Page 25: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 700

1-3

Page 1 of 3

material: Inconel 700 property: tensile

Condition/HT ID: 15Refurbish ID: N/ACoating ID: N/AChem. Comp: 20

Reference ID(s): 9999899

test temperature (°F)

0 300 600 900 1200 1500 1800 2100

stre

ngth

(ks

i)

0

20

40

60

80

100

120

140

160

180

200

220

strength (MP

a)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

test temperature (°C)

0 200 400 600 800 1000 1200

0.2% offset yield strengthultimate strength

Inconel 700test environment: air

Figure 1-1Tensile Strength as a Function of Temperature for Inconel 700.

Page 26: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 700

1-4

Page 2 of 3

material: Inconel 700 property: tensile

Condition/HT ID: 15Refurbish ID: N/ACoating ID: N/AChem. Comp: 20

Reference ID(s): 9999899

test temperature (°F)

0 400 800 1200 1600 2000

% e

long

atio

n

0

5

10

15

20

25

30

35

40

45

test temperature (°C)

0 200 400 600 800 1000

Inconel 700test environment: air

Figure 1-2Tensile Elongation as a Function of Temperature for Inconel 700.

Page 27: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 700

1-5

Page 3 of 3

material: Inconel 700 property: creep

Condition/HT ID: 15Refurbish ID: N/ACoating ID: N/AChem. Comp: 20

Reference ID(s): 878122, 9999999

LMP (°R-hr)(460+°F)(C+log t)

39 40 41 42 43 44

stre

ss (

ksi)

10

100

1000

stress (MP

a)

100

1000

Inconel 700test environment: air

Figure 1-3Larson-Miller Plot for Inconel 700.

Page 28: Gas Turbine Blade Superalloy Material Property
Page 29: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

2-1

2 INCONEL 939

Page 30: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 939

2-2

Page 31: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 939

2-3

Page 1 of 16

material: Inconel 939 property: tensile

Condition/HT ID: 19-27, 29-32, 34-43Refurbish ID: N/ACoating ID: N/AChem. Comp: 57, 63

Reference ID(s): 732604, 1514140

test temperature (°F)

50 60 70 80 90 100

stre

ngth

(ks

i)

0

20

40

60

80

100

120

140

160

180

200

220

strength (MP

a)

0

200

400

600

800

1000

1200

1400

test temperature (°C)

10 15 20 25 30 35

0.2% yield strengthultimate strength

Inconel 939test environment: air

Figure 2-1Tensile Strengths for Inconel 939 at Room Temperature.

Page 32: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 939

2-4

Page 2 of 16

material: Inconel 939 property: tensile

Condition/HT ID: 19-27, 29-32, 34-43Refurbish ID: N/ACoating ID: N/AChem. Comp: 57, 63

Reference ID(s): 732604, 1514140

test temperature (°F)

50 60 70 80 90 100

% e

long

atio

n

0.0

2.5

5.0

7.5

10.0

12.5

15.0

test temperature (°C)

10 15 20 25 30 35

Inconel 939test environment: air

Figure 2-2Tensile Elongation at Room Temperature for Inconel 939.

Page 33: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 939

2-5

Page 3 of 16

material: Inconel 939 property: tensile

Condition/HT ID: 19-27, 29-32, 34-43Refurbish ID: N/ACoating ID: N/AChem. Comp: 57, 63

Reference ID(s): 732604, 1514140

test temperature (°F)

50 60 70 80 90 100

redu

ctio

n in

are

a (%

)

0

5

10

15

20

25

test temperature (°C)

10 15 20 25 30 35

Inconel 939test environment: air

Figure 2-3Reduction in Area (Tensile) at Room Temperature for Inconel 939.

Page 34: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 939

2-6

Page 4 of 16

material: Inconel 939 property: tensile

Condition/HT ID: 27Refurbish ID: N/ACoating ID: N/AChem. Comp: 58

Reference ID(s): 36

Figure 2-4Tensile Properties of the Alloy as a Function of Temperature.

Page 35: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 939

2-7

Page 5 of 16

material: Inconel 939 property: charpy impact

Condition/HT ID: 27Refurbish ID: N/ACoating ID: N/AChem. Comp: 58

Reference ID(s): 36

Figure 2-5Room Temperature Impact Properties After Soakingat Elevated Temperatures.

Page 36: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 939

2-8

Page 6 of 16

material: Inconel 939 property: fatigue crack growth

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 33

Reference ID(s): 818660

∆K (ksi√in)

10 100

da/d

N (

in/c

ycle

)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

∆K (MPa√m)

10 100

da/dN (m

m/cycle)

10-8

10-7

10-6

10-5

10-4

10-3

R= 0.1R= 0.9

Inconel 939test temperature: 75°F (24°C)test environment: air

Figure 2-6Fatigue Crack Growth at R = 0.1 and 0.9 (Room Temperature).

Page 37: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 939

2-9

Page 7 of 16

material: Inconel 939 property: fatigue crack growth

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 33

Reference ID(s): 818660

∆K (ksi√in)

10 100

da/d

N (

in/c

ycle

)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

∆K (MPa√m)

10 100

da/dN (m

m/cycle)

10-7

10-6

10-5

10-4

10-3

10-2

R= 0.3

Inconel 939test temperature: 1562°F (850°C)test environment: air

Figure 2-7Elevated Temperature Fatigue Crack Growth at R = 0.3.

Page 38: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 939

2-10

Page 8 of 16

material: Inconel 939 property: fatigue crack growth

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 33

Reference ID(s): 818660

∆K (ksi√in)

10 100

da/d

N (

in/c

ycle

)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

∆K (MPa√m)

10 100

da/dN (m

m/cycle)

10-7

10-6

10-5

10-4

10-3

10-2

R= 0.1R= 0.3

Inconel 939test temperature: 1562°F (850°C)test environment: vacuum

Figure 2-8Elevated Temperature Fatigue Crack Growth at R = 0.1 and 0.3 (Vacuum).

Page 39: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 939

2-11

Page 9 of 16

material: Inconel 939 property: stress rupture

Condition/HT ID: 27Refurbish ID: N/ACoating ID: N/AChem. Comp: 58

Reference ID(s): 36

Figure 2-9The Stress Rupture Properties at 850°C; Standard Heat Treatment.

Page 40: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 939

2-12

Page 10 of 16

material: Inconel 939 property: stress rupture

Condition/HT ID: 27Refurbish ID: N/ACoating ID: N/AChem. Comp: 58

Reference ID(s): 36

Figure 2-10The Stress Rupture Properties with Two-Stage Heat Treatment.

Page 41: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 939

2-13

Page 11 of 16

material: Inconel 939 property: stress rupture

Condition/HT ID: 19-43Refurbish ID: N/ACoating ID: N/AChem. Comp: 57, 56, 60, 63

Reference ID(s): 732604, 859757, 988149 1514140

LMP (°R-hr)(460+°F)(C + log tr)

36 38 40 42 44 46 48 50 52 54

stre

ss (

ksi)

10

100

stress (MP

a)

100

1000

LMP (K-hr)(T(K))(C + log tr)

20 22 24 26 28

Inconel 939test environment: air

Figure 2-11Larson-Miller Plot for Inconel 939.

Page 42: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 939

2-14

Page 12 of 16

material: Inconel 939 property: stress to rupture

Condition/HT ID: 19-43Refurbish ID: N/ACoating ID: N/AChem. Comp: 57, 56, 60, 63

Reference ID(s): 732604, 859757, 988149 1514140

rupture time (hr)

101 102 103 104

stre

ss (

ksi)

0

100

200

300

400

500

600

700

800

900

1000

stress (MP

a)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

65001292 °F (700 °C)1400 °F (760 °C)1500 °F (816 °C)1600 °F (870 °C)1650 °F (900 °C)1700 °F (927 °C)

Inconel 939test environment: air

Figure 2-12Stress to Rupture vs. Time at Elevated Temperatures.

Page 43: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 939

2-15

Page 13 of 16

material: Inconel 939 property: creep-strain

Condition/HT ID: 27Refurbish ID: N/ACoating ID: N/AChem. Comp: 58

Reference ID(s): 36

Figure 2-13Strain to 1% Creep as a Function of Stress.

Page 44: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 939

2-16

Page 14 of 16

material: Inconel 939 property: high-cycle fatigue

Condition/HT ID: 27Refurbish ID: N/ACoating ID: N/AChem. Comp: 58

Reference ID(s): 36

Figure 2-14High Cycle Fatigue Properties at 750°C and 850°C.

Page 45: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 939

2-17

Page 15 of 16

material: Inconel 939 property: high-cycle fatigue

Condition/HT ID: 27Refurbish ID: N/ACoating ID: N/AChem. Comp: 58

Reference ID(s): 36

Figure 2-15High Cycle Fatigue Properties at 600°C. Results from INCO Europe.

Page 46: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 939

2-18

Page 16 of 16

material: Inconel 939 property: low-cycle fatigue

Condition/HT ID: 27Refurbish ID: N/ACoating ID: N/AChem. Comp: 58

Reference ID(s): 36

Figure 2-16Low Cycle Fatigue Properties of IN939 with Results for IN738LC for Comparison.

Page 47: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

3-1

3 INCONEL X750

Page 48: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel X750

3-2

Page 49: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel X750

3-3

Page 1 of 8

material: Inconel X750 property: specific heat

Condition/HT ID: 13Refurbish ID: N/ACoating ID: N/AChem. Comp: 14

Reference ID(s): 9999906

temperature (°F)

0 400 800 1200 1600 2000

spec

ific

heat

(bt

u/lb

/°F

)

0.08

0.10

0.12

0.14

0.16

0.18

0.20

temperature (°C)

0 200 400 600 800 1000 1200

specific heat (kJ/kg/K)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80Inconel X750product form: wrought

Figure 3-1Specific Heat as a Function of Temperature for Inconel X750.

Page 50: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel X750

3-4

Page 2 of 8

material: Inconel X750 property: specific heat

Condition/HT ID: 13Refurbish ID: N/ACoating ID: N/AChem. Comp: 14

Reference ID(s): 9999906

temperature (°F)

0 400 800 1200 1600 2000

ther

mal

con

duct

ivity

(bt

u/ft

2 /in/h

r/°F

)

40

60

80

100

120

140

160

180

200

220

temperature (°C)

0 200 400 600 800 1000 1200

thermal conductivity (W

/m/K

)

10

15

20

25

30Inconel X750product form: wrought

Figure 3-2Thermal Conductivity as a Function of Temperature for Inconel X750.

Page 51: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel X750

3-5

Page 3 of 8

material: Inconel X750 property: thermal expansion

Condition/HT ID: 13Refurbish ID: N/ACoating ID: N/AChem. Comp: 14

Reference ID(s): 9999906

temperature (°F)

0 400 800 1200 1600 2000

α [×

10-6

], 70

°F to

tem

pera

ture

(in

/in/°

F)

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

temperature (°C)

0 200 400 600 800 1000 1200

a

[×10-6], 21°C

to temperature (cm

/cm/°C

)

11

12

13

14

15

16

17

18

19

20

21Inconel X750product form: wrought

Figure 3-3Thermal Expansion as a Function of Temperature.

Page 52: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel X750

3-6

Page 4 of 8

material: Inconel X750 property: tensile

Condition/HT ID: 13Refurbish ID: N/ACoating ID: N/AChem. Comp: 14

Reference ID(s): 9999906

test temperature (°F)

0 300 600 900 1200 1500 1800 2100

stre

ngth

(ks

i)

20

40

60

80

100

120

140

160

180

200

strength (MP

a)

200

300

400

500

600

700

800

900

1000

1100

1200

1300

test temperature (°C)

0 200 400 600 800 1000 1200

0.2% offset yield strengthultimate strength

Inconel X750test environment: air

Figure 3-4Yield and Tensile Strengths vs. Temperature for Inconel X750.

Page 53: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel X750

3-7

Page 5 of 8

material: Inconel X750 property: tensile

Condition/HT ID: 13Refurbish ID: N/ACoating ID: N/AChem. Comp: 14

Reference ID(s): 9999906

test temperature (°F)

0 400 800 1200 1600 2000

% e

long

atio

n

8

10

12

14

16

18

20

22

24

26

28

30

32

34 Inconel X750test environment: air

Figure 3-5Tensile Elongation vs. Temperature.

Page 54: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel X750

3-8

Page 6 of 8

material: Inconel X750 property: dynamic modulus

Condition/HT ID: 13Refurbish ID: N/ACoating ID: N/AChem. Comp: 14

Reference ID(s): 9999906

test temperature (°F)

0 400 800 1200 1600 2000

dyna

mic

mod

ulus

(10

3 ksi

)

16

18

20

22

24

26

28

30

32

34

test temperature (°C)

0 200 400 600 800 1000 1200

dynamic m

odulus (GP

a)

120

130

140

150

160

170

180

190

200

210

220

230Inconel X750product form: wrought

Figure 3-6Dynamic Modulus as a Function of Temperature.

Page 55: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel X750

3-9

Page 7 of 8

material: Inconel X750 property: 100 hr rupt. strength

Condition/HT ID: 13Refurbish ID: N/ACoating ID: N/AChem. Comp: 14

Reference ID(s): 9999906

test temperature (°F)

1000 1200 1400 1600 1800 2000

100

hr r

uptu

re s

tren

gth

(ksi

)

0

10

20

30

40

50

60

70

80

90

100

test temperature (°C)

600 700 800 900 1000

100 hr rupture strength (MP

a)

0

100

200

300

400

500

600

Inconel X750product form: wrought

Figure 3-7100 hr Rupture Strength as a Function of Temperature.

Page 56: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel X750

3-10

Page 8 of 8

material: Inconel X750 property: fatigue crack growth

Condition/HT ID: 13Refurbish ID: N/ACoating ID: N/AChem. Comp: 68

Reference ID(s): 27

Figure 3-8Fatigue Crack Growth Behavior at 650°C and 540°C Under Air and Vacuum Conditions.

Page 57: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

4-1

4 INCONEL 738

Page 58: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-2

Page 59: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-3

Page 1 of 40

material: Inconel 738 property: specific heat

Condition/HT ID: 10Refurbish ID: N/ACoating ID: N/AChem. Comp: 45

Reference ID(s): 9999906

temperature (°F)

0 400 800 1200 1600 2000

spec

ific

heat

(B

tu/lb

/°F

)

0.08

0.10

0.12

0.14

0.16

0.18

0.20

temperature (°C)

0 200 400 600 800 1000 1200

specific heat (KJ/kg/K

)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80Inconel 738product form: cast

Figure 4-1Specific Heat as a Function of Temperature.

Page 60: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-4

Page 2 of 40

material: Inconel 738 property: thermal conductivity

Reference ID(s): 9999906

temperature (°F)

0 400 800 1200 1600 2000

ther

mal

con

duct

ivity

(B

tu/ft

2 /in/h

r/°F

)

40

60

80

100

120

140

160

180

200

220

temperature (°C)

0 200 400 600 800 1000 1200

thermal conductivity (W

/m/K

)

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0Inconel 738product form: cast

Condition/HT ID: 10Refurbish ID: N/ACoating ID: N/AChem. Comp: 45

Figure 4-2Thermal Conductivity as a Function of Temperature.

Page 61: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-5

Page 3 of 40

material: Inconel 738 property: thermal expansion

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 9999904

temperature (°F)

0 400 800 1200 1600 2000

α [×

10-6

], 70

°F to

tem

pera

ture

(in

/in/°

F)

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

temperature (°C)

0 200 400 600 800 1000 1200

α [×

10-6], 21°C

to temperature (cm

/cm/°C

)

9

10

11

12

13

14

15

16

17

18Inconel 738product form: cast

Figure 4-3Coefficient of Thermal Expansion as a Function of End Temperature.

Page 62: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-6

Page 4 of 40

material: Inconel 738 property: tensile properties

Condition/HT ID: 10Refurbish ID: N/ACoating ID: N/AChem. Comp: 45

Reference ID(s): 9999906

test temperature (°F)

0 300 600 900 1200 1500 1800 2100

stre

ngth

(ks

i)

20

40

60

80

100

120

140

160

180

200

strength (MP

a)

200

300

400

500

600

700

800

900

1000

1100

1200

1300

test temperature (°C)

0 200 400 600 800 1000 1200

0.2% offset yield strengthultimate strength

Inconel 738test environment: air

Figure 4-4Yield and Tensile Strengths as a Function of Temperature.

Page 63: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-7

Page 5 of 40

material: Inconel 738 property: tensile properties

Condition/HT ID: 10Refurbish ID: N/ACoating ID: N/AChem. Comp: 45

Reference ID(s): 9999906

test temperature (°F)

0 400 800 1200 1600 2000

% e

long

atio

n

0

2

4

6

8

10

12

14

16

test temperature (°C)

0 200 400 600 800 1000 1200

Inconel 738test environment: air

Figure 4-5Tensile Elongation as a Function of Temperature.

Page 64: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-8

Page 6 of 40

material: Inconel 738 property: tensile properties

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 17

Figure 4-6Yield and Tensile Strengths as a Function of Temperature.

Page 65: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-9

Page 7 of 40

material: Inconel 738 property: dynamic modulus

Reference ID(s): 9999906

test temperature (°F)

0 400 800 1200 1600 2000

dyna

mic

mod

ulus

(10

3 ksi

)

16

18

20

22

24

26

28

30

32

34

test temperature (°C)

0 200 400 600 800 1000 1200

dynamic m

odulus (GP

a)

120

140

160

180

200

220

Inconel 738product form: cast

Condition/HT ID: 10Refurbish ID: N/ACoating ID: N/AChem. Comp: 45

Figure 4-7Dynamic Modulus as a Function of Temperature.

Page 66: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-10

Page 8 of 40

material: Inconel 738 property: charpy impact

Condition/HT ID: 10Refurbish ID: N/ACoating ID: N/AChem. Comp: 44

Reference ID(s): 9999902

aging time (hr)

0 2000 4000 6000 8000 10000 12000

ener

gy a

bsor

bed

(ft-

lb)

3

4

5

6

7

8

9

10

11

12

energy absorbed (N-m

)

5

6

7

8

9

10

11

12

13

14

15

16Inconel 738test temperature: 1652°F (900°C)environment: air

Figure 4-8Charpy Impact Energy as a Function of Aging Time.

Page 67: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-11

Page 9 of 40

material: Inconel 738 property: charpy impact

Condition/HT ID: 10Refurbish ID: N/ACoating ID: N/AChem. Comp: 44

Reference ID(s): 9999902

aging temperature (°F)

0 300 600 900 1200 1500 1800

ener

gy a

bsor

bed

(ft-

lb)

3

4

5

6

7

8

9

10

energy absorbed (N-m

)

5

6

7

8

9

10

11

12

13

aging temperature (°C)

0 150 300 450 600 750 900

Inconel 738test temperature: 1652°F (900°C)environment: air

Figure 4-9Charpy Impact Energy as a Function of Aging Temperature.

Page 68: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-12

Page 10 of 40

material: Inconel 738 property: fatigue crack growth

Condition/HT ID: 10, 3Refurbish ID: N/ACoating ID: N/AChem. Comp: 44, 43

Reference ID(s): 479113, 818660

∆K (ksi√in)

10 100

da/d

N (

in/c

ycle

)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

∆K (MPa√m)

10 100

da/dN (m

m/cycle)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

R= 0 (479113)R= 0.1 (818660)

Inconel 738test temperature: 75°F (24°C)environment: vacuum

Figure 4-10Fatigue Crack Growth Behavior at Room Temperature Under Vacuum Conditions. (Low R).

