Galectin-1-driven upregulation of SDF-1 in pancreatic ...download.xuebalib.com/aaGMXRogYN.pdf ·...

10
Original Article Galectin-1-driven upregulation of SDF-1 in pancreatic stellate cells promotes pancreatic cancer metastasis Dong Qian a, b, f, 1 , Zipeng Lu a, b, 1 , Qingcheng Xu a, b, g, 1 , Pengfei Wu a, b , Lei Tian a, b , Liangtao Zhao a, b , Baobao Cai a, b , Jie Yin a, b , Yang Wu a, b , Kevin F. Staveley-O'Carroll c, d, e , Kuirong Jiang a, b, * , Yi Miao a, b, ** , Guangfu Li c, d, *** a Pancreas Center, The First Afliated Hospital with Nanjing Medical University, Nanjing 210029, China b Pancreas Institute, Nanjing Medical University, Nanjing 210029, China c Department of Surgery, University of Missouri, Columbia, MO 65212, USA d Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA e Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA f Department of General Surgery, Afliated Hospital of Nanjing University of TCM, Jiangsu Province Hospital of TCM, Nanjing 210029, China g Department of Gastroenterology, Subei People's Hospital, Clinical Medical School, Yangzhou University Afliated Hospital, Yangzhou 225000, China article info Article history: Received 24 July 2016 Received in revised form 11 March 2017 Accepted 14 March 2017 Keywords: Galectin-1 SDF-1 Pancreatic stellate cell Pancreatic cancer Metastasis abstract Galectin-1, mainly expressed in activated pancreatic stellate cells (PSCs), is involved in many important cancer-related processes. However, very little is known how Galectin-1 modulates PSCs and subse- quently impacts pancreatic cancer cells (PCCs). Our chemokine antibody array and in vitro studies demonstrates that Galectin-1 induces secretion of stromal cell-derived factor-1(SDF-1) in PSCs by acti- vating NF-kB signaling. The secreted SDF-1 increases migration and invasion of PCCs. Knockdown of Galectin-1 and inhibitor-mediated blockade of SDF-1 as well as its ligand CXCR4 and NF-kB veries the ndings. In vivo experiment by knockdown of Galectin-1 in PSCs further demonstrates the conclusion. Collectively, the present studies demonstrate that Galectin-1-driven production of SDF-1 in PSCs through activation of NF-kB promotes metastasis in PDAC, offering a potential target in the treatment of pancreatic cancer. © 2017 Published by Elsevier Ireland Ltd. Introduction Pancreatic ductal adenocarcinoma (PDAC) continues to be one of the most lethal human malignancies with a poor prognosis due to systemic metastasis and a high recurrence rate. Interactions be- tween tumor and stromal cells play a critical role in tumor progression [1]. As a main component of the tumor stroma, pancreatic stellate cells (PSCs) may participate in the development of pancreatic cancer [2,3]. However, the interaction between PSCs and pancreatic cancer cells (PCCs) and the underlying mechanisms are poorly understood. Chemokines and their receptors have been implicated in tumor growth and invasion. Stromal cell-derived factor-1 (SDF-1 or CXCL12) belongs to the CXC chemokine family and is the ligand of CXCR4 [4]. In many recently published studies, it has become apparent that the SDF-1/CXCR4 axis is a critical mediator of tumorestromal interactions and it has been implicated in pro- moting the metastatic potential of breast, gastric, ovarian, prostate, lung and pancreatic cancer cells [5e10]. Elevated SDF-1 expression in patients with pancreatic cancer is linked to a dismal prognosis [11]. SDF-1 induces PCC invasion and epithelialemesenchymal transition through increased Smoothened (SMO) expression [12]. Although the less production of SDF-1 is detected in PCC lines, the relatively higher expression is observed in pancreatic cancer tissue * Corresponding author. Pancreas Center, The First Afliated Hospital With Nanjing Medical University, 300 Guangzhou Rd, Gulou District, Nanjing, Jiangsu Province, 210029, China. Fax: þ86 025 68136989. ** Corresponding author. Pancreas Center, The First Afliated Hospital With Nanjing Medical University, 300 Guangzhou Rd, Gulou District, Nanjing, Jiangsu Province, 210029, China. Fax: þ86 025 68136989. *** Corresponding author. Department of Surgery, Ellis Fischel Cancer Center, One Hospital Drive, M272, University of Missouri-Columbia, Columbia, MO 65212, USA. Fax: þ1 573 884 4585. E-mail addresses: [email protected] (K. Jiang), [email protected] (Y. Miao), [email protected] (G. Li). 1 Dong Qian, Zipeng Lu and Qingchen Xu equally contributed to this work as the rst author. Contents lists available at ScienceDirect Cancer Letters journal homepage: www.elsevier.com/locate/canlet http://dx.doi.org/10.1016/j.canlet.2017.03.024 0304-3835/© 2017 Published by Elsevier Ireland Ltd. Cancer Letters 397 (2017) 43e51