Page 69: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-13

Page 11 of 40

material: Inconel 738 property: fatigue crack growth

Condition/HT ID: 3Refurbish ID: N/ACoating ID: N/AChem. Comp: 43

Reference ID(s): 818660

∆K (ksi√in)

1 10 100

da/d

N (

in/c

ycle

)

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

∆K (MPa√m)

10 100

da/dN (m

m/cycle)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

R= 0.1 (C= 7e-14 in/cycle, n= 5.29)

R= 0.85 (C= 4.9e-12 in/cycle, n= 5.79)

Inconel 738test temperature: 75°F (24°C)environment: air

Figure 4-11Fatigue Crack Growth Behavior at R = 0.1 and 0.85 (Room Temperature, Air).

Page 70: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-14

Page 12 of 40

material: Inconel 738 property: fatigue crack growth

Condition/HT ID: 3Refurbish ID: N/ACoating ID: N/AChem. Comp: 43

Reference ID(s): 818660

∆K (ksi√in)

1 10 100

da/d

N (

in/c

ycle

)

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

∆K (MPa√m)

10 100

da/dN (m

m/cycle)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

R= 0.1R= 0.3 (C= 2.4e-10 in/cycle, n= 3.62)

R= 0.9

Inconel 738test temperature:1562°F (850°C)environment: vacuum

Figure 4-12Fatigue Crack Growth Behavior at 1562°F.

Page 71: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-15

Page 13 of 40

material: Inconel 738 property: fatigue crack growth

Condition/HT ID: 11Refurbish ID: N/ACoating ID: N/AChem. Comp: 65

Reference ID(s): 26

Figure 4-13Fatigue Crack Growth Rate as a Function of •K in IN-738 at 927°C in Air and in Vacuum.

Page 72: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-16

Page 14 of 40

material: Inconel 738 property: fatigue crack growth

Condition/HT ID: 11Refurbish ID: N/ACoating ID: N/AChem. Comp: 65

Reference ID(s): 26

√ ∆ J • E OR ∆K

FA

TIG

UE

CR

AC

K G

RO

WT

H R

AT

E -

(mm

/cyc

le)

Figure 4-14Comparison of Fatigue Crack Growth Rate for Three Alloys.

Page 73: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-17

Page 15 of 40

material: Inconel 738 property: fatigue crack growth

Condition/HT ID: 11Refurbish ID: N/ACoating ID: N/AChem. Comp: 65

Reference ID(s): 26

Figure 4-15Fatigue Crack Growth Rate in Superalloys at 927°C in Vacuum.

Page 74: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-18

Page 16 of 40

material: Inconel 738 property: 100 hr rupt. strength

Condition/HT ID: 10Refurbish ID: N/ACoating ID: N/AChem. Comp: 45

Reference ID(s): 9999906

test temperature (°F)

1200 1400 1600 1800 2000

100

hr r

uptu

re s

tren

gth

(ksi

)

0

10

20

30

40

50

60

70

80

90

100

test temperature (°C)

700 800 900 1000

100 hr rupture strength (MP

a)

0

100

200

300

400

500

600

Inconel 738product form: cast

Figure 4-16100 hr Rupture Strength as a Function of Temperature.

Page 75: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-19

Page 17 of 40

material: Inconel 738 property: 1000 hr rupt. strength

Condition/HT ID: 10Refurbish ID: N/ACoating ID: N/AChem. Comp: 45

Reference ID(s): 9999906

test temperature (°F)

1200 1400 1600 1800 2000

1000

hr

rupt

ure

stre

ngth

(ks

i)

0

10

20

30

40

50

60

70

80

90

100

test temperature (°C)

700 800 900 1000

1000 hr rupture strength (MP

a)

0

100

200

300

400

500

600

Inconel 738product form: cast

Figure 4-171000 hr Rupture Strength as a Function of Temperature.

Page 76: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-20

Page 18 of 40

material: Inconel 738 property: stress rupture

Condition/HT ID: 10Refurbish ID: N/ACoating ID: N/AChem. Comp: 44, 46, 44, 44, 44

Reference ID(s): 557939, 1514140, 919398, 9999908, 9999999

LMP (°R-hr)×103

(460+°F)(C+log tr)

36 38 40 42 44 46 48 50 52

stre

ss (

ksi)

10

100

stress (MP

a)

100

LMP (K-hr)×103

(T(K))(C+log tr)

20 21 22 23 24 25 26 27 28 29

log(s)= -0.55+1.657(LMP)-2.6(LMP2)

Inconel 738test environment: air

Figure 4-18Larson-Miller Plot for Inconel 738.

Page 77: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-21

Page 19 of 40

material: Inconel 738 property: stress rupture

Condition/HT ID: 10Refurbish ID: 2 (1514140)Coating ID: N/AChem. Comp: 44, 46

Reference ID(s): 557939, 1514140

rupture time (hr)

100 101 102 103 104 105 106

stre

ss (

ksi)

1

10

100

stress (MP

a)

100

1000

1562°F (850°C) (1514140)1598°F (870°C) (1514140)1800°F (980°C) (557939)

Inconel 738test environment: air

Figure 4-19Stress vs. Rupture Time at Three Elevated Temperatures.

Page 78: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-22

Page 20 of 40

material: Inconel 738 property: creep

Condition/HT ID: 11Refurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 3

Figure 4-20Stress vs. Strain-Rate at Three Temperatures Including Repeat Runs.

Page 79: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-23

Page 21 of 40

material: Inconel 738 property: creep

Condition/HT ID: 11Refurbish ID: N/A)Coating ID: N/AChem. Comp: N/A

Reference ID(s): 3

Test temperature: 850°C

Figure 4-21Multiple Relaxation Runs at 850°C Showing Transient Effects for Low Stresses.

Page 80: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-24

Page 22 of 40

material: Inconel 738 property: creep

Condition/HT ID: 11Refurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 3

Test temperature: 850°C

Figure 4-22Creep Data at 850°C for Various Initial Thermal Treatments.

Page 81: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-25

Page 23 of 40

material: Inconel 738 property: creep

Condition/HT ID: 11Refurbish ID: N/ACoating ID: VPSChem. Comp: 44

Reference ID(s): 7

900°C124 MPa

Figure 4-23IN-738 VPS Coated Creep Test Results at 900°C/124 MPa.

Page 82: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-26

Page 24 of 40

material: Inconel 738 property: creep

Condition/HT ID: 11Refurbish ID: N/ACoating ID: VPSChem. Comp: 44

Reference ID(s): 7

982°C69 MPa

Figure 4-24IN-738 VPS Coated Creep Test Results at 982°C/69 MPa.

Page 83: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-27

Page 25 of 40

material: Inconel 738 property: creep

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 13

Temperature: 850°C

Figure 4-25Strain Rate vs. Stress for IN738LC at 850°C in Tests Containing (i) pp and pc and (ii) ppand cp.

Page 84: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-28

Page 26 of 40

material: Inconel 738 property: creep crack growth

Condition/HT ID: 11Refurbish ID: N/ACoating ID: N/AChem. Comp: 65

Reference ID(s): 26

Figure 4-26Influence of Environment on Creep Crack Growth Rate in IN-738 at 927°C and Comparisonwith Fatigue Crack Growth Rate Converted to Time Domain.

Page 85: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-29

Page 27 of 40

material: Inconel 738 property: low-cycle fatigue

Condition/HT ID: 11Refurbish ID: N/ACoating ID: N/AChem. Comp: 64

Reference ID(s): 28

Figure 4-27Total Strain Range vs. Life to Failure.

Page 86: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-30

Page 28 of 40

material: Inconel 738 property: low-cycle fatigue

Condition/HT ID: 11Refurbish ID: N/ACoating ID: N/AChem. Comp: 64

Reference ID(s): 28

Figure 4-28Total Strain Range vs. Life to Crack Initiation.

Page 87: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-31

Page 29 of 40

material: Inconel 738 property: low-cycle fatigue

Condition/HT ID: 11Refurbish ID: N/ACoating ID: N/AChem. Comp: 64

Reference ID(s): 28

Figure 4-29Elastic Strain Range vs. Life to Failure.

Page 88: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-32

Page 30 of 40

material: Inconel 738 property: low-cycle fatigue

Condition/HT ID: 11Refurbish ID: N/ACoating ID: N/AChem. Comp: 64

Reference ID(s): 28

Figure 4-30Elastic Strain Range vs. Life to Crack Initiation.

Page 89: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-33

Page 31 of 40

material: Inconel 738 property: low-cycle fatigue

Condition/HT ID: 11Refurbish ID: N/ACoating ID: N/AChem. Comp: 64

Reference ID(s): 28

Figure 4-31Inelastic Strain Range vs. Life to Failure.

Page 90: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-34

Page 32 of 40

material: Inconel 738 property: low-cycle fatigue

Condition/HT ID: 11Refurbish ID: N/ACoating ID: N/AChem. Comp: 64

Reference ID(s): 28

Figure 4-32Inelastic Strain Range vs. Life to Crack Initiation.

Page 91: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-35

Page 33 of 40

material: Inconel 738 property: low-cycle fatigue

Condition/HT ID: 11Refurbish ID: N/ACoating ID: N/AChem. Comp: 64

Reference ID(s): 28

Figure 4-33Typical Test Results and Partitioned Strain Ranges.

Page 92: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-36

Page 34 of 40

material: Inconel 738 property: low-cycle fatigue

Condition/HT ID: fully heat-treatedRefurbish ID: N/ACoating ID: N/AChem. Comp: 64

Reference ID(s): 29

* exposed condition: sulfur containing environment

Figure 4-34(HTLCF) Results of IN 738 in the Standard and the Exposed Conditions, Inelastic StrainRange (∆ε in %) vs. Number of Cycles to Failure (Nf).

Page 93: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-37

Page 35 of 40

material: Inconel 738 property: low-cycle fatigue

Condition/HT ID: fully heat-treatedRefurbish ID: N/ACoating ID: N/AChem. Comp: 64

Reference ID(s): 19

Figure 4-35(HTLCF) Results of IN 738 at 1123 K, for the Two Types of Specimens Tested UnderContinuous Strain Cycling and Cycling with Tensile Hold Times, Inelastic Strain range (∆εin %) vs. Number of Cycles to Failure (Nf).

Page 94: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-38

Page 36 of 40

material: Inconel 738 property: low-cycle fatigue

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 13

Figure 4-36Inelastic Strain Range vs. Cycles to Failure for Cast IN 738 LC (a) pp components only;750°C and 850°C, (b) pp and pc components 850°C (c) pp and cp components; 850°C.

Page 95: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-39

Page 37 of 40

material: Inconel 738 property: low-cycle fatigue

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 13

Test temperature: 870°C

Figure 4-37Inelastic Strain Range vs. Cycles to Failure for Cast IN 738 at 870°C.

Page 96: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-40

Page 38 of 40

material: Inconel 738 property: low-cycle fatigue

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 13

Figure 4-38Inelastic Strain Range vs. Cycles to Failure for Cast IN 738 at 870°C, pp and cpcomponents.

Page 97: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-41

Page 39 of 40

material: Inconel 738 property: low-cycle fatigue

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 13

Figure 4-39Inelastic Strain Range vs. Cycles to Failure for Cast IN 738 at 870°C, pp and pccomponents.

Page 98: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738

4-42

Page 40 of 40

material: Inconel 738 property: low-cycle fatigue

Condition/HT ID: 10Refurbish ID: N/ACoating ID: N/AChem. Comp: 44

Reference ID(s): 570402

Nf (cycles)

101 102 103 104 105 106

∆εt

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

hold time: 0hold time: 120 sechold time: 600 sec

Inconel 738test temperature: 1600°F (871°C)environment: air

Figure 4-40Low Cycle Fatigue at 1600°F with Three Hold Times Investigated (Total Strain Range).

Page 99: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

5-1

5 INCONEL 738 LC

Page 100: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-2

Page 101: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-3

Page 1 of 28

material: Inconel 738 LC property: tensile

Condition/HT ID: 3, 4, 54, 10, 55Refurbish ID: 2 (ref 838977)Coating ID: N/AChem. Comp: 46, 25, 26, 35, 30-33, 36-38, 41, 42, 47-50

Reference ID(s): 839977, 9999907

test temperature (°C)

0 200 400 600 800 1000 1200

strength (MP

a)

0

200

400

600

800

1000

1200

1400

test temperature (°F)

0 400 800 1200 1600 2000

stre

ngth

(ks

i)

0

20

40

60

80

100

120

140

160

180

200

220

0.2% yield strengthultimate strength

Inconel 738 LCtest environment: air

Figure 5-1Tensile Strengths as a Function of Temperature.

Page 102: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-4

Page 2 of 28

material: Inconel 738 LC property: tensile

Condition/HT ID: 3, 4, 54, 10, 55Refurbish ID: 2 (ref 838977)Coating ID: N/AChem. Comp: 46, 25, 26, 35, 30-33, 36-38, 41, 42, 47-50

Reference ID(s): 839977, 9999907

test temperature (°F)

0 400 800 1200 1600 2000

% e

long

atio

n

0

5

10

15

20

25

30

35

40

test temperature (°C)

0 200 400 600 800 1000 1200

Inconel 738 LCtest environment: air

Figure 5-2Tensile Elongation as a Function of Temperature.

Page 103: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-5

Page 3 of 28

material: Inconel 738 LC property: tensile

Condition/HT ID: 3, 4, 54, 10, 55Refurbish ID: 2 (ref 838977)Coating ID: N/AChem. Comp: 46, 25, 26, 35, 30-33, 36-38, 41, 42, 47-50

Reference ID(s): 839977, 9999907

test temperature (°F)

0 400 800 1200 1600 2000

redu

ctio

n in

are

a (%

)

0

5

10

15

20

25

30

35

40

45

50

55

60

Inconel 738 LCtest environment: air

Figure 5-3Reduction in Area (Tensile) as a Function of Temperature.

Page 104: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-6

Page 4 of 28

material: Inconel 738 LC property: impact resistance

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 6

Figure 5-4Impact Resistance of IN-738 at Room Temperature and 900°C as a Function of Aging Timeat 950°C.

Page 105: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-7

Page 5 of 28

material: Inconel 738 LC property: impact resistance

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 6

Figure 5-5Loss of High Temperature Impact Resistance Correlation in Terms of a Time-TemperatureParameter Analogous to that of Larson-Miller.

Page 106: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-8

Page 6 of 28

material: Inconel 738 LC property: fatigue crack growth

Condition/HT ID: 3Refurbish ID: N/ACoating ID: N/AChem. Comp: 29

Reference ID(s): 623540

∆K (ksi√in)

10 100

da/d

N (

in/c

ycle

)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

∆K (MPa√m)

10 100

da/dN (m

m/cycle)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

R= 0.33 (C= 2.9e-12 in/cycle, n= 3.96)

Inconel 738 LCtest temperature: 75°F (24°C)test environment: air

Figure 5-6Fatigue Crack Growth Behavior at R = 0 (Room Temperature, Lab Air Conditions).

Page 107: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-9

Page 7 of 28

material: Inconel 738 LC property: fatigue crack growth

Condition/HT ID: 3Refurbish ID: N/ACoating ID: N/AChem. Comp: 29

Reference ID(s): 623540

∆K (ksi√in)

10

da/d

N (

in/c

ycle

)

10-7

10-6

10-5

10-4

∆K (MPa√m)

da/dN (m

m/cycle)

10-5

10-4

10-3

R= 0.1 (C= 3.16e-11in/cycle, n= 3.86)

Inconel 738 LCtest temperature: 1382°F (750°C)test environment: air

Figure 5-7Fatigue Crack Growth Behavior at 1382°F at R = 0.1 (Lab Air).

Page 108: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-10

Page 8 of 28

material: Inconel 738 LC property: fatigue crack growth

Condition/HT ID: 3, 10Refurbish ID: N/ACoating ID: N/AChem. Comp: 29, 46

Reference ID(s): 623540, 863746

∆K (ksi√in)

1 10 100

da/d

N (

in/c

ycle

)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

∆K (MPa√m)

10 100

da/dN (m

m/cycle)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

R= 0.25 (C=2.7e-14 in/cycle, n= 6.1)

R= 0.3 (C= 1.6e-10 in/cycle, n= 3.74)

Inconel 738 LCtest temperature:1562°F (850°C)air

Figure 5-8Fatigue Crack Growth Behavior at 1562°F for R = 0.25 and 0.3 (Lab Air).

Page 109: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-11

Page 9 of 28

material: Inconel 738 LC property: fatigue crack growth

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 15

Figure 5-9Crack Growth for Nimocast 738 LC and 739 at Cyclic Frequencies Between 60 and 100 Hzand R = 0.1; δ is Crack Tip Opening Displacement.

Page 110: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-12

Page 10 of 28

material: Inconel 738 LC property: fatigue crack growth

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 15

Figure 5-10Influence of Environment on Fatigue Crack Growth of Nimocast 738 LC and 739 at 850°Cand Cyclic Frequencies Between 10 and 100 Hz and R = 0.1.

Page 111: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-13

Page 11 of 28

material: Inconel 738 LC property: stress rupture

Condition/HT ID: 6, 10Refurbish ID: N/ACoating ID: N/AChem. Comp: 27, 46

Reference ID(s): 760821, 777613, 792216 805217

LMP (°R-hr)×103

(460+°F)(C + log tr)

36 38 40 42 44 46 48 50 52 54 56

stre

ss (

ksi)

10

100

stress (MP

a)

100

LMP (K-hr)×103

(T(K))(C+tr)

20 21 22 23 24 25 26 27 28 29 30

Inconel 738 LCtest environment: air

Figure 5-11Larson-Miller Plot for Inconel 738 LC.

Page 112: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-14

Page 12 of 28

material: Inconel 738 LC property: stress rupture

Condition/HT ID: 10Refurbish ID: N/ACoating ID: N/AChem. Comp: 46

Reference ID(s): 863746

LMP (°R-hr)×103

(460+°F)(C + log tr)

37 38 39 40 41 42 43 44

stre

ss (

ksi)

10

100

stress (MP

a)

100

1000

LMP (K-hr)×103

(T(K))(C+log tr)

21 22 23 24

1292°F (700°C)1562°F (850°C)

Inconel 738 LCtest environment: light oil (ASTM grade #2)

test temperature

Figure 5-12Larson-Miller Plot at Two Test Temperatures (Light Oil Conditions).

Page 113: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-15

Page 13 of 28

material: Inconel 738 LC property: stress rupture

Condition/HT ID: 10Refurbish ID: N/ACoating ID: N/AChem. Comp: 46

Reference ID(s): 863746

tr (hr)

100 1000 10000

stre

ss (

ksi)

0

20

40

60

80

100

120

stress (MP

a)

0

100

200

300

400

500

600

700

800

1292°F (700°C)1562°F (850°C)

test temperature

Inconel 738 LCtest environment: light oil (ASTM grade #2)

Figure 5-13Stress vs. Rupture Time at Two Elevated Temperatures (Light Oil Conditions).

Page 114: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-16

Page 14 of 28

material: Inconel 738 LC property: creep

Condition/HT ID: 29Refurbish ID: N/ACoating ID: N/AChem. Comp: 69

Reference ID(s): 21

Figure 5-14Larson-Miller Plot (P = T (20 + log t f) x 10-3, where T is in K and tf in hr) of Cast and HippedIN-738LC Turbine Blades Showing Unexposed and Service Exposed Creep-RuptureProperties.

Page 115: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-17

Page 15 of 28

material: Inconel 738 LC property: rupture - creep rate

Condition/HT ID: 29Refurbish ID: N/ACoating ID: N/AChem. Comp: 69

Reference ID(s): 21

Figure 5-15Dependence of the Time to Rupture on the Minimum Creep Rate, for IN-738LC (Monkman-Grant Relationship).

Page 116: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-18

Page 16 of 28

material: Inconel 738 LC property: minimum creep rate

Condition/HT ID: 29Refurbish ID: N/ACoating ID: N/AChem. Comp: 69

Reference ID(s): 21

MINIMUM CREEP RATE ( s ), s-1)

t p +

ts

, s

&e

Figure 5-16Dependence of Primary Plus Secondary, Creep Life on the Minimum Creep Rate for CastIN-738LC.

Page 117: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-19

Page 17 of 28

material: Inconel 738 LC property: time to rupture

Condition/HT ID: 29Refurbish ID: N/ACoating ID: N/AChem. Comp: 69

Reference ID(s): 21

TIME TO RUPTURE ( t r ) , s

TE

RT

IAR

Y T

IME

( t

t )

, s

Figure 5-17Time to Rupture Dependence on the Tertiary Life for Cast IN-738LC.

Page 118: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-20

Page 18 of 28

material: Inconel 738 LC property: low-cycle fatigue

Condition/HT ID: 10Refurbish ID: N/ACoating ID: N/AChem. Comp: 39

Reference ID(s): 845161

Nf (cycles)

101 102 103 104 105

∆εt

0.1

1

10

failureInconel 738 LCtest temperature: 1699 °Ftest environment: air

Figure 5-18Low Cycle Fatigue at 1699°F (Total Strain Range).

Page 119: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-21

Page 19 of 28

material: Inconel 738 LC property: low-cycle fatigue

Condition/HT ID: 10Refurbish ID: N/ACoating ID: N/AChem. Comp: 46

Reference ID(s): 1540280

Nf (cycles)

102 103 104 105

∆εt

0.1

1

10

1112°F1382°F

Inconel 738 LCtest environment: air

Figure 5-19Low Cycle Fatigue Behavior at Two Elevated Temperatures (Total Strain Range).

Page 120: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-22

Page 20 of 28

material: Inconel 738 LC property: low-cycle fatigue

Condition/HT ID: 55Refurbish ID: N/ACoating ID: N/AChem. Comp: 35

Reference ID(s): 9999907

N (cycles)

102 103 104 105

∆εt

0.1

1

10

800°F- initiation800°F- failure1400°F- initiation1400°F- failure1600°F- initiation1600°F- failure1800°F- initiation1800°F- failure

Inconel 738 LCtest environment: air

Figure 5-20Low Cycle Initiation and Failure at Four Elevated Temperatures.

Page 121: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-23

Page 21 of 28

material: Inconel 738 LC property: low-cycle fatigue

Condition/HT ID: standard, two-stepRefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 1

Figure 5-21Strain-Amplitude-Life Relations for IN738LC at 650°C as an Effect of Casting Process.

Page 122: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-24

Page 22 of 28

material: Inconel 738 LC property: low-cycle fatigue

Condition/HT ID: standard, two-stepRefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 1

Figure 5-22Strain-Amplitude-Life Relations for IN738LC at 650°C as an Effect of Casting Process.

Page 123: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-25

Page 23 of 28

material: Inconel 738 LC property: low-cycle fatigue

Condition/HT ID: standard, two-stepRefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 1

Figure 5-23Stress vs. Reversals of IN738LC at 650°C (1202°F) as an Effect of Casting Process.

Page 124: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-26

Page 24 of 28

material: Inconel 738 LC property: low-cycle fatigue

Condition/HT ID: standard, two-stepRefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 1

Figure 5-24Strain-Amplitude-Life Relations for IN738LC at 850°C as an Effect of Casting Process.

Page 125: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-27

Page 25 of 28

material: Inconel 738 LC property: low-cycle fatigue

Condition/HT ID: standard, two-stepRefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 1

Figure 5-25Stress vs. Reversals of IN738LC at 850°C (1532°F) as an Effect of Casting Process.

Page 126: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-28

Page 26 of 28

material: Inconel 738 LC property: low-cycle fatigue

Condition/HT ID: standard, two-stepRefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 1

Figure 5-26Strain-Amplitude-Life Relations for IN738LC at 850°C as an Effect of Casting Process.

Page 127: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-29

Page 27 of 28

material: Inconel 738 LC property: TMF

Condition/HT ID: 55Refurbish ID: N/ACoating ID: N/AChem. Comp: 35

Reference ID(s): 9999907

N (cycles)

101 102 103 104 105 106

∆εt

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

initiationfailure

Inconel 738 LCtest environment: air

Figure 5-27Low Cycle Fatigue Behavior for Inconel 738 LC.

Page 128: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 738 LC

5-30

Page 28 of 28

material: Inconel 738 LC property: TMF

Condition/HT ID: 55Refurbish ID: N/ACoating ID: N/AChem. Comp: 35

Reference ID(s): 9999907

N (cycles)

101 102 103 104 105 106

max

str

ess

(ksi

)

20

40

60

80

100

120

max stress (M

Pa)

200

300

400

500

600

700

800initiationfailure

Inconel 738 LCtest environment: airmax temperature: 1600°F

Figure 5-28Thermal-Mechanical Fatigue Behavior of Inconel 738 LC.

Page 129: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

6-1

6 INCONEL 792

Page 130: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 792

6-2

Page 131: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 792

6-3

Page 1 of 9

material: Inconel 792 property: tensile

Condition/HT ID: 2Refurbish ID: N/ACoating ID: N/AChem. Comp: 15

Reference ID(s): 9999906

test temperature (°F)

0 300 600 900 1200 1500 1800 2100

stre

ngth

(ks

i)

20

40

60

80

100

120

140

160

180

200

strength (MP

a)

200

300

400

500

600

700

800

900

1000

1100

1200

1300

test temperature (°C)

0 200 400 600 800 1000 1200

0.2% offset yield strengthultimate strength

Inconel 792test environment: air

Figure 6-1Tensile Strengths as a Function of Temperature.

Page 132: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 792

6-4

Page 2 of 9

material: Inconel 792 property: tensile

Condition/HT ID: 2Refurbish ID: N/ACoating ID: N/AChem. Comp: 15

Reference ID(s): 9999906

test temperature (°F)

0 400 800 1200 1600 2000

% e

long

atio

n

0

2

4

6

8

10

12

14

16

test temperature (°C)

0 200 400 600 800 1000 1200

Inconel 792test environment: air

Figure 6-2Tensile Elongation as a Function of Temperature.

Page 133: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 792

6-5

Page 3 of 9

material: Inconel 792 property: fatigue crack growth

Condition/HT ID: 2Refurbish ID: N/ACoating ID: N/AChem. Comp: 15

Reference ID(s): 26

Figure 6-3Fatigue Crack Growth Rate as a Function of ∆K in IN-792 at 927°C in Air and in Vacuum.

Page 134: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 792

6-6

Page 4 of 9

material: Inconel 792 property: fatigue crack growth

Condition/HT ID: 2Refurbish ID: N/ACoating ID: N/AChem. Comp: 15

Reference ID(s): 26

Figure 6-4Comparison of Fatigue Crack Growth Rate in Terms for Three Alloys.

Page 135: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 792

6-7

Page 5 of 9

material: Inconel 792 property: fatigue crack growth

Condition/HT ID: 2Refurbish ID: N/ACoating ID: N/AChem. Comp: 15

Reference ID(s): 26

Figure 6-5Fatigue Crack Growth Rate in Superalloys at 927°C in Vacuum.

Page 136: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 792

6-8

Page 6 of 9

material: Inconel 792 property: 100 hr rupt. strength

Condition/HT ID: 2Refurbish ID: N/ACoating ID: N/AChem. Comp: 15

Reference ID(s): 9999906

test temperature (°F)

1200 1400 1600 1800 2000

100

hr r

uptu

re s

tren

gth

(ksi

)

0

10

20

30

40

50

60

70

80

90

100

110

120

test temperature (°C)

700 800 900 1000

100 hr rupture strength (MP

a)

0

100

200

300

400

500

600

700

800Inconel 792product form: casttest environment: air

Figure 6-6100 hr Rupture Strength as a Function of Temperature.

Page 137: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 792

6-9

Page 7 of 9

material: Inconel 792 property: 1000 hr rupt. strength

Condition/HT ID: 2Refurbish ID: N/ACoating ID: N/AChem. Comp: 15

Reference ID(s): 9999906

test temperature (°F)

1200 1400 1600 1800 2000

1000

hr

rupt

ure

stre

ngth

(ks

i)

0

10

20

30

40

50

60

70

80

90

100

test temperature (°C)

700 800 900 1000

1000 hr rupture strength (MP

a)

0

100

200

300

400

500

600

Inconel792product form: casttest environment: air

Figure 6-71000 hr Rupture Strength as a Function of Temperature.

Page 138: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 792

6-10

Page 8 of 9

material: Inconel 792 property: stress rupture

Condition/HT ID: 2Refurbish ID: 9Coating ID: N/AChem. Comp: 15

Reference ID(s): 9999999

LMP (°R-hr)×103

(460+°F)(C+log tr)

38 40 42 44 46 48 50 52

stre

ss (

ksi)

10

100

stress (MP

a)

100

1000

LMP (K-hr)×103

(T(K))(C+log tr)

28.7529.0029.2529.5029.7530.00

Inconel 792test environment: air

Figure 6-8Larson-Miller Plot for Inconel 792.

Page 139: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Inconel 792

6-11

Page 9 of 9

material: Inconel 792 property: creep crack growth

Condition/HT ID: 2Refurbish ID: 9Coating ID: N/AChem. Comp: 15

Reference ID(s): 26

Figure 6-9Influence of Environment on Creep Crack Growth Rate in IN-792 at 927°C and Comparisonwith Fatigue Crack Growth Rate (Fatigue Crack Growth Rate Given on a Time Basis).

Page 140: Gas Turbine Blade Superalloy Material Property
Page 141: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

7-1

7 MAR-M002

Page 142: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M002

7-2

Page 143: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M002

7-3

Page 1 of 13

material: MAR-M002 property: fatigue crack growth

Condition/HT ID: 61Refurbish ID: N/ACoating ID: N/AChem. Comp: 77

Reference ID(s): 5

Test temperature: 950°CFrequency: 0.1 Hz

Figure 7-1Influence of R on Crack Growth in Directionally Solidified and Single Crystal Materials at950°C and a Frequency of 0.1 Hz.

Page 144: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M002

7-4

Page 2 of 13

material: MAR-M002 property: fatigue crack growth

Condition/HT ID: 61Refurbish ID: N/ACoating ID: N/AChem. Comp: 77

Reference ID(s): 5

Test temperature: 950°CFrequency: 20 Hz

Figure 7-2Influence of Grain Structure and R on Crack Growth at 950°C and a Frequency of 20 Hz.

Page 145: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M002

7-5

Page 3 of 13

material: MAR-M002 property: fatigue crack growth

Condition/HT ID: 61Refurbish ID: N/ACoating ID: N/AChem. Comp: 77

Reference ID(s): 5

Test temperature: 950°CFrequency: 20 Hz

Figure 7-3Effect of Frequency on Crack Growth in Directionally Solidified Alloy at 950°C and R = 0.1.

Page 146: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M002

7-6

Page 4 of 13

material: MAR-M002 property: fatigue crack growth

Condition/HT ID: 61Refurbish ID: N/ACoating ID: N/AChem. Comp: 77

Reference ID(s): 5

Figure 7-4Effect of Temperature on Crack Growth/Cycle in Directionally Solidified and Single CrystalMaterials at a Frequency of 0.1 Hz and R = 0.1.

Page 147: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M002

7-7

Page 5 of 13

material: MAR-M002 property: fatigue crack growth

Condition/HT ID: 61Refurbish ID: N/ACoating ID: N/AChem. Comp: 77

Reference ID(s): 5

Test temperature: 950°CFrequency: 20 HzR= 0.7

Figure 7-5Effect of Prior Creep Damage on Crack Growth in Directionally Solidified and SingleCrystal Material at 950°C at a Frequency of 20 Hz and R = 0.7.

Page 148: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M002

7-8

Page 6 of 13

material: MAR-M002 property: fatigue crack growth

Condition/HT ID: typicalRefurbish ID: N/ACoating ID: N/AChem. Comp: 78

Reference ID(s): 8

Test temperature: 950°C

Figure 7-6Effect of R on Crack Growth Per Cycle in the Threshold Region at 950°C.

Page 149: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M002

7-9

Page 7 of 13

material: MAR-M002 property: fatigue crack growth

Condition/HT ID: typicalRefurbish ID: N/ACoating ID: N/AChem. Comp: 78

Reference ID(s): 8

Test temperature: 950°CR= 0.9

Figure 7-7Effect of Prior Creep Damage on Crack Growth Per Cycle at 950°C for R = 0.9.

Page 150: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M002

7-10

Page 8 of 13

material: MAR-M002 property: fatigue crack growth

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 15

R = 0.1frequency: 20 Hz

Figure 7-8Crack Growth for MAR-M002 at Cyclic Frequency of 0.25 Hz and R = 0.1.

Page 151: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M002

7-11

Page 9 of 13

material: MAR-M002 property: fatigue crack growth

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 15

Figure 7-9Influence of R on Crack Growth Rate for MAR-M002 at 950°C and 20 Hz, da/dN versus ∆K.

Page 152: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M002

7-12

Page 10 of 13

material: MAR-M002 property: fatigue crack growth

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 15

Figure 7-10Influence of R on Crack Growth Rate for MAR-M002 at 950°C and 20 Hz, da/dt versus Kmax.

Page 153: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M002

7-13

Page 11 of 13

material: MAR-M002 property: creep crack growth

Condition/HT ID: 61Refurbish ID: N/ACoating ID: N/AChem. Comp: 77

Reference ID(s): 5

Figure 7-11Influence of Grain Structure and Temperature on Creep Crack Growth Rate.

Page 154: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M002

7-14

Page 12 of 13

material: MAR-M002 property: creep crack growth

Condition/HT ID: 61Refurbish ID: N/ACoating ID: N/AChem. Comp: 77

Reference ID(s): 5

Temperature: 950°C

Figure 7-12Effect of Prior Creep Damage on Creep Crack Growth Rate at 950°C in DirectionallySolidified Material.

Page 155: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M002

7-15

Page 13 of 13

material: MAR-M002 property: creep strain

Condition/HT ID: 61Refurbish ID: N/ACoating ID: N/AChem. Comp: 77

Reference ID(s): 5

Test temperature: 950°CStress: 256 MPa

Figure 7-13Accumulation of Creep Strain at 950°C and a Stress of 256 MPa in Directionally Solidifiedand Single Crystal Material.

Page 156: Gas Turbine Blade Superalloy Material Property
Page 157: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

8-1

8 MAR-M200

Page 158: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M200

8-2

Page 159: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M200

8-3

Page 1 of 3

material: MAR-M200 property: fatigue crack growth

Condition/HT ID: 62Refurbish ID: N/ACoating ID: N/AChem. Comp: 79

Reference ID(s): 12

Figure 8-1Comparison of Crack Growth Rates of MAR-M200 Single Crystals at 25 and 982°C. (∆Keff isa Function of Three Nodes of Cracking.)

Page 160: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M200

8-4

Page 2 of 3

material: MAR-M200 property: fatigue crack growth

Condition/HT ID: 62Refurbish ID: N/ACoating ID: N/AChem. Comp: 79

Reference ID(s): 12

Figure 8-2Fatigue Crack Growth Rate Results of MAR-M200 Single Crystals Under Uniaxially AppliedCyclic Loading at 982°C. (∆Keff is a Function of Three Nodes of Cracking.)

Page 161: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M200

8-5

Page 3 of 3

material: MAR-M200 property: TMF

Condition/HT ID:Refurbish ID: N/ACoating ID: N/AChem. Comp:

Reference ID(s): 25

Heating and cooling in fluidized beads at 320°C and 1090°C

Figure 8-3Comparison of Theoretical and Experimental Thermal Fatigue Lives of MAR M200 andMAR M200DS Double Wedges (0.6 and 1.0 mm Radius Edge, Heating and Cooling inFluidized Beds at 320 and 1090°C).

Page 162: Gas Turbine Blade Superalloy Material Property
Page 163: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

9-1

9 MAR-M247

Page 164: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M247

9-2

Page 165: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M247

9-3

Page 1 of 6

material: MAR-M247 property: isothermal fatigue

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: 80

Reference ID(s): 9

Figure 9-1Prediction of Isothermal Fatigue Data at 500°C.

Page 166: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M247

9-4

Page 2 of 6

material: MAR-M247 property: isothermal fatigue

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: 80

Reference ID(s): 9

Figure 9-2Prediction of 871°C Isothermal Fatigue Test Results.

Page 167: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M247

9-5

Page 3 of 6

material: MAR-M247 property: TMF

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: 80

Reference ID(s): 9

Figure 9-3Prediction of Out-of-Phase TMF (500°C–871°C) Test Results.

Page 168: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M247

9-6

Page 4 of 6

material: MAR-M247 property: TMF

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: 80

Reference ID(s): 9

Figure 9-4Prediction of In-Phase TMF (500°C–871°C) Test Results.

Page 169: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M247

9-7

Page 5 of 6

material: MAR-M247 property: TMF

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: 80

Reference ID(s): 9

Figure 9-5Prediction of Diamond Shape (Nonproportional) Strain-Temperature History.

Page 170: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

MAR-M247

9-8

�ε

Page 6 of 6

material: MAR-M247 property: TMF

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: 80

Reference ID(s): 10

Figure 9-6Mechanical Strain Range Versus Life for Out-of-Phase and In-Phase TMF Experiments,

= 5 x 10-5 s-1

Page 171: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

10-1

10 NIMONIC 115

Page 172: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Nimonic 115

10-2

Page 173: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Nimonic 115

10-3

Page 1 of 8

material: Nimonic 115 property: thermal conductivity

Condition/HT ID: 1Refurbish ID: N/ACoating ID: N/AChem. Comp: 10

Reference ID(s): 9999906

temperature (°F)

0 400 800 1200 1600 2000

ther

mal

con

duct

ivity

(bt

u/ft

2 /in/h

r/°F

)

40

60

80

100

120

140

160

180

200

220

temperature (°C)

0 200 400 600 800 1000 1200

thermal conductivity (W

/m/K

)

6

8

10

12

14

16

18

20

22

24

26

28

30Nimonic 115product form: wrought

Figure 10-1Thermal Conductivity as a Function of Temperature.

Page 174: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Nimonic 115

10-4

Page 2 of 8

material: Nimonic 115 property: thermal expansion

Condition/HT ID: 1Refurbish ID: N/ACoating ID: N/AChem. Comp: 10

Reference ID(s): 9999906

temperature (°F)

0 400 800 1200 1600 2000

α [×

10-6

], 70

°F to

tem

pera

ture

(in

/in/°

F)

6

7

8

9

10

11

temperature (°C)

0 200 400 600 800 1000 1200

α [×10-6], 21°C

to temperature (cm

/cm/°C

)

11

12

13

14

15

16

17

18

19Nimonic 115product form: wrought

Figure 10-2Coefficient of Thermal Expansion as a Function of Temperature.

Page 175: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Nimonic 115

10-5

Page 3 of 8

material: Nimonic 115 property: tensile

Condition/HT ID: 1Refurbish ID: N/ACoating ID: N/AChem. Comp: 10

Reference ID(s): 9999906

test temperature (°F)

0 300 600 900 1200 1500 1800 2100

stre

ngth

(ks

i)

20

40

60

80

100

120

140

160

180

200

strength (MP

a)

200

300

400

500

600

700

800

900

1000

1100

1200

1300

test temperature (°C)

0 200 400 600 800 1000 1200

0.2% offset yield strengthultimate strength

Nimonic 115test environment: air

Figure 10-3Tensile Strengths as a Function of Temperature.

Page 176: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Nimonic 115

10-6

Page 4 of 8

material: Nimonic 115 property: tensile

Condition/HT ID: 1Refurbish ID: N/ACoating ID: N/AChem. Comp: 10

Reference ID(s): 9999906

test temperature (°F)

0 400 800 1200 1600 2000

% e

long

atio

n

14

16

18

20

22

24

26

28

30

test temperature (°C)

0 200 400 600 800 1000 1200

Nimonic 115test environment: air

Figure 10-4Tensile Elongation as a Function of Temperature.