Transcript of Galectin-1-driven upregulation of SDF-1 in pancreatic ...download.xuebalib.com/aaGMXRogYN.pdf ·...

  • lable at ScienceDirect

    Cancer Letters 397 (2017) 43e51

    Contents lists avai

    Cancer Letters

    journal homepage: www.elsevier .com/locate/canlet

    Original Article

    Galectin-1-driven upregulation of SDF-1 in pancreatic stellate cellspromotes pancreatic cancer metastasis

    Dong Qian a, b, f, 1, Zipeng Lu a, b, 1, Qingcheng Xu a, b, g, 1, Pengfei Wu a, b, Lei Tian a, b,Liangtao Zhao a, b, Baobao Cai a, b, Jie Yin a, b, Yang Wu a, b, Kevin F. Staveley-O'Carroll c, d, e,Kuirong Jiang a, b, *, Yi Miao a, b, **, Guangfu Li c, d, ***

    a Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Chinab Pancreas Institute, Nanjing Medical University, Nanjing 210029, Chinac Department of Surgery, University of Missouri, Columbia, MO 65212, USAd Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USAe Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USAf Department of General Surgery, Affiliated Hospital of Nanjing University of TCM, Jiangsu Province Hospital of TCM, Nanjing 210029, Chinag Department of Gastroenterology, Subei People's Hospital, Clinical Medical School, Yangzhou University Affiliated Hospital, Yangzhou 225000, China

    a r t i c l e i n f o

    Article history:Received 24 July 2016Received in revised form11 March 2017Accepted 14 March 2017

    Keywords:Galectin-1SDF-1Pancreatic stellate cellPancreatic cancerMetastasis

    * Corresponding author. Pancreas Center, The FiNanjing Medical University, 300 Guangzhou Rd, GuProvince, 210029, China. Fax: þ86 025 68136989.** Corresponding author. Pancreas Center, The FiNanjing Medical University, 300 Guangzhou Rd, GuProvince, 210029, China. Fax: þ86 025 68136989.*** Corresponding author. Department of Surgery, ElHospital Drive, M272, University of Missouri-ColumbiFax: þ1 573 884 4585.

    E-mail addresses: [email protected] (K.(Y. Miao), [email protected] (G. Li).

    1 Dong Qian, Zipeng Lu and Qingchen Xu equally cofirst author.

    http://dx.doi.org/10.1016/j.canlet.2017.03.0240304-3835/© 2017 Published by Elsevier Ireland Ltd.

    a b s t r a c t

    Galectin-1, mainly expressed in activated pancreatic stellate cells (PSCs), is involved in many importantcancer-related processes. However, very little is known how Galectin-1 modulates PSCs and subse-quently impacts pancreatic cancer cells (PCCs). Our chemokine antibody array and in vitro studiesdemonstrates that Galectin-1 induces secretion of stromal cell-derived factor-1(SDF-1) in PSCs by acti-vating NF-kB signaling. The secreted SDF-1 increases migration and invasion of PCCs. Knockdown ofGalectin-1 and inhibitor-mediated blockade of SDF-1 as well as its ligand CXCR4 and NF-kB verifies thefindings. In vivo experiment by knockdown of Galectin-1 in PSCs further demonstrates the conclusion.Collectively, the present studies demonstrate that Galectin-1-driven production of SDF-1 in PSCs throughactivation of NF-kB promotes metastasis in PDAC, offering a potential target in the treatment ofpancreatic cancer.

    © 2017 Published by Elsevier Ireland Ltd.