Page 177: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Nimonic 115

10-7

Page 5 of 8

material: Nimonic 115 property: dynamic modulus

Condition/HT ID: 1Refurbish ID: N/ACoating ID: N/AChem. Comp: 10

Reference ID(s): 9999906

test temperature (°F)

0 400 800 1200 1600 2000

dyna

mic

mod

ulus

(10

3 ksi

)

20

22

24

26

28

30

32

34

36

test temperature (°C)

0 200 400 600 800 1000 1200

dynamic m

odulus (GP

a)

140

150

160

170

180

190

200

210

220

230

240Nimonic 115product form: wrought

Figure 10-5Dynamic Modulus as a Function of Temperature.

Page 178: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Nimonic 115

10-8

Page 6 of 8

material: Nimonic 115 property: 100 hr rupt. strength

Condition/HT ID: 1Refurbish ID: N/ACoating ID: N/AChem. Comp: 10

Reference ID(s): 9999906

test temperature (°F)

1200 1400 1600 1800 2000

100

hr r

uptu

re s

tren

gth

(ksi

)

0

10

20

30

40

50

60

70

80

90

100

test temperature (°C)

700 800 900 1000

100 hr rupture strength (MP

a)

0

100

200

300

400

500

600

Nimonic 115product form: wrought

Figure 10-6100 hr Rupture Strength as a Function of Temperature.

Page 179: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Nimonic 115

10-9

Page 7 of 8

material: Nimonic 115 property: 1000 hr rupt. strength

Condition/HT ID: 1Refurbish ID: N/ACoating ID: N/AChem. Comp: 10

Reference ID(s): 9999906

test temperature (°F)

1200 1400 1600 1800 2000

1000

hr

rupt

ure

stre

ngth

(ks

i)

0

10

20

30

40

50

60

70

80

90

100

test temperature (°C)

700 800 900 1000

1000 hr rupture strength (MP

a)

0

100

200

300

400

500

600

Nimonic 115product form: wrought

Figure 10-71000 hr Rupture Strength as a Function of Temperature.

Page 180: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Nimonic 115

10-10

Page 8 of 8

material: Nimonic 115 property: stress rupture

Condition/HT ID: 1Refurbish ID: N/ACoating ID: N/AChem. Comp: 10

Reference ID(s): 9999999

LMP (°R-hr)(460+°F)(C+log tr)

39 40 41 42 43 44 45

stre

ss (

ksi)

10

100

stress (MP

a)

100

1000

LMP (K-hr)(T(K))(C+log tr)

21.5 22.0 22.5 23.0 23.5 24.0 24.5

Nimonic 115test environment: air

Figure 10-8Partial Larson-Miller Plot for Nimonic 115.

Page 181: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

11-1

11 RENE 80

Page 182: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Rene 80

11-2

Page 183: Gas Turbine Blade Superalloy Material Property

lEPRI Licensed Material

Rene 80

11-3

Page 1 of 8

material: Rene 80 property: tensile

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: CoNiCrAlYChem. Comp: 74

Reference ID(s): 2

Figure 11-1Temperature Dependence of Yield Strength ( σy) of Unused and Used Coatings andSubstrates in Comparison with Tensile Test Data of Unused Substrate.

Page 184: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Rene 80

11-4

Page 2 of 8

material: Rene 80 property: tensile

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: CoNiCrAlYChem. Comp: 74

Reference ID(s): 2

Figure 11-2Temperature Dependence of Ductility ( ε f) Obtained from SP Tests on Unused and UsedCoatings and Substrates, Compared with Tensile Test Data of Unused Substrate.

Page 185: Gas Turbine Blade Superalloy Material Property

lEPRI Licensed Material

Rene 80

11-5

Page 3 of 8

material: Rene 80 property: tensile

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: 75

Reference ID(s): 16

Figure 11-3Temperature Dependence of Strength and Ductility of the Rene 80 A lloy Specimens.

Page 186: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Rene 80

11-6

Page 4 of 8

material: Rene 80 property: fatigue crack growth

Condition/HT ID: 60Refurbish ID: N/ACoating ID: N/AChem. Comp: 76

Reference ID(s): 26

Figure 11-4Fatigue Crack Growth Rate as a Function of ∆K in Rene 80 at 927 °C in Air and in Vacuum.

Page 187: Gas Turbine Blade Superalloy Material Property

lEPRI Licensed Material

Rene 80

11-7

Page 5 of 8

material: Rene 80 property: fatigue crack growth

Condition/HT ID: 60Refurbish ID: N/ACoating ID: N/AChem. Comp: 76

Reference ID(s): 26

√ ∆ J • E OR ∆K

FA

TIG

UE

CR

AC

K G

RO

WT

H R

AT

E -

(mm

/cyc

le)

Figure 11-5Comparison of Fatigue Crack Growth Rate for Three Alloys.

Page 188: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Rene 80

11-8

Page 6 of 8

material: Rene 80 property: fatigue crack growth

Condition/HT ID: 60Refurbish ID: N/ACoating ID: N/AChem. Comp: 76

Reference ID(s): 26

Figure 11-6Fatigue Crack Growth Rate in Superalloys at 927 °C in Vacuum.

Page 189: Gas Turbine Blade Superalloy Material Property

lEPRI Licensed Material

Rene 80

11-9

Page 7 of 8

material: Rene 80 property: fatigue crack growth

Condition/HT ID: 60Refurbish ID: N/ACoating ID: N/AChem. Comp: 76

Reference ID(s): 26

Figure 11-7Influence of Environment on Creep Crack Growth Rate in Rene 80 at 927 °C andComparison with Fatigue Crack Growth Rate. (Fatigue Crack Growth Rate Give on a TimeBasis.)

Page 190: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Rene 80

11-10

Page 8 of 8

material: Rene 80 property: creep

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 18

Figure 11-8A Larson M iller Plot Comparing the GTD111 Alloy Test Points with Rene 80 Data from theLiterature and the GTD111 Larson Miller Curve Published by General Electric.

Page 191: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

12-1

12 UDIMET 500

Page 192: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 500

12-2

Page 193: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 500

12-3

Page 1 of 8

material: Udimet 500 property: thermal conductivity

Condition/HT ID: 16Refurbish ID: N/ACoating ID: N/AChem. Comp: 1

Reference ID(s): 9999905

temperature (°F)

0 400 800 1200 1600 2000

ther

mal

con

duct

ivity

(bt

u/ft

2 /in/h

r/°F

)

40

60

80

100

120

140

160

180

200

220

test temperature (°C)

0 200 400 600 800 1000 1200

thermal conductivity (W

/m/K

)

6

8

10

12

14

16

18

20

22

24

26

28

30Udimet 500product form: wrought

Figure 12-1Thermal Conductivity as a Function of Temperature.

Page 194: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 500

12-4

Page 2 of 8

material: Udimet 500 property: thermal expansion

Condition/HT ID: 16Refurbish ID: N/ACoating ID: N/AChem. Comp: 1

Reference ID(s): 9999905, 9999906

temperature (°F)

0 400 800 1200 1600 2000

α [×

10-6

], 70

°F to

tem

pera

ture

(in

/in/°

F)

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

test temperature (°C)

0 200 400 600 800 1000 1200

α [×10

-6], 21°C to tem

perature (cm/cm

/°C)

9

10

11

12

13

14

15

16

17

18

Udimet 500product form: wrought

Figure 12-2Coefficient of Thermal Expansion as a Function of Final Temperature.

Page 195: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 500

12-5

Page 3 of 8

material: Udimet 500 property: tensile

Condition/HT ID: 16Refurbish ID: N/ACoating ID: N/AChem. Comp: 1

Reference ID(s): 9999905

test temperature (°F)

0 300 600 900 1200 1500 1800 2100

stre

ngth

(ks

i)

20

40

60

80

100

120

140

160

180

200

220

strength (MP

a)

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

test temperature (°C)

0 200 400 600 800 1000 1200

0.2% offset yield strengthultimate strength

Udimet 500test environment: air

Figure 12-3Tensile Strengths as a Function of Temperature.

Page 196: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 500

12-6

Page 4 of 8

material: Udimet 500 property: tensile

Condition/HT ID: 16Refurbish ID: N/ACoating ID: N/AChem. Comp: 1

Reference ID(s): 9999905

test temperature (°F)

0 400 800 1200 1600 2000

% e

long

atio

n

15

20

25

30

35

40

45

test temperature (°C)

0 200 400 600 800 1000

Udimet 500test environment: air

Figure 12-4Tensile Elongation as a Function of Temperature.

Page 197: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 500

12-7

Page 5 of 8

material: Udimet 500 property: dynamic modulus

Condition/HT ID: 16Refurbish ID: N/ACoating ID: N/AChem. Comp: 1

Reference ID(s): 9999905

test temperature (°F)

0 400 800 1200 1600 2000

dyna

mic

mod

ulus

(10

3 ksi

)

16

18

20

22

24

26

28

30

32

34

36

test temperature (°C)

0 200 400 600 800 1000 1200

dynamic m

odulus (GP

a)

120

140

160

180

200

220

240

Udimet 500product form: wrought

Figure 12-5Dynamic Modulus as a Function of Temperature.

Page 198: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 500

12-8

Page 6 of 8

material: Udimet 500 property: 100 hr rupt. strength

Condition/HT ID: 16Refurbish ID: N/ACoating ID: N/AChem. Comp: 1

Reference ID(s): 9999905

test temperature (°F)

1000 1200 1400 1600 1800 2000

100

hr r

uptu

re s

tren

gth

(ksi

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

test temperature (°C)

600 700 800 900 1000

100 hr rupture strength (MP

a)

0

100

200

300

400

500

600

700

800

900

1000Udimet 500product form: wrought

Figure 12-6100 hr Rupture Strength as a Function of Temperature.

Page 199: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 500

12-9

Page 7 of 8

material: Udimet 500 property: 1000 hr rupt. strength

Condition/HT ID: 16Refurbish ID: N/ACoating ID: N/AChem. Comp: 1

Reference ID(s): 9999905

test temperature (°F)

1000 1200 1400 1600 1800 2000

1000

hr

rupt

ure

stre

ngth

(ks

i)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

test temperature (°C)

600 700 800 900 1000

1000 hr rupture strength (MP

a)

0

100

200

300

400

500

600

700

800

Udimet 500product form: wrought

Figure 12-71000 hr Rupture Strength as a Function of Temperature.

Page 200: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 500

12-10

Page 8 of 8

material: Udimet 500 property: stress rupture

Condition/HT ID: 16Refurbish ID: N/ACoating ID: N/AChem. Comp: 1, 53

Reference ID(s): 9999903, 557939, 9999999

LMP (°R-hr)(460+°F)(C+log tr)

32 34 36 38 40 42 44 46 48 50 52 54

stre

ss (

ksi)

1

10

100

LMP (K-hr)(T(K))(C+log tr)

18 20 22 24 26 28 30

stress (MP

a)

10

100

1000

Udimet 500test environment: air

Figure 12-8Larson-Miller Plot for Udimet 500.

Page 201: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

13-1

13 UDIMET 520

Page 202: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 520

13-2

Page 203: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 520

13-3

Page 1 of 5

material: Udimet 520 property: tensile

Condition/HT ID: 18Refurbish ID: N/ACoating ID: N/AChem. Comp: 9

Reference ID(s): 9999905

test temperature (°F)

0 300 600 900 1200 1500 1800 2100

stre

ngth

(ks

i)

20

40

60

80

100

120

140

160

180

200

220

strength (MP

a)

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

test temperature (°C)

0 200 400 600 800 1000 1200

0.2% offset yield strengthultimate strength

Udimet 520test environment: air

Figure 13-1Tensile Strengths as a Function of Temperature.

Page 204: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 520

13-4

Page 2 of 5

material: Udimet 520 property: tensile

Condition/HT ID: 18Refurbish ID: N/ACoating ID: N/AChem. Comp: 9

Reference ID(s): 9999905

test temperature (°F)

0 400 800 1200 1600 2000

% e

long

atio

n

0

5

10

15

20

25

30

35

test temperature (°C)

0 200 400 600 800 1000

Udimet 520test environment: air

Figure 13-2Tensile Elongation as a Function of Temperature.

Page 205: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 520

13-5

Page 3 of 5

material: Udimet 520 property: 100 hr rupt. strength

Condition/HT ID: 18Refurbish ID: N/ACoating ID: N/AChem. Comp: 9

Reference ID(s): 9999905

test temperature (°F)

1000 1200 1400 1600 1800 2000

100

hr r

uptu

re s

tren

gth

(ksi

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

test temperature (°C)

600 700 800 900 1000

100 hr rupture strength (MP

a)

0

100

200

300

400

500

600

700

800

900

1000Udimet 520product form: wrought

Figure 13-3100 hr Rupture Strength as a Function of Temperature.

Page 206: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 520

13-6

Page 4 of 5

material: Udimet 520 property: 1000 hr rupt. strength

Condition/HT ID: 18Refurbish ID: N/ACoating ID: N/AChem. Comp: 9

Reference ID(s): 9999905

test temperature (°F)

1000 1200 1400 1600 1800 2000

1000

hr

rupt

ure

stre

ngth

(ks

i)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

test temperature (°C)

600 700 800 900 1000

1000 hr rupture strength (MP

a)

0

100

200

300

400

500

600

700

800

Udimet 520product form: wrought

Figure 13-41000 hr Rupture Strength as a Function of Temperature.

Page 207: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 520

13-7

Page 5 of 5

material: Udimet 520 property: creep

Condition/HT ID: 18Refurbish ID: N/ACoating ID: N/AChem. Comp: 9, 55

Reference ID(s): 9999908, 876779, 9999999

LMP (°R-hr)(460+°F)(C+log tr)

38 40 42 44 46 48 50 52

stre

ss (

ksi)

1

10

100

LMP (K-hr)(T(K))(C+log tr)

21 22 23 24 25 26 27 28

stress (MP

a)

10

100

1000

Udimet 520test environment: air

Figure 13-5Larson-Miller Plot for Udimet 520.

Page 208: Gas Turbine Blade Superalloy Material Property
Page 209: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

14-1

14 UDIMET 700

Page 210: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 700

14-2

Page 211: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 700

14-3

Page 1 of 17

material: Udimet 700 property: specific heat

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/AChem. Comp: 2

Reference ID(s): 9999906

temperature (°F)

0 400 800 1200 1600 2000

spec

ific

heat

(B

tu/lb

/°F

)

0.08

0.10

0.12

0.14

0.16

0.18

0.20

temperature (°C)

0 200 400 600 800 1000 1200

specific heat (kJ/kg/K)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80Udimet 700product form: wrought

Figure 14-1Specific Heat as a Function of Temperature.

Page 212: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 700

14-4

Page 2 of 17

material: Udimet 700 property: thermal conductivity

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/AChem. Comp: 2

Reference ID(s): 9999905

temperature (°F)

0 400 800 1200 1600 2000

ther

mal

con

duct

ivity

(bt

u/ft2 /in

/hr/

°F)

120

140

160

180

200

220

240

260

temperature (°C)

0 200 400 600 800 1000 1200

thermal conductivity (W

/m/K

)

18

20

22

24

26

28

30

32

34

36Udimet 700product form: wrought

Figure 14-2Thermal Conductivity as a Function of Temperature.

Page 213: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 700

14-5

Page 3 of 17

material: Udimet 700 property: thermal expansion

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/AChem. Comp: 2

Reference ID(s): 9999905, 9999906

temperature (°F)

0 400 800 1200 1600 2000

α [×

10-6

], 70

°F to

tem

pera

ture

(in

/in/°

F)

7.0

7.5

8.0

8.5

9.0

9.5

10.0

temperature (°C)

0 200 400 600 800 1000 1200

α [×10-6], 21°C

to temperature (cm

/cm/°C

)

13.0

13.5

14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

Udimet 700product form: wrought

Figure 14-3Coefficient of Thermal Expansion as a Function of Temperature.

Page 214: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 700

14-6

Page 4 of 17

material: Udimet 700 property: tensile

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/AChem. Comp: 2

Reference ID(s): 9999905

test temperature (°F)

0 300 600 900 1200 1500 1800 2100

stre

ngth

(ks

i)

20

40

60

80

100

120

140

160

180

200

220

240

strength (MP

a)

200

400

600

800

1000

1200

1400

1600

test temperature (°C)

0 200 400 600 800 1000 1200

0.2% offset yield strengthultimate strength

Udimet 700test environment: air

Figure 14-4Tensile Strengths as a Function of Temperature.

Page 215: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 700

14-7

Page 5 of 17

material: Udimet 700 property: tensile

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/AChem. Comp: 2

Reference ID(s): 9999905

test temperature (°C)

0 200 400 600 800 1000 1200

% e

long

atio

n

14

16

18

20

22

24

26

28

30

32

34

test temperature (°F)

0 400 800 1200 1600 2000

Udimet 700test environment: air

Figure 14-5Tensile Elongation as a Function of Temperature.

Page 216: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 700

14-8

Page 6 of 17

material: Udimet 700 property: dynamic modulus

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/AChem. Comp: 2

Reference ID(s): 9999905

test temperature (°F)

0 400 800 1200 1600 2000

dyna

mic

mod

ulus

(10

3 ksi

)

20

22

24

26

28

30

32

34

36

test temperature (°C)

0 200 400 600 800 1000 1200

dynamic m

odulus (GP

a)

140

150

160

170

180

190

200

210

220

230

240Udimet 700product form: wrought

Figure 14-6Dynamic Modulus as a Function of Temperature.

Page 217: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 700

14-9

Page 7 of 17

material: Udimet 700 property: fatigue crack growth

Condition/HT ID: 50, 52Refurbish ID: N/ACoating ID: N/AChem. Comp: 16, 2

Reference ID(s): 479113, 760820

∆K (ksi√in)

10 100

da/d

N (

in/c

ycle

)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

∆K (MPa√m)10 100

da/dN (m

m/cycle)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

R= 0 (C= 9.12e-16 in/cycle, n= 6.3)

R= 0.05 (C= 2.1e-11 in/cycle, n= 0.65)

R= 0.24 (C= 1.4e-12 in/cycle, n= 4.21)

R= 0.53 (C= 3.7e-12 in/cycle, n= 3.5)

Udimet 700test temperature: 75°F (24°C)air

Figure 14-7Fatigue Crack Growth Behavior at R = 0, 0.05, 0.24, and 0.53 (Lab Air, Room Temperature).

Page 218: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 700

14-10

Page 8 of 17

material: Udimet 700 property: fatigue crack growth

Condition/HT ID: 52Refurbish ID: N/ACoating ID: N/AChem. Comp: 2

Reference ID(s): 760820

∆K (ksi√in)

100

da/d

N (

in/c

ycle

)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

∆K (MPa√m)

100

da/dN (m

m/cycle)

10-5

10-4

10-3

10-2

10-1

100

R= 0 (C= 2e-18 in/cycle, n= 7.7)

Udimet 700test temperature: 75°F (24°C)vacuum

Figure 14-8Fatigue Crack Growth Behavior Under Vacuum Conditions (Room Temperature).

Page 219: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 700

14-11

Page 9 of 17

material: Udimet 700 property: fatigue crack growth

Condition/HT ID: 52Refurbish ID: N/ACoating ID: N/AChem. Comp: 21

Reference ID(s): 661095

∆K (ksi√in)

10 100

da/d

N (

in/c

ycle

)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

∆K (MPa√m)

10 100

da/dN (m

m/cycle)

10-5

10-4

10-3

10-2

10-1

100

R= 0 (C= 6.3e-13 in/cycle, n= 5.4)

Udimet 700test temperature: 1562°F (850°C)air

Figure 14-9Elevated Temperature Fatigue Crack Growth Behavior at R = 0.

Page 220: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 700

14-12

Page 10 of 17

material: Udimet 700 property: fatigue crack growth

Condition/HT ID: 52Refurbish ID: N/ACoating ID: N/AChem. Comp: 2

Reference ID(s): 760820

∆K (ksi√in)

10 100

da/d

N (

in/c

ycle

)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

∆K (MPa√m)

10 100

da/dN (m

m/cycle)

10-5

10-4

10-3

10-2

10-1

100

R= 0 (C= 1.1e-9 in/cycle, n= 3.02)

Udimet 700test temperature: 1562°F (850°C)vacuum

Figure 14-10Elevated Fatigue Crack Growth Behavior Under Vacuum Conditions.

Page 221: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 700

14-13

Page 11 of 17

material: Udimet 700 property: fatigue crack growth

Condition/HT ID: N/ARefurbish ID: N/ACoating ID: N/AChem. Comp: N/A

Reference ID(s): 15

Test temperature: 850°CR= 0.05Frequency: 0.17 Hz

Figure 14-11Crack Growth for Udimet 700 at 850 °C, R = 0.05, and Cyclic Frequency of 0.17 Hz.

Page 222: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 700

14-14

Page 12 of 17

material: Udimet 700 property: fatigue crack growth

Condition/HT ID: 52Refurbish ID: N/ACoating ID: N/AChem. Comp: 67

Reference ID(s): 27

Temperature: 850°C

Figure 14-12The Effect of the Environment on the Creep Crack Growth in Udimet 700 at 850 °C: o , 14.2kN, vacuum, batch 2; ÌÌ , 16.0 kN, vacuum, batch 2; —— air, batch 1; ——, air, batch 2.

Page 223: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 700

14-15

Page 13 of 17

material: Udimet 700 property: 100 hr rupt. strength

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/AChem. Comp: 2

Reference ID(s): 9999905

test temperature (°F)

1200 1400 1600 1800 2000

100

hr r

uptu

re s

tren

gth

(ksi

)

0

10

20

30

40

50

60

70

80

90

100

110

120

test temperature (°C)

700 800 900 1000

100 hr rupture strength (MP

a)

0

100

200

300

400

500

600

700

800Udimet 700product form: wrought

Figure 14-13100 hr Rupture Strength as a Function of Temperature.

Page 224: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 700

14-16

Page 14 of 17

material: Udimet 700 property: 1000 hr rupt. strength

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/AChem. Comp: 2

Reference ID(s): 9999905

test temperature (°F)

1000 1200 1400 1600 1800 2000

1000

hr

rupt

ure

stre

ngth

(ks

i)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

test temperature (°C)

600 700 800 900 1000

1000 hr rupture strength (MP

a)

0

100

200

300

400

500

600

700

800

Udimet 700product form: wrought

Figure 14-141000 hr Rupture Strength as a Function of Temperature.

Page 225: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 700

14-17

Page 15 of 17

material: Udimet 700 property: stress rupture

Condition/HT ID: 50, 45, 22Refurbish ID: N/ACoating ID: N/AChem. Comp: 24, 19, 51

Reference ID(s): 14935, 212046, 408031 719687, 805217

LMP (°R-hr)(460+°F)(C+log tr)

38 40 42 44 46 48 50 52 54

stre

ss (

ksi)

10

100

LMP (K-hr)(T(K))(C+log tr)

21 22 23 24 25 26 27 28 29 30

stress (MP

a)

100

1000

Udimet 700test environment: air

Figure 14-15Larson-Miller Plot for Udimet 700.

Page 226: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 700

14-18

Page 16 of 17

material: Udimet 700 property: low-cycle fatigue

Condition/HT ID: 53Refurbish ID: N/ACoating ID: N/AChem. Comp: 17, 23

Reference ID(s): 3886

Nf (cycles)

101 102 103 104

∆εt

0.1

1

10Udimet 700test temperature: 1400°F (760°C)test environment: air

Figure 14-16Low-Cycle Fatigue at 1400 °F (Total Strain Range).

Page 227: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 700

14-19

Page 17 of 17

material: Udimet 700 property: high-cycle fatigue

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/AChem. Comp: 2

Reference ID(s): 453252

Nf (cycles)

104 105 106 107 108

∆σ (k

si)

40

44

48

52

56

60

64

68

∆σ (M

Pa)

280

300

320

340

360

380

400

420

440

460

480

R= -1 (rotating bend specimen)

Udimet 700test environment: airtest temperature: 1500°F (815°C)

Figure 14-17High-Cycle Fatigue Behavior at 1500 °F (Fully Reversed Loading).

Page 228: Gas Turbine Blade Superalloy Material Property
Page 229: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

15-1

15 UDIMET 710

Page 230: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 710

15-2

Page 231: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 710

15-3

Page 1 of 11

material: Udimet 710 property: thermal conductivity

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/AChem. Comp: 8

Reference ID(s): 9999906

temperature (°F)

0 400 800 1200 1600 2000

ther

mal

con

duct

ivity

(bt

u/ft2 /in

/hr/

°F)

40

60

80

100

120

140

160

180

200

220

temperature (°C)

0 200 400 600 800 1000 1200

thermal conductivity (W

/m/K

)

6

8

10

12

14

16

18

20

22

24

26

28

30Udimet 710cast -or- wrought

Figure 15-1Thermal Conductivity as a Function of Temperature.

Page 232: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 710

15-4

Page 2 of 11

material: Udimet 710 property: thermal expansion

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/AChem. Comp: 8

Reference ID(s): 9999906

temperature (°F)

0 400 800 1200 1600 2000

α [×

10-6

], 70

°F to

tem

pera

ture

(in

/in/°

F)

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

temperature (°C)

0 200 400 600 800 1000 1200

Udimet 710product form: wrought

Figure 15-2Coefficient of Thermal Expansion as a Function of Temperature.

Page 233: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 710

15-5

Page 3 of 11

material: Udimet 710 property: tensile

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/A)Chem. Comp: 8

Reference ID(s): 9999906

test temperature (°F)

0 300 600 900 1200 1500 1800 2100

strength (MP

a)

200

400

600

800

1000

1200

test temperature (°C)

0 200 400 600 800 1000 1200

stre

ngth

(ks

i)

20

40

60

80

100

120

140

160

180

200

0.2% yield strengthultimate strength

Udimet 710test environment: air

Figure 15-3Tensile Strengths as a Function of Temperature.

Page 234: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 710

15-6

Page 4 of 11

material: Udimet 710 property: tensile

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/AChem. Comp: 8

Reference ID(s): 9999906

test temperature (°F)

0 400 800 1200 1600 2000

% e

long

atio

n

5

10

15

20

25

30

35

test temperature (°C)

0 200 400 600 800 1000 1200

Udimet 710test environment: air

Figure 15-4Tensile Elongation as a Function of Temperature.

Page 235: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 710

15-7

Page 5 of 11

material: Udimet 710 property: dynamic modulus

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/AChem. Comp: 8

Reference ID(s): 9999906

test temperature (°F)

0 400 800 1200 1600 2000

dyna

mic

mod

ulus

(10

3 ksi

)

16

18

20

22

24

26

28

30

32

34

36

test temperature (°C)

0 200 400 600 800 1000 1200

Udimet 710product form: wrought

Figure 15-5Dynamic Modulus as a Function of Temperature.

Page 236: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 710

15-8

Page 6 of 11

material: Udimet 710 property: charpy impact

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/AChem. Comp: 8

Reference ID(s): 9999902

aging time (hr)

0 2000 4000 6000 8000 10000 12000

ener

gy a

bsor

bed

(ft-

lb)

0

2

4

6

8

10

12

14

16

energy absorbed (N-m

)

0

2

4

6

8

10

12

14

16

18

20Udimet 710test temperature: 1652°F (900°C)environment: air

Figure 15-6Charpy Impact Energy as a Function of Aging Time.

Page 237: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 710

15-9

Page 7 of 11

material: Udimet 710 property: charpy impact

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/AChem. Comp: 8

Reference ID(s): 9999902

aging temperature (°F)

1400 1450 1500 1550 1600 1650 1700

ener

gy a

bsor

bed

(ft-

lb)

0

2

4

6

8

10

energy absorbed (N-m

)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

aging temperature (°C)

0 150 300 450 600 750 900

Udimet 710test temperature: 1652°F (900°C)environment: air

Figure 15-7Charpy Impact Energy as a Function of Aging Temperature.

Page 238: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 710

15-10

Page 8 of 11

material: Udimet 710 property: 100 hr rupt. strength

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/AChem. Comp: 8

Reference ID(s): 9999906

test temperature (°F)

1000 1200 1400 1600 1800 2000

100

hr r

uptu

re s

tren

gth

(ksi

)

0

20

40

60

80

100

120

140

160

test temperature (°C)

600 700 800 900 1000

100 hr rupture strength (MP

a)

0

100

200

300

400

500

600

700

800

900

1000

1100

castwrought

Udimet 710

Figure 15-8100 hr Rupture Strength as a Function of Temperature.

Page 239: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 710

15-11

Page 9 of 11

material: Udimet 710 property: 1000 hr rupt. strength

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/AChem. Comp: 8

Reference ID(s): 9999906

test temperature (°F)

1000 1200 1400 1600 1800 2000

1000

hr

rupt

ure

stre

ngth

(ks

i)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

test temperature (°C)

600 700 800 900 1000

1000 hr rupture strength (MP

a)

0

100

200

300

400

500

600

700

800

900

1000

1100

castwrought

Udimet 710

Figure 15-91000 hr Rupture Strength as a Function of Temperature.

Page 240: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 710

15-12

Page 10 of 11

material: Udimet 710 property: stress rupture

Condition/HT ID: 52, 5, 50Refurbish ID: N/ACoating ID: N/A)Chem. Comp: 8

Reference ID(s): 557939, 876773, 99999

LMP (°R-hr)(460+°F)(C+log t)

36 38 40 42 44 46 48 50 52 54

stre

ss (

ksi)

10

100

stress (MP

a)

100

1000

Udimet 710test environment: air

Figure 15-10Larson-Miller Plot for Udimet 710.

Page 241: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 710

15-13

Page 11 of 11

material: Udimet 710 property: high-cycle fatigue

Condition/HT ID: 50Refurbish ID: N/ACoating ID: N/A)Chem. Comp: N/A

Reference ID(s): 11

Figure 15-11Effect of Mean Stress on the Fatigue Strength of Udimet 710. ( A = σALTERNATING / σMEAN ).

Page 242: Gas Turbine Blade Superalloy Material Property
Page 243: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

16-1

16 UDIMET 720

Page 244: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-2

Page 245: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-3

Page 1 of 22

material: Udimet 720 property: thermal expansion

Condition/HT ID: 48Refurbish ID: N/ACoating ID: N/AChem. Comp: 6

Reference ID(s): 9999905

temperature (°F)

0 400 800 1200 1600 2000

α [×

10-6

], 70

°F to

tem

pera

ture

(in

/in/°

F)

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

temperature (°C)

0 200 400 600 800 1000 1200

Udimet 720product form: wrought

Figure 16-1Coefficient of Thermal Expansion as a Function of Temperature.

Page 246: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-4

Page 2 of 22

material: Udimet 720 property: tensile

Condition/HT ID: 47,48Refurbish ID: N/ACoating ID: N/AChem. Comp: 7,6

Reference ID(s): 928584, 9999905

test temperature (°F)

0 300 600 900 1200 1500 1800 2100

stre

ngth

(ks

i)

100

120

140

160

180

200

220

strength (MP

a)

700

800

900

1000

1100

1200

1300

1400

1500

test temperature (°C)

0 200 400 600 800 1000 1200

0.2% offset yield strengthultimate strength

Udimet 720test environment: air

Figure 16-2Tensile Strengths as a Function of Temperature.

Page 247: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-5

Page 3 of 22

material: Udimet 720 property: tensile

Condition/HT ID: 47,48Refurbish ID: N/ACoating ID: N/AChem. Comp: 7,6

Reference ID(s): 928584, 9999905

test temperature (°C)

0 200 400 600 800 1000 1200

% e

long

atio

n

4

6

8

10

12

14

16

18

20

22

24

26

test temperature (°F)

0 400 800 1200 1600 2000

Udimet 720test environment: air

Figure 16-3Tensile Elongation as a Function of Temperature.

Page 248: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-6

Page 4 of 22

material: Udimet 720 property: fatigue crack growth

Condition/HT ID: 63Refurbish ID: N/ACoating ID: N/AChem. Comp: NA

Reference ID(s): 34

Figure 16-4Crack Growth Rates in Air and in Vacuum for Single Crystal U720.

Page 249: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-7

Page 5 of 22

material: Udimet 720 property: fatigue crack growth

Condition/HT ID: 63Refurbish ID: N/ACoating ID: N/AChem. Comp: NA

Reference ID(s): 34

Figure 16-5Crack Growth Rates in Air and in Vacuum for Polycrystalline U720.

Page 250: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-8

Page 6 of 22

material: Udimet 720 property: fatigue crack growth

Condition/HT ID: 64Refurbish ID: N/ACoating ID: N/AChem. Comp: NA

Reference ID(s): 35

Figure 16-6Graph of da/dN Data for SENB Specimens in Vacuum at 20, 300 and 600°C.

Page 251: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-9

Page 7 of 22

material: Udimet 720 property: fatigue crack growth

Condition/HT ID: 64Refurbish ID: N/ACoating ID: N/AChem. Comp: NA

Reference ID(s): 35

Figure 16-7Showing da/dN Data at R = 0.5 in Air and Vacuum.

Page 252: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-10

Page 8 of 22

material: Udimet 720 property: 100 hr rupt. strength

Condition/HT ID: 48Refurbish ID: N/ACoating ID: N/AChem. Comp: 6

Reference ID(s): 9999905

test temperature (°F)

1200 1400 1600 1800 2000

100

hr r

uptu

re s

tren

gth

(ksi

)

0

10

20

30

40

50

60

70

80

90

100

test temperature (°C)

700 800 900 1000

100 hr rupture strength (MP

a)

0

100

200

300

400

500

600

Udimet 720product form: wrought

Figure 16-8100 hr Rupture Strength as a Function of Temperature.

Page 253: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-11

Page 9 of 22

material: Udimet 720 property: 100 hr rupt. strength

Condition/HT ID: 48Refurbish ID: N/ACoating ID: N/AChem. Comp: 6

Reference ID(s): 805217

test temperature (°F)

1200 1400 1600 1800 2000

100

hr r

uptu

re s

tren

gth

(ksi

)

0

10

20

30

40

50

60

70

80

90

100

test temperature (°C)

700 800 900 1000

100 hr rupture strength (MP

a)

0

100

200

300

400

500

600

Udimet 720

Figure 16-9100 hr Rupture Strength as a Function of Temperature.

Page 254: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-12

Page 10 of 22

material: Udimet 720 property: 1000 hr rupt. strength

Condition/HT ID: 48Refurbish ID: N/ACoating ID: N/AChem. Comp: 6

Reference ID(s): 805217

test temperature (°F)

1200 1400 1600 1800 2000

100

hr r

uptu

re s

tren

gth

(ksi

)

0

10

20

30

40

50

60

70

80

90

100

test temperature (°C)

700 800 900 1000

100 hr rupture strength (MP

a)

0

100

200

300

400

500

600

Udimet 720

Figure 16-101000 hr Rupture Strength as a Function of Temperature.

Page 255: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-13

Page 11 of 22

material: Udimet 720 property: stress rupture

Condition/HT ID: 48Refurbish ID: N/ACoating ID: N/AChem. Comp: 6

Reference ID(s): 805217

LMP (°R-hr)(460+°F)(C+log t)

40 42 44 46 48 50 52 54

stre

ss (

ksi)

10

100

stress (MP

a)

100

Udimet 720

Figure 16-11Larson-Miller Plot for Udimet 720.

Page 256: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-14

Page 12 of 22

material: Udimet 720 property: high-cycle fatigue

Condition/HT ID: 47Refurbish ID: N/ACoating ID: N/AChem. Comp: 7

Reference ID(s): 928584

Nf (cycles)

103 104 105 106 107 108 109 1010

∆σ (k

si)

0

10

20

30

40

50

60

∆σ (MP

a)

30

40

50

60

70

80

90

100

110

120

salineair

Udimet 720pretemperature aging: 0test temperature: 1600 °F (870°C)test environment: air

Figure 16-12High Cycle Fatigue Behavior at 1600 °F in Saline and Air Environments.

Page 257: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-15

Page 13 of 22

material: Udimet 720 property: high-cycle fatigue

Condition/HT ID: 53Refurbish ID: N/ACoating ID: N/A)Chem. Comp: 66

Reference ID(s): 23

Figure 16-13Effects of Environment and Frequency of Cycling on HCF Strength of Udimet 720 at 1300 °F(704°C) and R = 0.2 to 0.3.

Page 258: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-16

Page 14 of 22

material: Udimet 720 property: high-cycle fatigue

Condition/HT ID: 53Refurbish ID: N/ACoating ID: N/A)Chem. Comp: 66

Reference ID(s): 23

Figure 16-14HCF Strength of Udimet 720 in Salt Environment at 1300 °F (704°C) for R = -1.0 and 0.6.

Page 259: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-17

Page 15 of 22

material: Udimet 720 property: high-cycle fatigue

Condition/HT ID: 53Refurbish ID: N/ACoating ID: N/A)Chem. Comp: 66

Reference ID(s): 23

Temperature: 1300°F

Figure 16-15Effect of Salt Environment and Low Alternating Stress on Stress Rupture of Udimet 710and 720 Alloys at 1300 °F (704°C).

Page 260: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-18

Page 16 of 22

material: Udimet 720 property: high-cycle fatigue

Condition/HT ID: 53Refurbish ID: N/ACoating ID: N/A)Chem. Comp: 66

Reference ID(s): 23

Temperature: 1300°F

Figure 16-16Effect of Environment on Creep/Fatigue Strength of Udimet 720 at 1300 °F (704°C) andConstant Maximum Stress.

Page 261: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-19

Page 17 of 22

material: Udimet 720 property: high-cycle fatigue

Condition/HT ID: 53Refurbish ID: N/ACoating ID: N/A)Chem. Comp: 66

Reference ID(s): 23

Temperature: 1300°F

Figure 16-17Creep/Fatigue Strength of Udimet 720 in Air and Salt Under Constant Mean Stress at1300°F (704°C).

Page 262: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-20

Page 18 of 22

material: Udimet 720 property: low-cycle fatigue

Condition/HT ID: 47Refurbish ID: N/ACoating ID: 6 (RT-22)Chem. Comp: 4

Reference ID(s): 22

Temperature: 1350°F

Figure 16-18Relationship Between Strain Range and Number of Cycles to Failure Obtained During theLow Cycle Fatigue Testing of Udimet 710 and Coated and Uncoated Udimet 720 at 1350 °F(732°C) at 1 cpm.

Page 263: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-21

Page 19 of 22

material: Udimet 720 property: low-cycle fatigue

Condition/HT ID: 47Refurbish ID: N/ACoating ID: 6 (RT-22)Chem. Comp: 4

Reference ID(s): 22

Temperature: 1350°F

Figure 16-19Relationship Between the Strain Range Components and Number of Cycles to FailureObtained During the Low Cycle Fatigue Testing of Udimet 720 at 1350°F (732°C) as aFunction of Hold Time and Test Environment.

Page 264: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-22

Page 20 of 22

material: Udimet 720 property: low-cycle fatigue

Condition/HT ID: 47Refurbish ID: N/ACoating ID: 6 (RT-22)Chem. Comp: 4

Reference ID(s): 22

Temperature: 1350°F

Figure 16-20Relationship Between the Strain Range Components and Number of Cycles to FailureObtained During the Low Cycle Fatigue Testing of RT-22 Coated Udimet 720 at 1350°F(732°C) at 1 cpm as a Function of Hold Time and Test Environment.

Page 265: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-23

Page 21 of 22

material: Udimet 720 property: low-cycle fatigue

Condition/HT ID: 47Refurbish ID: N/ACoating ID: 6 (RT-22)Chem. Comp: 4

Reference ID(s): 22

Temperature: 1350°F

Figure 16-21Low-Cycle Fatigue Results for Udimet 720 at 1350°F (732°C) and 1 cpm.

Page 266: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Udimet 720

16-24

Page 22 of 22

material: Udimet 720 property: low-cycle fatigue

Condition/HT ID: 47Refurbish ID: N/ACoating ID: 6 (RT-22)Chem. Comp: 4

Reference ID(s): 22

Temperature: 1350°F

Figure 16-22Low-Cycle Fatigue Results for RT-22 Coated Udimet 720 Tested at 1350°F (732°C) and 1cpm.

Page 267: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

17-1

17 GTD 111 DS

Page 268: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 DS

17-2

Page 269: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 DS

17-3

Page 1 of 14

material: GTD 111 EA and DS property: tensile

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 71, 72

Reference ID(s): 31

Figure 17-1Tensile Properties and Hardness in the Service Aged Condition.

Page 270: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 DS

17-4

Page 2 of 14

material: GTD 111 EA and DS property: tensile

Condition/HT ID: 59Refurbish ID: HIPPED, coated, re-heattreatCoating ID: N/AChem. Comp: 71, 72

Reference ID(s): 31

Figure 17-2Tensile and Hardness Properties after Refurbishment.

Page 271: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 DS

17-5

Page 3 of 14

material: GTD 111 DS property: tensile

Condition/HT ID:Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 33

Figure 17-3Bucket to Bucket Variation of Yield and Tensile Strengths of GTD-111 DS (Undegraded).

Page 272: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 DS

17-6

Page 4 of 14

material: GTD 111 DS property: tensile

Condition/HT ID:Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 33

Figure 17-4Bucket to Bucket Variation of Percent Elongation and Reduction of Area (Undegraded).

Page 273: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 DS

17-7

Page 5 of 14

material: GTD 111 DS property: tensile

Condition/HT ID:Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 33

Temperature, F

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.2%

Offs

et Y

ield

Str

engt

h

20

40

60

80

100

120

140

160

Longitudinal (BIRM01665 &000963)Transverse (bucket BIUW 000039)

Longitudinal

Transverse

Figure 17-5Variation of Yield Strength of the Longitudinal and Transverse Specimens.

Page 274: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 DS

17-8

Page 6 of 14

material: GTD 111 DS property: tensile

Condition/HT ID:Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 33

Temperature, F

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Ulti

mat

e Te

nsile

Str

engt

h, k

si

40

60

80

100

120

140

160

180

200

Longitudinal(BIRM001665&000963)Transverse (BIUW000039)

Longitudinal

Transverse

Figure 17-6Variation of Tensile Strength for the Longitudinal and Transverse Specimens.

Page 275: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 DS

17-9

Page 7 of 14

material: GTD 111 DS property: tensile

Condition/HT ID:Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s):33

Temperature, F

0 200 400 600 800 1000 1200 1400 1600 1800 2000

% E

long

atio

n or

Red

uctio

n of

Are

a

0

10

20

30

40

50

60

Longitudinal-(%EL)Longitudinal (%RA)Transverse (%EL)Transverse (%RA)

Longitudinal (%RA)

Longitudinal (%EL)

Transverse (%RA)

Transverse (%EL)

Figure 17-7Variation of Tensile Ductility of Longitudinal and Transverse Specimens as a Function ofTemperature.

Page 276: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 DS

17-10

Page 8 of 14

material: GTD 111 EA and DS property: stress rupture

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 71, 72

Reference ID(s): 31

Figure 17-8Airfoil Stress Rupture Data for IN-738, GTD-111EA and GTD-111DS Alloys Before and AfterRejuvenation.

Page 277: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 DS

17-11

Page 9 of 14

material: GTD 111 DS property: isostress creep rupture

Condition/HT ID:Refurbish ID: N/ACoating ID: N/AChem. Comp: 73

Reference ID(s): 33

Rupture Time, tr (hours)

101 102 103 104 105

Tem

pera

ture

, T (

°F)

1550

1600

1650

1700

1750

1800

1850

20 ksilog(t r) = 21.411507 - 0.010506 * T

15 ksilog(t r) = 24.398333 - 0.0118 * T

15 ksi20 ksi

Figure 17-9Iso-Stress Creep Rupture Data of Longitudinal Specimens Machined from the ShankSection (Unaged).

Page 278: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 DS

17-12

Page 10 of 14

material: GTD 111 DS property: isostress creep rupture

Condition/HT ID:Refurbish ID: N/ACoating ID: N/AChem. Comp: 73

Reference ID(s): 33

Rupture Time, tr (hours)

101 102 103 104 105

Tem

pera

ture

, T (

°F)

1550

1600

1650

1700

1750

1800

1850

20 ksilog(t r) = 21.3610045428 - 0.0108205737 * T

15 ksilog(t r) = 25.1640775356 - 0.01262814 * T

15 ksi20 ksi

Figure 17-10Iso-Stress Creep Rupture Data of Transverse Specimens Machined from the ShankSection.

Page 279: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 DS

17-13

Page 11 of 14

material: GTD 111 DS property: stress rupture

Condition/HT ID:Refurbish ID: N/ACoating ID: N/AChem. Comp: 73

Reference ID(s): 33

T(20 + log(tr)), R-hr

38000 40000 42000 44000 46000 48000 50000 52000 54000 56000

Str

ess,

ksi

15

20

25

30

35

404550

60

70

8090

10

100

GTD-111DS

LMP = 53803.23 + 7674.009 * Log( σ) - 7572.44 * Log( σ)2

IN738LC

LMP = 53146.069 + 4823.3177 * Log( σ) - 5985.901 * Log( σ)2

(∆)

Figure 17-11LMP Plot of GTD-111 DS and IN-738 LC Creep Data.

Page 280: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 DS

17-14

Page 12 of 14

material: GTD 111 DS property: stress rupture

Condition/HT ID:Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 33

T(20 + log(tr)), R-hr

42000 44000 46000 48000 50000 52000 54000 56000

Str

ess,

ksi

15

20

25

30

35

404550

60

70

8090

10

100

LMP = 53803.23 + 7674.009 * Log( σ) - 7572.44 * Log( σ)2

Figure 17-12Larson-Miller Plot of Longitudinal Shank (Undegraded) Creep Data.

Page 281: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 DS

17-15

Page 13 of 14

material: GTD 111 DS property: stress rupture

Condition/HT ID:Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 33

T(20 + log(tr)), R-hr

42000 44000 46000 48000 50000 52000 54000 56000

Str

ess,

ksi

15

20

25

30

35

404550

60

70

8090

10

100

LMP = 54601.11 + 3568.483 * Log( σ) - 5733.02 * Log( σ)2

Figure 17-13LMP Plot of Transverse Specimen Data from Undegraded Shank Location.

Page 282: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 DS

17-16

Page 14 of 14

material: GTD 111 DS property: stress rupture

Condition/HT ID:Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 33

T(20 + log(tr)), R-hr

40000 42000 44000 46000 48000 50000 52000 54000 56000

Str

ess,

ksi

15

20

25

30

35

404550

60

70

8090

10

100

LongitudinalLMP = 53803.23 + 7674.009 * Log( σ) - 7572.44 * Log( σ)2

TransverseLMP = 54601.11 + 3568.483 * Log( σ) - 5733.02 * Log( σ)2

Figure 17-14Influence of Specimen Orientation on Creep Rupture Strength of Unaged (Shank) Material.

Page 283: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

18-1

18 GTD 111 EA

Page 284: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-2

Page 285: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-3

Page 1 of 23

material: GTD 111 EA and DS property: tensile

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 71, 72

Reference ID(s): 31

Figure 18-1Tensile Properties and Hardness in the Service Aged Condition.

Page 286: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-4

Page 2 of 23

material: GTD 111 EA and DS property: tensile

Condition/HT ID: 59Refurbish ID: HIPPED, coated, re-heattreatCoating ID: N/AChem. Comp: 71, 72

Reference ID(s): 31

Figure 18-2Tensile and Hardness Properties after Refurbishment.

Page 287: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-5

Page 3 of 23

material: GTD 111 EA property: tensile

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 32

test temperature (°F)

0 300 600 900 1200 1500 1800 2100

strength (MP

a)

200

300

400

500

600

700

800

900

1000

1100

1200

1300

stre

ngth

(ks

i)

20

40

60

80

100

120

140

160

180

200

test temperature (°C)

0 200 400 600 800 1000 1200

0.2% yield strengthultimate strength

GTD 111test environment: air

Figure 18-3Tensile Strengths as a Function of Temperature.

Page 288: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-6

Page 4 of 23

material: GTD 111 EA property: tensile

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 32

Figure 18-4Tensile Strengths as a Function of Temperature.

Page 289: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-7

Page 5 of 23

material: GTD 111 EA property: tensile

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 32

Figure 18-5Tensile Properties for Root and Airfoil Material at 70 °F and 1600°F.

Page 290: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-8

Page 6 of 23

material: GTD 111 EA property: tensile

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 32

Figure 18-6Tensile Properties for Root and Airfoil Material at 70 °F and 1600°F.

Page 291: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-9

Page 7 of 23

material: GTD 111 EA property: tensile

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 32

test temperature (°F)0 300 600 900 1200 1500 1800

% e

long

atio

n

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

test temperature (°C)

0 200 400 600 800 1000

GTD 111test environment: air

Figure 18-7Tensile Elongation as a Function of Temperature.

Page 292: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-10

Page 8 of 23

material: GTD 111 EA property: tensile

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 32, 18

Figure 18-8Tensile Elongation and Reduction in Area as a Function of Temperature.

Page 293: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-11

Page 9 of 23

material: GTD 111 EA property: stress rupture

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 18

rupture time (hr)

100 101 102 103 104

stress (MP

a)

100

1000

stre

ss (

ksi)

1

10

100

1500 °F (815 °C)1600 °F (872 °C)

1500 °F (815 °C)1650 °F (900 °C)

GTD 111test environment: air

standard heat-treat

5,000 hr thermal exposure

Figure 18-9Stress vs. Rupture Time for Two Material Conditions.

Page 294: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-12

Page 10 of 23

material: GTD 111 EA property: stress rupture

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 32

Figure 18-10Stress-Rupture Results for Root and Airfoil Material.

Page 295: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-13

Page 11 of 23

material: GTD 111 EA and DS property: stress rupture

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 71, 72

Reference ID(s): 31

Figure 18-11Stress-Rupture Data for GTD-111 EA and DS Compared to IN-738.

Page 296: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-14

Page 12 of 23

material: GTD 111 EA property: stress rupture

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 32

Figure 18-12Stress-Rupture Results for Root and Airfoil Material.

Page 297: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-15

Page 13 of 23

material: GTD 111 EA property: stress rupture

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 32, 18

LMP (°R-hr)×103

(460+°F)(C+log tr)

38 40 42 44 46 48 50

stre

ss (

ksi)

10

100

stress (MP

a)

100

LMP (K-hr)×103

(T(K))(C+log tr)

22 23 24 25 26 27

standard heat treatafter 5,000 hrs thermal exposure

GTD 111test environment: air

Figure 18-13Larson-Miller Plot of GTD-111 EA (Standard Heat Treat and Thermally Exposed).

Page 298: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-16

Page 14 of 23

material: GTD 111 EA property: stress rupture

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 32, 18

Figure 18-14Larson-Miller Plot for GTD-111 EA.

Page 299: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-17

Page 15 of 23

material: GTD 111 EA property: stress rupture

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 32, 18

Figure 18-15Larson-Miller Plot for GTD-111 for Different Exposure Conditions.

Page 300: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-18

Page 16 of 23

material: GTD 111 EA property: stress rupture

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 32

Figure 18-16Larson-Miller Plot for GTD-111 EA.

Page 301: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-19

Page 17 of 23

material: GTD 111 EA property: stress rupture

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 18

Figure 18-17A Larson M iller Plot Comparing the GTD111 Alloy Test Points with Rene 80 Data from theLiterature and the GTD111 Larson Miller Curve Published by General Electric.

Page 302: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-20

Page 18 of 23

material: GTD 111 EA property: stress rupture

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 18

Figure 18-18A Least Squares Regression Model (Y = β 0 + β 1 X + e ) Fitted to the GTD111 Creep RuptureData Illustrating the Fit. The 95% Confidence Intervals About the Mean and the 95%Prediction Interval for an Individual Observation. Test Data from the Thermally ExposedGTD111 Material and Select Service Exposed GTD111 Data Points are Plotted.

Page 303: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-21

Page 19 of 23

material: GTD 111 EA property: creep rupture

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 18

Figure 18-19A Plot of Percent Creep Deformation (Strain) Versus Time for the Creep Rupture Samplesin the Standard Heat Treated Condition and After Thermal Exposures at 816 °C and 899°C.

Page 304: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-22

Page 20 of 23

material: GTD 111 EA property: creep rupture

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 18

Figure 18-20A Plot of Percent Creep Deformation (Strain) Versus Time for the Creep Rupture Samplesin the Standard Heat Treated Condition and After Thermal Exposures at 816 °C and 899°C.

Page 305: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-23

Page 21 of 23

material: GTD 111 EA property: creep rupture

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 18

Figure 18-21A Plot of Percent Creep Deformation (Strain) Versus Time for the Creep Rupture Samplesin the Standard Heat Treated Condition and After Thermal Exposures at 816 °C and 899°C.

Page 306: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-24

Page 22 of 23

material: GTD 111 EA property: creep rupture

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 18

Figure 18-22A Plot of Percent Creep Deformation (Strain) Versus Time for the Creep Rupture Samplesin the Standard Heat Treated Condition and After Thermal Exposures at 816 °C and 899°C.

Page 307: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

GTD 111 EA

18-25

Page 23 of 23

material: GTD 111 EA property: creep rupture

Condition/HT ID: 59Refurbish ID: N/ACoating ID: N/AChem. Comp: 70

Reference ID(s): 18

Figure 18-23A Plot of Percent Creep Deformation (Strain) Versus Time for the Creep Rupture Samplesin the Standard Heat Treated Condition and After Thermal Exposures at 816 °C and 899°C.

Page 308: Gas Turbine Blade Superalloy Material Property
Page 309: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

19-1

19 SOURCE REFERENCES

1. M. A. Burke, C. G. Beck, and E. A. Crombie, “The Influence of Materials Processing on theHigh Temperature Low Cycle Fatigue Properties of the Cast Alloy IN-738LC,” ScientificPaper 84-1D7-MATCO-P1, Westinghouse R&D Center, Pittsburgh, PA 15235, Presented at4th International Conference on Superalloys, Seven Springs, PA, 1984.

2. Y. Sugita, M. Ito, N. Isobe, S. Sakurai, C. R. Gold, T. E. Bloomer, and J. Kameda,“Degradation Characteristics of Intermetallic Coating on Nickel Base Superalloy Substrate inGas Turbine Blade,” Materials and Manufacturing Processes, Vol. 10, No. 5, 1995, pp. 987-1005.

3. D. A. Woodford, D. R. Van Steele, K. Amberge, and D. Stiles, “Creep Strength Evaluationfor IN 738 Based on Stress Relaxation,” Superalloys 1992, edited by S. D. Antolovich, R. W.Stusrud, R. A. MacKay, D. L. Anton, T. Khan, R. D. Kissinger, D. L. Klarstrom, TheMinerals, Metals & Materials Society, 1992, pp. 657-664.

4. Fax communication from Jim Allen, Consulting Engineer-Gas Turbines, to Vis Viswanathan,EPRI, Subject IN-792 DS and EA LCF Curves, June 30, 2000.

5. R. Yang and G. A. Webster, “Creep/Fatigue Crack Growth in a Gas Turbine Blade NickelBase Superalloy,” presented at the Winter Annual Meeting of the American Society ofMechanical Engineers, Dallas, TX, November 25-30, 1990, pp. 31-36.

6. N. Taylor and P. Bontempi, “Impact Resistance of Superalloys at Gas Turbine OperatingTemperatures,” Structural Integrity: Experiments, Models and Applications: Proceedings ofthe 10th Biennial European Conference on Fracture – ECF 10, Berlin, Federal Republic ofGermany, September 20-23, 1994, pp. 315-320.

7. G. T. Embley and V. V. Kallianpur, “Long-Term Creep Response of Gas Turbine BucketAlloys,” presented at Minnowbrook Conference on Life Prediction for High-TemperatureGas Turbine Materials, Blue Mountain Lake, NY, August 27-30, 1985.

8. D. W. Dean, M. C. Woodhall, A. C. Pickard, and G. A. Webster, “Interaction of Creep andFatigue Damage in Gas Turbine Blade Material,” Mechanical Engineering Publications,Suffolk, UK, 1987, pp. 25-36.

9. H. Sehitoglu and D. A. Boismier, “Thermo-Mechanical Fatigue of Mar-M247: Part 2 – LifePrediction,” Journal of Engineering Materials and Technology, Transactions of the ASME,Vol. 112, January 1990, pp. 80-89.

Page 310: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Source References

19-2

10. D. A. Boismier and H. Sehitoglu, “Thermo-Mechanical Fatigue of Mar-M247: Part 1 –Experiments,” Journal of Engineering Materials and Technology, Transactions of theASME, Vol. 112, January 1990, pp. 68-79.

11. D. M. Moon and G. P. Sabol, “Effect of Mean Stress on the High-Cycle Fatigue Behavior ofUdimet 710 at 1000 F,” STP 520, American Society for Testing and Materials, Philadelphia,PA, 1973, pp. 438-450.

12. K. S. Chan and G. R. Leverant, “Elevated-Temperature Fatigue Crack Growth Behavior ofMAR-M200 Single Crystals,” Metallurgical Transactions A, Vol. 18A, April 1987, pp. 593-602.

13. M. Y. Nazmy, “The Applicability of Strain-Range Partitioning to High Temperature LowCycle Fatigue Life Prediction of ‘IN 738’ Alloy,” Fatigue of Engineering Materials andStructures, Vol. 4, No. 3, 1981, pp. 253-261.

14. D. A. Woodford, “Creep Design Analysis for Superalloys Based on Stress RelaxationTesting,” Sixth International Conference on Creep and Fatigue: Design and Life Assessmentat High Temperature, April 15-17, 1996, C494/090/96, ImechE Conference Transactions,1996, pp. 61-69.

15. G. A. Webster, “High Temperature Fatigue Crack Growth in Superalloy Blade Materials,”Materials Science and Technology, Vol. 3, September 1987, pp. 716-725.

16. N. Czech, F. Staif, V. S. Savchenko, and K. A. Yushchenko, “Evaluation of the Weldabilityof the Gas Turbine Blade Materials In738LC and Rene 80,” Proceedings from MaterialsSolutions ’97 on Joining and Repair of Gas Turbine Components, Indianapolis, IN,September 15-18, 1997, pp. 7-10.

17. N. S. Cheruvu, “Development of a Corrosion Resistant Directionally Solidified Material forLand Based Turbine Blades,” Journal of Engineering for Gas Turbines and Power,Transactions of the ASME, Vol. 120, October 1998, pp. 744-750.

18. J. A. Daleo and J. R. Wilson, “GTD111 Alloy Material Study,” 96-GT-520, The AmericanSociety of Mechanical Engineers, 1996, presented at the International Gas Turbine andAeroengine Congress & Exhibition, Birmingham, UK, June 10-13, 1996.

19. M. Y. Nazmy, “Effect of Multiple Crack Propagation on the High Temperature Low CycleFatigue of a Cast Nickel-Base Alloy,” Scripta METALLURGICA, Vol. 17, 1983, pp. 491-494.

20. A. K. Koul, R. Castillo, and K. Willett, “Creep Life Predictions in Nickel-BasedSuperalloys,” Materials Science and Engineering, Vol. 66, 1984, pp. 213-226.

21. R. Castillo, A. K. Koul, and E. H. Toscano, “Lifetime Prediction Under Constant Load CreepConditions for a Cast Ni-Base Superalloy,” Journal of Engineering for Gas Turbines andPower, Transactions of the ASME, Vol. 109, January 1987, pp. 99-106.

Page 311: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Source References

19-3

22. G. A. Whitlow, R. L. Johnson, W. H. Pridemore, and J. M. Allen, “IntermediateTemperature, Low-Cycle Fatigue Behavior of Coated and Uncoated Nickel Base Superalloysin Air and Corrosive Sulfate Environments,” Journal of Engineering Materials andTechnology, Transactions of the ASME, Vol. 106, January 1984, pp. 43-49.

23. J. M. Allen and G. A. Whitlow, “Observations on the Interaction of High Mean Stress andType II Hot Corrosion on the Fatigue Behavior of a Nickel Base Superalloy,” Journal ofEngineering for Gas Turbines and Power, Transactions of the ASME, Vol. 107, January1985, pp. 220-224.

24. M. A. Burke, C. G. Beck, Jr., and E. A. Crombie, “The Influence of Materials Processing onthe High Temperature Low Cycle Fatigue Properties of the Cast Alloy IN-738LC,”Superalloys 1984, edited by M. Gell, C. S. Kortovich, R. H. Bricknell, W. B. Kent, and J. F.Radavich, 1984, pp. 63-71.

25. D. A. Spera, “Comparison of Experimental and Theoretical Thermal Fatigue Lives for FiveNickel-Base Alloys,” STP 520, American Society for Testing and Materials, Philadelphia,PA, 1973, pp. 648-656.

26. P. Shahinian and K. Sadananda, “Creep and Fatigue Crack Growth Behavior of Some CastNickel-base Alloys,” Materials Science and Engineering, Vol. A108, 1989, pp. 131-140.

27. K. Sadananda and P. Shahinian, “The Effect of Environment on the Creep Crack GrowthBehavior of Several Structural Alloys,” Materials Science and Engineering, Vol. 43, 1980,pp. 159-168.

28. M. Y. Nazmy, “High Temperature Low Cycle Fatigue of IN 738 and Application of StrainRange Partitioning,” Metallurgical Transactions A, Volume 14A, March 1983, pp. 449-461.

29. M. Y. Nazmy, “The Effect of Sulfur Containing Environment on the High Temperature LowCycle Fatigue of a Cast Ni-Base Alloy,” Scripta METALLURGICA, Vol. 16, 1982, pp. 1329-1332.

30. N. S. Cheruvu, “Development of a Corrosion Resistant Directionally Solidified Material forLand Based Turbine Blades,” 97-GT-425, The American Society of Mechanical Engineers,1997, presented at the International Gas Turbine and Aeroengine Congress & Exhibition,Orlando, FL, June 2-5, 1997.

31. V. P. Swaminathan, N. S. Cheruvu, J. M. Klein, and W. M. Robinson, “Microstructure andProperty Assessment of Conventionally Cast and Directionally Solidified BucketsRefurbished After Long-Term Service,” 98-GT-510, The American Society of MechanicalEngineers, 1998, presented at the International Gas Turbine and Aeroengine Congress &Exhibition, Stockholm, Sweden, June 2-5, 1998.

32. V. P. Swaminathan and N. Sastry Cheruvu, “Bucket Alloy Definition and Experience,”Southwest Research Institute Final Task Report, “Durability and Life Assessment of GTD-111 Buckets,” August 1997.

Page 312: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Source References

19-4

33. N. S. Cheruvu and V. P. Swaminathan, “Physical and Mechanical Properties of GTD-111 DSBucket Material,” Southwest Research Institute Draft Final Task Report, SwRI Project 18-7297, April 1999.

34. X. D. Wu and P. A. S. Reed, “Mode I and Mixed Mode I/II Fatigue of Ni-Base SingleCrystal Udimet 720 in Air and in Vacuum,” Fatigue ’96, Vol. II, pp. 855-860.

35. M. Loo Morrey and P. A. S. Reed, “Elevated Temperature Behaviour of Udimet 720 – AStudy of Tear Drop Cracking,” Fatigue 96, Vol. II, pp. 867-872.

36. T. B. Gibbons and R. Stickler, “IN939: Metallurgy, Properties and Performance,” COST 50Report, 1982, pp. 369-393.

Page 313: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Source References

19-5

9999999. Internal data, Liburdi Engineering Ltd.

9999908. Material Property-Microstructural Correlations, taken from EPRI Report RP2775-2(IITRI).

9999907. Cincotta, G, Final Report from General Electric Co. to EPRI on Contract RP 2421-2,Feb. 1988.

9999906. High Temperature, High Strength Nickel Base Alloys, The International Nickel Co.Inc. July 1977.

9999905. Data booklet, Special Metals Corp. 1988.

9999903. u500.

9999902. Kellogg, L, Monthly Report from Rockwell International to EPRI on ContractRP2775-1, dated 14 Oct. 1987.

9999899. High Temperature, High Strength Nickel Base Alloys, The International Nickel Co.Inc. July 1964.

1541028. Pieraggi, B, Effect of Creep or Low Cycle Fatigue on the Oxidation or Hot CorrosionBehaviour of Nickel-Base Superalloys, First International Symposium on HighTemperature Corrosion of Materials and Coatings for Energy Systems andTurboengines. II, Marseille, France, 7-11 July 1986, Mater. Sci. Eng. 88, (1-2), 199-204, Apr. 1987.

1540280. Grunling, W H; Schneider, K; Singheiser, L, Mechanical Properties of CoatedSpecimens, First International Symposium on High Temperature Corrosion ofMaterials and Coatings for Energy Systems and Turboengines. II, Marseille, France,7-11 July 1986 Mater. Sci. Eng. 88, (1-2), 177-189, Apr., 1987.

1514140. Delargy, K M; Shaw, S W K; Smith, G D W, Effects of Heat Treatment onMechanical Properties of High-Chromium Nickel-Base Superalloy IN 939, Mater.Sci. Technol. 2, (10), 1031-1037, Oct. 1986.

988149. Basso, S; Lupinc, V, Particle Coursening and Long Duration Tertiary Creep Nickel-Base Superalloy IN-939, Strength of Metals and Alloys, vol. 1, Montreal, Canada 12-16 Aug. 1985 Publ: Pergamon Press Ltd., Headington Hill Hall, Oxford OX3 OBW,UK, 1985 719-724.

950683. McLean, M; Peck, M S, Comparison of Property Regeneration Techniques and LifePrediction Procedures Applied to Laboratory Tested and Service Exposed Ni--CrAlloys, National Physical Laboratory Pp 54, 1984, Report No.: PB85-164804/wms.

936020. Day, M F; Thomas, G B, Analysis of the Low-Cycle Fatigue Behaviour of Two Ni--Cr-Base Alloys, Fatigue Fract. Eng. Mater. Struct. 8, (1), 33-48, 1985.

Page 314: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Source References

19-6

928584. Allen, J M; Whitlow, G A, Observations on the Interaction of High Mean Stress andType II Hot Corrosion on the Fatigue Behavior of a Nickel Base Superalloy, J. Eng.Gas Turbines Power (Trans. ASME) 107, (1), 220-224, Jan. 1985.

919398. Hancock, P; Nicholls, J R, The Industrial Challenge to High-Temperature Alloys,Physical Chemistry of the Solid State: Applications to Metals and Their Compounds,Paris, France, 19-23 Sept. 1983 Publ: Elsevier Science Publishers BV, 1 Molenwerf,P.O. Box 211, 1000 AE Amsterdam, The Netherlands, 1984 581-598.

878122. Floyd, P H; Wallace, W; Immarigeon, J -P A, Rejuvenation of Properties in TurbineEngine Hot Section Components by Hot Isostatic Pressing, Heat Treatment '81,Birmingham, England, 15-16 Sept, 1981 Publ: The Metals Society, 1 Carlton HouseTerrace, London SW1Y 5DB, England, 1983 97-102.

876779. Castillo, R; Willettt, K, The Effect of Protective Coatings on the High-TemperatureProperties of a Gamma Prime-Strengthened Nickel-Base Superalloy, Metall. Trans. A15A, (1), 229-236, Jan. 1984.

876773. Whitlow, G A; Beck, C G; Viswanathan, R; Crombie, E A, The Effects of a LiquidSulfate/Chloride Environment on Superalloy Stress Rupture Properties at 704 deg C,Metall. Trans. A 15A, (1), 23-28 Jan. 1984.

876647. Nazmy, M Y; Wuthrich, C, Creep Crack Growth in IN 738 and IN 939 Nickel-BaseSuperalloys, Mater. Sci. Eng. 61, (2), 119-125, Nov. 1983.

863746. Grunling, H W; Keienburg, K H; Schweitzer, K K, The Interaction of HighTemperature Corrosion and Mechanical Properties of Alloys, High TemperatureAlloys for Gas Turbines 1982, Liege, Belgium, 4-6 Oct. 1982 Publ: D. ReidelPublishing Co., P.O. Box 17, 3300 AA Dordrecht, The Netherlands, 1982, 507-543.

863150. Schneider, K; Gnirss, G, High Cycle Fatigue Properties of Cast Nickel BaseSuperalloys IN 738 LC and IN 939, High Temperature Alloys for Gas Turbines 1982,Liege, Belgium, 4-6 Oct. 1982 Publ: D. Reidel Publishing Co., P.O. Box 17, 3300AA Dordrecht, The Netherlands, 1982, 319-344.

859757. Osgerby, S; Gibbons, T B, Creep Cavitation in a Cast Ni--Cr Base Alloy, Mater. Sci.Eng., 59, (2), L11-L14, June 1983.

845161. Nazmy, M Y, High-Temperature Low-Cycle Fatigue of IN 738 and Application ofStrain Range Partitioning, Metall. Trans A 14A, (3), 449-461, Mar. 1983.

839977. Jahnke, B, High-Temperature Electron Beam Welding of the Nickel-Base SuperalloyIN-738 LC, Weld. J. 61, (11), 343s-347s, Nov. 1982.

838332. Nazmy, M Y, The Effect of Sulfur-Containing Environment on the High-TemperatureLow-Cycle Fatigue of a Cast Nickel-Base Alloy, Scr. Metall. 16, (12), 1329-1332,Dec. 1982.

Page 315: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Source References

19-7

835155. Schmidt, H; Hoffelner, W, High-Cycle Fatigue and Creep of the Cast Nickel-BaseSuperalloy IN738LC at 850 deg C, Fracture and the Role of Microstructure, Vol. 2.Fatigue, Leoben, Austria, 22-24 Sept. 1982 Publ: Engineering Materials AdvisoryServices Ltd., 339, Halesowen Rd., Cradley Heath, Warley, West Midlands B64 6PH,U.K., 1982 701-708.

831755. Nazmy, M Y, The Effect of Environment on the High-Temperature Low-CycleFatigue Behavior of Cast Nickel-Base IN-738 Alloy, Mater. Sci. Eng. 55, (2), 231-237, Sept. 1982.

828491. Schneider, K; vonArnim, H; Grunling, H W, Influence of Coatings and Hot Corrosionon the Fatigue Behaviour of Nickel-Based Superalloys, Thin Solid Films 84, (1), 29-36, 2 Oct. 1981.

818660. Hoffelner, W, High-Cycle Fatigue Life of the Cast Nickel-Base-Superalloys IN 738LC and IN 939, Metall. Trans A 13A, (7), 1245-1255, July 1982.

805217. An Alloy for Stationary Gas Turbines, Diesel Gas Turb. Worldwide 14, (1), 42, Jan.-Feb. 1982.

797981. Stevens, R A; Flewitt, P E J, Intermediate Regenerative Heat Treatments forExtending the Creep Life of the Superalloy IN-738, Mater. Sci. Eng. 50, (2), 271-284,Oct. 1981.

792216. Hartnagel, W; Bauer, R; Grunling, H W, Constant Strain Rate Creep Tests With GasTurbine Blade Materials Under Hot Corrosion Environmental Conditions, Corrosionand Mechanical Stress at High Temperatures, Petten, The Netherlands, May 1980,Publ: Applied Science Publishers, Ltd., Ripple Rd., Barking, Essex, England, 1981,257-273.

792212. Galsworthy, J C, The Effects of Seasalt on the High-Temperature Creep Properties ofa Nickel-Base Gas Turbine Blade Alloy, Corrosion and Mechanical Stress at HighTemperatures, Petten, The Netherlands, May 1980, Publ: Applied Science Publishers,Ltd., Ripple Rd., Barking, Essex, England, 1981, 197-206.

777613. Stevens, R A; Flewitt, P E J, The Dependence of Creep Rate on Microstructure in aGamma Prime Strengthened Superalloy, Acta Metall. 29, (5), 867-882, May 1981.

760821. Woodford, D A, Environmental Damage of a Cast Nickel-Base Superalloy, Metall.Trans. A 12A, (2), 299-308, Feb. 1981.

760820. Sadananda, K; Shahinian, P, Analysis of Crystallographic High-Temperature FatigueCrack Growth in a Nickel-Base Alloy, Metall. Trans. A 12A, (2), 343-351, Feb. 1981.

732604. Cutler, C P; Shaw, S W K, The Interrelationship of Gamma Prime Size, Grain Sizeand Mechanical Properties in IN-939, a Cast Nickel-Base Superalloy, Strength ofMetals and Alloys, Vol. 2. Fifth International Conference, Aachen, W. Germany, 27-

Page 316: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Source References

19-8

31 Aug. 1979 Publ: Pergamon Press Ltd., Headington Hill Hall, Oxford OX3 OBW,England, 1980 1357-1362.

719687. Aning, K; Tien, J K, Creep and Stress Rupture Behavior of a Wrought Nickel-BaseSuperalloy in Air and Vacuum, Mater. Sci. Eng. 43, (1), 23-33, Mar. 1980.

710478. Chambers, W L; Ostergren, W J; Wood, J H, Creep Failure Criteria for High-Temperature Alloys, J. Eng. Mater. Technol. (Trans. ASME) 101, (4), 374-379, Oct.1979.

667215. Shaw, S W K, Datasheet: Properties and Characteristics of IN 939, Met. Prog. 115,(3), 66-67, Mar. 1979.

661095. Sadananda, K; Shahinian, P, Hold-Time Effects on High Temperature Fatigue CrackGrowth in Udimet 700, J. Mater. Sci. 13, (11), 2347-2357, Nov. 1978.

623540. Bacon, M C; Smart, R F, Dynamic Fracture Toughness of IN 738, Metallurgia Feb.1978, 45, (2), 68-72.

608459. Woodford, D A, Effect of Prior Temperature Cycling on Rupture Life of Superalloys,Proc Conf on Fracture 1977, 2, 803-812.

570402. Ostergren, W J, Correlation of Hold Time Effects in Elevated Temperature LowCycle Fatigue Using a Frequency Modified Damage Function, Creep-FatigueInteraction ASME, New York, 1976, 179-202.

557939. Watanabe, Rikizo; Kuno, Tsuneo, Alloy Design of Ni-Base Precipitation-HardenedSuperalloys, Trans Iron Steel Inst Jpn 1976, 16, (8), 437-446.

479113. Speidel, Markus O, Fatigue-Crack Growth at High Temperatures, Symposium onHigh-Temperature Materials in Gas Turbines Elsevier Scientific Publishing Co.,London, New York and Amsterdam. 1974, 207-255.

465312. Weiss, I; Rosen, A; Brandon, D G, Creep of Udimet 500 During Thermal Cycling. Pt.2. Time to Failure, Metall Trans A Apr. 1975, 6A, (4), 767-772.

453252. Nakamura, Yoshikazu, Some Metallographic Observations on the 1500 F (815 C)Fatigue Fracture Surface of Wrought Udimet 700, Metall Trans, Dec. 1974, 5, (12),2605-2607.

408031. Chaku, P N; McMahon Jr, C J, Effect of an Air Environment on the Creep andRupture Behavior of a Ni-Base High-Temperature Alloy, Metall Trans, Feb. 1974, 5,(2), 441-450.

304709. Coffin Jr, L F, Effect of Frequency on the Cyclic Strain and Low Cycle FatigueBehavior of Cast Udimet 500 at Elevated Temperature, Metall Trans, Nov. 1971, 2,3105-3113.

Page 317: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Source References

19-9

212046. Wells, C H; Sullivan, C P, Interactions Between Creep and Low-Cycle Fatigue inUdimet 700 at 1400 f, Paper From Fatigue at High Temperature ASTM, Philadelphia,Pa. 1969, 59-74.

109860. Wells, C H; Sullivan, C P, Low-Cycle Fatigue of Udimet 700 at 1700 f, ASM TransQuart mar. 1968, 61, 149-155.

14935. Smith, W E; Donachie Jr, M J; Johnson, J L, Relationship of Prior Creep Exposure toStrength of Wrought Udimet 700 Nickel-Base Alloy, J Basic Eng V 88, No 1, Mar.1966, p 4-6.

3886. Wells, C H; Sullivan, C P, Low-Cycle Fatigue Damage of Udimet 700 at 1400 f,ASM Trans V 58, No 3, 1965, p 391-402.

9999904. Properties of Superalloys, American Society for Metals, ASM Metals HandbookNinth Edition, p 242-268.

Page 318: Gas Turbine Blade Superalloy Material Property
Page 319: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

20-1

20 CHEMICAL COMPOSITION

Page 320: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Chemical Composition

20-2

Page 321: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Chemical Composition

20-3

Chemical Composition IDs

ID MATERIAL NI CR CO MO TI AL C W TA CB ZR B HF V1 Udimet 500 52.3 18.560 18.480 3.940 3.210 3.110 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.0002 Udimet 700 53.0 15.000 18.500 5.200 3.500 4.300 0.080 0.000 0.000 0.000 0.000 0.030 0.000 0.0003 Udimet 500 53.6 18.000 18.500 4.000 2.900 2.900 0.080 0.000 0.000 0.000 0.050 0.006 0.000 0.0004 Udimet 720 54.9 18.000 15.000 3.000 5.000 2.500 0.030 1.500 0.000 0.000 0.050 0.035 0.000 0.0005 Udimet 710 54.9 18.000 15.000 3.000 5.000 2.500 0.070 1.500 0.000 0.000 0.050 0.020 0.000 0.0006 Udimet 720 55.0 18.000 15.000 3.000 5.000 2.500 0.035 1.250 0.000 0.000 0.035 0.035 0.000 0.0007 Udimet 720 55.0 18.000 15.000 3.000 5.000 2.500 0.035 1.400 0.000 0.000 0.035 0.035 0.000 0.0008 Udimet 710 55.0 18.000 15.000 3.000 5.000 2.500 0.070 1.500 0.000 0.000 0.050 0.020 0.000 0.0009 Udimet 520 57.0 19.000 12.000 6.000 3.000 2.000 0.050 1.000 0.000 0.000 0.000 0.005 0.000 0.00010 Nimonic115 60.0 14.300 13.200 3.300 3.700 4.900 0.150 0.000 0.000 0.000 0.040 0.160 0.000 0.00012 IN 738 LC 61.6 15.760 8.350 1.840 3.460 3.400 0.120 2.600 1.550 0.940 0.053 0.010 0.160 0.05013 IN 738 LC 61.8 15.900 8.300 1.600 3.300 3.400 0.120 2.500 1.720 0.960 0.070 0.009 0.160 0.00014 IN X750 73.0 15.500 0.000 0.000 2.500 0.700 0.040 0.000 0.000 1.000 0.000 0.000 0.000 0.00015 IN 792 bal 12.400 9.000 1.900 4.500 3.100 0.120 3.800 3.900 0.000 0.100 0.020 0.000 0.00016 Udimet 700 bal 15.000 19.000 5.000 3.000 4.000 0.150 0.000 0.000 0.000 0.000 0.000 0.000 0.00017 Udimet 700 bal 15.000 19.500 5.050 3.450 4.420 0.060 0.000 0.000 0.000 0.000 0.031 0.000 0.00018 Udimet 700 bal 15.000 19.500 5.050 3.450 4.420 0.060 0.000 0.000 0.000 0.050 0.031 0.000 0.00019 Udimet 700 bal 15.000 19.500 5.100 3.500 4.400 0.060 0.000 0.000 0.000 0.050 0.030 0.000 0.00020 IN 700 bal 15.000 28.500 3.700 2.200 3.000 0.120 0.000 0.000 0.000 0.000 0.000 0.000 0.00021 Udimet 700 bal 15.100 16.600 4.950 3.480 4.150 0.060 0.000 0.000 0.000 0.040 0.025 0.000 0.00022 Udimet 700 bal 15.100 17.500 4.900 3.250 4.150 0.080 0.000 0.000 0.000 0.000 0.029 0.000 0.00023 Udimet 700 bal 15.200 18.400 4.950 3.430 4.420 0.060 0.000 0.000 0.000 0.000 0.031 0.000 0.00024 Udimet 700 bal 15.000 18.500 4.820 3.330 4.320 0.060 0.000 0.000 0.000 0.050 0.030 0.000 0.00025 IN 738 LC bal 15.720 8.290 1.710 3.340 3.470 0.090 2.620 1.580 0.760 0.030 0.010 0.000 0.00026 IN 738 LC bal 15.760 8.240 1.570 3.340 3.550 0.100 2.510 1.800 0.860 0.030 0.008 0.000 0.00027 IN 738 LC bal 15.780 8.300 1.740 3.490 3.430 0.100 2.600 1.690 0.810 0.060 0.011 0.000 0.00028 IN 738 LC bal 15.800 8.200 1.700 3.400 3.430 0.115 2.460 1.640 0.860 0.045 0.010 0.000 0.00029 IN 738 LC bal 15.800 8.200 1.700 3.470 3.400 0.114 2.500 1.910 0.860 0.050 0.010 0.000 0.00030 IN 738 LC bal 15.800 8.230 1.610 3.340 3.490 0.100 2.520 1.780 0.910 0.045 0.011 0.000 0.00031 IN 738 LC bal 15.800 8.390 1.660 3.350 3.450 0.110 2.430 1.580 0.770 0.030 0.011 0.000 0.00032 IN 738 LC bal 15.810 8.570 1.720 3.340 3.560 0.110 2.640 1.610 0.750 0.030 0.011 0.000 0.00033 IN 738 LC bal 15.820 8.150 1.620 3.290 3.440 0.110 2.470 1.790 0.860 0.040 0.010 0.000 0.00034 IN 738 LC bal 15.840 8.420 1.820 3.540 3.380 0.100 2.600 1.780 0.860 0.050 0.011 0.000 0.00035 IN 738 LC bal 15.890 8.340 1.680 3.300 3.460 0.090 2.640 1.570 0.730 0.030 0.010 0.000 0.00036 IN 738 LC bal 15.900 8.360 1.660 3.450 3.490 0.100 2.620 1.740 0.740 0.030 0.011 0.000 0.00037 IN 738 LC bal 15.920 8.310 1.540 3.300 3.500 0.100 2.500 1.810 0.830 0.030 0.010 0.000 0.00038 IN 738 LC bal 15.940 8.420 1.700 3.340 3.500 0.090 2.610 1.540 0.730 0.030 0.010 0.000 0.00039 IN 738 LC bal 15.950 8.250 1.620 3.450 3.500 0.090 2.480 1.600 0.700 0.500 0.011 0.000 0.00040 IN 738 LC bal 15.950 8.250 1.620 3.450 3.500 0.090 2.480 1.600 0.700 0.050 0.011 0.000 0.00041 IN 738 LC bal 15.970 8.410 1.660 3.340 3.320 0.100 2.580 1.540 0.730 0.030 0.010 0.000 0.00042 IN 738 LC bal 16.000 8.200 1.900 3.400 3.440 0.090 2.600 1.600 0.700 0.030 0.009 0.000 0.00043 IN 738 bal 16.000 8.500 1.700 3.400 3.400 0.170 2.600 1.700 0.900 0.100 0.000 0.000 0.00044 IN 738 bal 16.000 8.500 1.700 3.400 3.400 0.170 2.600 1.700 0.900 0.100 0.010 0.000 0.00045 IN 738 bal 16.000 8.500 1.700 3.400 3.400 0.170 2.600 1.700 0.900 0.100 0.100 0.000 0.00046 IN 738 LC bal 16.000 8.500 1.750 3.400 3.400 0.110 2.600 1.750 0.900 0.050 0.010 0.000 0.00047 IN 738 LC bal 16.000 8.640 1.710 3.450 3.570 0.090 2.670 1.660 0.700 0.030 0.011 0.000 0.00048 IN 738 LC bal 16.020 8.320 1.720 3.250 3.420 0.090 2.640 1.630 0.760 0.030 0.011 0.000 0.00049 IN 738 LC bal 16.150 8.200 1.600 3.300 3.450 0.110 2.580 1.670 0.700 0.030 0.011 0.000 0.00050 IN 738 LC bal 16.200 8.690 1.630 3.380 3.570 0.090 2.540 1.500 0.690 0.030 0.010 0.000 0.00051 IN 738 bal 16.300 8.350 1.760 3.380 3.340 0.170 2.620 1.780 0.870 0.000 0.000 0.000 0.00052 Udimet 710 bal 18.000 15.000 3.000 5.000 2.500 0.070 1.500 0.000 0.000 0.000 0.020 0.000 0.00053 Udimet 500 bal 18.000 18.500 4.000 2.900 2.900 0.080 0.000 0.000 0.000 0.010 0.006 0.000 0.00054 Udimet 500 bal 18.560 18.710 4.530 3.010 3.040 0.080 0.000 0.000 0.000 0.013 0.000 0.000 0.00055 Udimet 520 bal 19.010 12.440 6.320 3.070 1.960 0.047 1.060 0.000 0.000 0.000 0.006 0.000 0.00056 IN 939 bal 22.400 19.000 0.000 3.700 1.900 0.150 2.000 1.400 1.000 0.100 0.009 0.000 0.00057 IN 939 bal 22.500 19.000 0.000 3.700 1.900 0.150 2.000 1.400 1.000 0.100 0.009 0.000 0.00058 IN 939 bal 22.500 19.000 0.000 3.700 1.900 0.150 2.000 1.400 1.000 0.100 0.010 0.000 0.00059 IN 939 bal 22.600 19.100 0.000 3.700 1.900 0.150 2.000 1.000 1.000 0.100 0.000 0.000 0.00060 IN 939 bal 22.600 19.500 0.050 3.580 1.940 0.140 2.080 1.370 0.950 0.095 0.000 0.000 2.00062 IN 738 LC bal 15.800 8.300 1.720 3.440 3.460 0.120 2.580 1.770 0.830 0.055 0.010 0.000 0.00063 IN 939 bal 22.530 19.100 0.000 3.720 1.930 0.155 2.140 1.400 1.000 0.108 0.009 0.000 0.00064 IN 738 bal 15.800 8.300 1.800 3.600 3.540 0.130 2.650 0.090 0.007 0.000 0.00065 IN 738 bal 15.950 8.250 1.620 3.450 3.500 0.090 2.480 1.600 0.700 0.500 0.011 0.000 0.00066 Udimet 720 bal 18.000 15.000 3.000 5.000 2.500 0.035 1.400 0.000 0.000 0.040 0.035 0.000 0.00067 Udimet 700 bal 15.100 16.600 4.950 3.480 4.150 0.060 0.000 0.000 0.000 0.000 0.000 0.000 0.00068 IN X750 73.0 15.500 0.000 0.000 2.500 0.900 0.040 0.000 0.000 1.000 0.000 0.000 0.000 0.00069 IN 738 LC bal 16.000 8.300 1.700 3.390 3.400 0.090 2.500 1.700 0.700 0.030 0.010 0.000 0.00070 GTD 111 bal 14.000 9.500 1.500 4.900 3.000 0.100 3.800 2.800 0.000 0.010 0.010 0.000 0.00071 GTD 111EA bal 14.000 8.900 1.720 4.900 3.040 0.090 3.740 2.860 <0.01 0.000 0.010 0.000 0.00072 GTD 111DS bal 13.600 9.140 1.600 4.900 2.970 0.090 3.440 2.870 <0.01 0.000 0.010 0.000 0.00073 GTD 111 bal 16.000 8.000 0.600 3.400 4.000 0.100 2.600 2.700 0.000 0.000 0.000 0.000 0.00074 Rene 80 60 13.900 9.200 4.000 4.900 3.020 0.150 4.000 0.000 0.000 0.000 0.014 0.000 0.000

2.300

ELEMENT (% by weight)

Page 322: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Chemical Composition

20-4

ID MATERIAL NI CR CO MO TI AL C W TA CB ZR B HF V75 Rene 80 bal 13.800 9.300 3.900 5.000 3.000 0.160 4.000 0.000 0.000 0.000 0.000 0.000 0.00076 Rene 80 bal 13.800 9.400 3.900 5.000 3.150 0.160 3.800 0.000 0.000 0.040 0.017 0.000 0.00077 MAR-M002 bal 9.000 10.000 0.250 1.500 5.500 0.150 10.000 2.500 0.000 0.055 0.015 1.250 0.05078 MAR-M002 bal 9.000 10.000 0.250 1.500 5.500 0.150 10.000 2.500 0.000 0.055 0.015 1.500 0.05079 MAR-M200 bal 9.000 10.000 0.000 1.700 4.700 <50 ppm12.500 0.000 1.000 0.000 0.000 0.000 0.00080 MAR-M247 bal 8.400 10.000 0.650 1.050 5.500 0.130 10.000 3.050 0.000 0.055 0.015 1.400 0.000

ELEMENT (% by weight)

Page 323: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

21-1

21 HEAT TREATMENT

Heat Treatment IDs

ID HEAT TREAT SCHEDULE1 1.5h,1190c ac+6h,1100c ac2 2H,1120c ac+24h,840c ac3 2h,1120c ac+24h,845c ac4 2h,1120c ac+24h,845c ac+2h,1120c ac5 2h,1120c ac+24h,850c ac6 2h,1120c vac+24h,840c vac7 2h,1120c vacuum ac+10000h,850c ac8 2h,1120c vacuum ac+15000h,850c ac9 2h,1120c vacuum ac+24h,845c ac9 2h,1120c vacuum ac+24h,845c ac

10 2h,1120c+16h,843c11 2h,1120c ac+24h,845c ac12 2h,1130c in hydrogen, cooled to RT, 24h,840c in argon13 2h,1150c ac+24h,840c ac+20h,705c ac14 2h,1175c+4H,1075 ac+24h,840c+16h,755c ac in vacuum15 2h,2160f ac+4h,1600f ac16 4h,1080c ac+24h,843c ac+16h,760c ac17 4h,1105c ac+24h,840c ac+16h,760c ac18 4h,1121c ac+24h,843c ac+16h,760c ac19 4h,1150c+24h,900c+16h,700c20 4h,1150c+6h,1000c+16h,700c21 4h,1150c+6h,1000c+24h,900c22 4h,1150c+6h,1000c+24h,900c+16h,700c23 4h,1150c+6h,850c24 4h,1150c+6h1000c25 4h,1160c ac+24h,900c ac+16h,700c ac26 4h,1160c ac+6h,1000c ac+24h,900c ac27 4h,1160c ac+6h,1000c ac+24h,900c ac+16h,700c ac28 4h,1160c ac+6h,1000c ac+24h,900c ac+16h,700c ac+10000h,850c29 4h,1160c ac+6h,1010c ac+24h,900c ac+16h,700c ac30 4h,1160c ac+6h,1020c ac+24h,900c ac+16h,700c ac31 4h,1160c ac+6h,1030c ac+24h,900c ac+16h,700c ac32 4h,1160c ac+6h,980c ac+24h,900c ac+16h,700c ac33 4h,1160c fac+6h,1000c fac+24h,900c ac+16h,700c ac34 4h,1160c sc+6h,1000c sc+24h,900c sc+16h,700c sc35 4h,1160c+6h,1000c+.5h,800c36 4h,1160c+6h,1000c+16h,700c37 4h,1160c+6h,1000c+16h,800c38 4h,1160c+6h,1000c+16h,845c39 4h,1160c+6h,1000c+16h,850c40 4h,1160c+6h,1000c+1h,800c41 4h,1160c+6h,1000c+2h,800c42 4h,1160c+6h,1000c+4h,800c43 4h,1160c+6h,1000c+8h,800c44 4h,1160c+6h1000c45 4h,1163c ac+4h,1079c ac+4h,843c ac+16h,760c ac46 4h,1163c+4h,1080c+16h,760c vacuum heat gas quench

Page 324: Gas Turbine Blade Superalloy Material Property

EPRI Licensed Material

Heat Treatment

21-2

47 4h,1168c ac+4h,1079c ac+24h,843c ac+16h,760c ac48 4h,1170c ac+4h,1080c ac+24h,843c ac+16h,760c ac49 4h,1171c ac+4h,1079c ac+4h,843c ac+16h,760c ac50 4h,1175c ac+4h,1080c ac+24h,840c ac+16h,760c ac51 4h,1177c ac+4h,1080c ac+24h,843c ac+16h,760c ac52 4h,1180c ac+4h,1080c ac+24h,845c furc+16h,760c furc53 4h,2125f fac+4h,1975f fac+4h,1550f fac+16h,1400f fac54 as cast55 HIP 2h,2050f cool to 1000f @>=75f/min+heat up 24h,1550f vacuum or argon gas cool56 4h,1170c ac+4h,1080c ac+24h,843c ac+16h,760c ac57 4h,1171c ac+4h,1079c ac+24h,843c ac+16h,760c ac58 2h,1120c vac+24h,850c vac59 2h, 2050f + 24h, 1550f60 2h, 1204c + Ar cool; 4h, 1903c + Ar cool; 4h, 1052c + control cool; 16h, 843c + Ar cool61 1h, 1190c + inert gas cool; 1hr, 1100h + furnace cool; 16h, 870c + air cool62 4h, 1232c; 32h, 871c63 4h, 1220c; 4h, 1100c; 24h, 650c; 16h, 760c64 4h, 1080c; 24h, 650c; 16h, 760c

Page 325: Gas Turbine Blade Superalloy Material Property
Page 326: Gas Turbine Blade Superalloy Material Property

© 2001 Electric Power Research Institute (EPRI), Inc.All rightsreserved. Electric Power Research Institute and EPRI are registeredservice marks of the Electric Power Research Institute, Inc.EPRI. ELECTRIFY THE WORLD is a service mark of the ElectricPower Research Institute, Inc.

Printed on recycled paper in the United States of America

1004652

Strategic Science and Technology Program

EPRI • 3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 • USA800.313.3774 • 650.855.2121 • [email protected] • www.epri.com

About EPRI

EPRI creates science and technology solutions for

the global energy and energy services industry. U.S.

electric utilities established the Electric Power

Research Institute in 1973 as a nonprofit research

consortium for the benefit of utility members, their

customers, and society. Now known simply as EPRI,

the company provides a wide range of innovative

products and services to more than 1000 energy-

related organizations in 40 countries. EPRI’s

multidisciplinary team of scientists and engineers

draws on a worldwide network of technical and

business expertise to help solve today’s toughest

energy and environmental problems.

EPRI. Electrify the World

SINGLE USER LICENSE AGREEMENT

THIS IS A LEGALLY BINDING AGREEMENT BETWEEN YOU AND THE ELECTRIC POWER RESEARCHINSTITUTE, INC. (EPRI). PLEASE READ IT CAREFULLY BEFORE REMOVINGTHE WRAPPING MATERIAL.

BY OPENINGTHIS SEALED PACKAGEYOUAREAGREEINGTOTHETERMS OFTHISAGREEMENT. IFYOU DO NOTAGREETOTHETERMS OFTHISAGREEMENT,PROMPTLY RETURNTHE UNOPENED PACKAGETO EPRIANDTHE PURCHASE PRICEWILLBE REFUNDED.

1. GRANT OF LICENSEEPRI grants you the nonexclusive and nontransferable right during the term of this agreement to use this package only for your ownbenefit and the benefit of your organization.This means that the following may use this package: (I) your company (at any site ownedor operated by your company); (II) its subsidiaries or other related entities; and (III) a consultant to your company or related entities,if the consultant has entered into a contract agreeing not to disclose the package outside of its organization or to use the package forits own benefit or the benefit of any party other than your company.

This shrink-wrap license agreement is subordinate to the terms of the Master Utility License Agreement between most U.S. EPRImember utilities and EPRI.Any EPRI member utility that does not have a Master Utility License Agreement may get one on request.

2. COPYRIGHTThis package, including the information contained in it, is either licensed to EPRI or owned by EPRI and is protected by United Statesand international copyright laws.You may not, without the prior written permission of EPRI, reproduce, translate or modify thispackage, in any form, in whole or in part, or prepare any derivative work based on this package.

3. RESTRICTIONSYou may not rent, lease, license, disclose or give this package to any person or organization, or use the information contained in thispackage, for the benefit of any third party or for any purpose other than as specified above unless such use is with the prior writtenpermission of EPRI.You agree to take all reasonable steps to prevent unauthorized disclosure or use of this package.Except as specifiedabove, this agreement does not grant you any right to patents, copyrights, trade secrets, trade names, trademarks or any otherintellectual property, rights or licenses in respect of this package.

4.TERM ANDTERMINATIONThis license and this agreement are effective until terminated.You may terminate them at any time by destroying this package.EPRI hasthe right to terminate the license and this agreement immediately if you fail to comply with any term or condition of this agreement.Upon any termination you may destroy this package, but all obligations of nondisclosure will remain in effect.

5. DISCLAIMER OFWARRANTIES AND LIMITATION OF LIABILITIESNEITHER EPRI,ANY MEMBER OF EPRI,ANY COSPONSOR, NOR ANY PERSON OR ORGANIZATION ACTING ON BEHALFOF ANY OFTHEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USEOF ANY INFORMATION,APPARATUS, METHOD, PROCESS OR SIMILAR ITEM DISCLOSED IN THIS PACKAGE, INCLUDINGMERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON ORINTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY’S INTELLECTUAL PROPERTY, OR (III) THAT THISPACKAGE IS SUITABLETO ANY PARTICULAR USER’S CIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANYCONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OFSUCH DAMAGES) RESULTING FROMYOUR SELECTION OR USE OFTHIS PACKAGE OR ANY INFORMATION,APPARATUS,METHOD, PROCESS OR SIMILAR ITEM DISCLOSED INTHIS PACKAGE.

6. EXPORTThe laws and regulations of the United States restrict the export and re-export of any portion of this package, and you agree not toexport or re-export this package or any related technical data in any form without the appropriate United States and foreigngovernment approvals.

7. CHOICE OF LAWThis agreement will be governed by the laws of the State of California as applied to transactions taking place entirely in Californiabetween California residents.

8. INTEGRATIONYou have read and understand this agreement, and acknowledge that it is the final, complete and exclusive agreement between youand EPRI concerning its subject matter, superseding any prior related understanding or agreement. No waiver, variation or differentterms of this agreement will be enforceable against EPRI unless EPRI gives its prior written consent, signed by an officer of EPRI.