    Introduction

    Pancreatic ductal adenocarcinoma (PDAC) continues to be one ofthe most lethal human malignancies with a poor prognosis due tosystemic metastasis and a high recurrence rate. Interactions be-tween tumor and stromal cells play a critical role in tumor

    rst Affiliated Hospital Withlou District, Nanjing, Jiangsu

    rst Affiliated Hospital Withlou District, Nanjing, Jiangsu

    lis Fischel Cancer Center, Onea, Columbia, MO 65212, USA.

    Jiang), [email protected]

    ntributed to this work as the

    progression [1]. As a main component of the tumor stroma,pancreatic stellate cells (PSCs) may participate in the developmentof pancreatic cancer [2,3]. However, the interaction between PSCsand pancreatic cancer cells (PCCs) and the underlying mechanismsare poorly understood.

    Chemokines and their receptors have been implicated in tumorgrowth and invasion. Stromal cell-derived factor-1 (SDF-1 orCXCL12) belongs to the CXC chemokine family and is the ligand ofCXCR4 [4]. In many recently published studies, it has becomeapparent that the SDF-1/CXCR4 axis is a critical mediator oftumorestromal interactions and it has been implicated in pro-moting themetastatic potential of breast, gastric, ovarian, prostate,lung and pancreatic cancer cells [5e10]. Elevated SDF-1 expressionin patients with pancreatic cancer is linked to a dismal prognosis[11]. SDF-1 induces PCC invasion and epithelialemesenchymaltransition through increased Smoothened (SMO) expression [12].Although the less production of SDF-1 is detected in PCC lines, therelatively higher expression is observed in pancreatic cancer tissue

    Delta:1_given nameDelta:1_surnameDelta:1_given nameDelta:1_surnameDelta:1_given nameDelta:1_surnameDelta:1_given nameDelta:1_surnameDelta:1_given nameDelta:1_surnameDelta:1_given nameDelta:1_surnameDelta:1_given namemailto:[email protected]:[email protected]:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.canlet.2017.03.024&domain=pdfwww.sciencedirect.com/science/journal/03043835www.elsevier.com/locate/canlethttp://dx.doi.org/10.1016/j.canlet.2017.03.024http://dx.doi.org/10.1016/j.canlet.2017.03.024http://dx.doi.org/10.1016/j.canlet.2017.03.024

  • D. Qian et al. / Cancer Letters 397 (2017) 43e5144

  • D. Qian et al. / Cancer Letters 397 (2017) 43e51 45

    samples [13,14], suggesting that upregulation of SDF-1 may be anintegral factor involved in tumorestromal interactions [15].

    Galectin-1 is involved in multiple cancer-related processes,including immunosuppression, angiogenesis and metastasis[16,17]. Studies have proved the specific location of Galectin-1 instromal myofibroblasts in PDAC or other cancer tissue by immu-nohistochemistry and in situ hybridization [18,19]. Our previousstudy also reported that Galectin-1 is highly expressed in pancre-atic cancer tissues, especially in activated PSCs within the stroma ofcancer, which was associated with perineural invasion and poorprognosis in patients with pancreatic cancer [16,20]. Galectin-1also promotes the secretion of several kinds of chemokines [21]in pancreatic cancer. Our present studies aim to investigate howGalectin-1 modulates PSCs by chemokines and subsequently im-pacts tumor metastasis.

    Materials and methods

    Patients and pancreatic tissue samples

    Pancreatic cancer tissue samples were obtained from patients undergoingpancreaticoduodenectomy for pancreatic cancer at the Pancreas Center, the FirstAffiliated Hospital of Nanjing Medical University, China. All patients providedwritten informed consent and the study was approved by the Ethical Committee ofNanjing Medical University.

    Cell lines and culture

    The PDAC cell lines (Panc-1, MiaPaCa-2, Bxpc-3 and Capan-1) were obtainedfrom the Pancreas Institute, Nanjing Medical University. The PDAC cell lines werepropagated and cultured in Dulbecco's Modified Eagle's Medium, supplementedwith 10% fetal bovine serum (FBS), 100 mg/ml penicillin and streptomycin in a hu-midified atmosphere of 5% CO2 at 37 �C. Activated human-derived cancer-associatedPSCs were isolated from primary pancreatic cancer tissue samples using the explantmethod [20]. The cell type was confirmed by immunohistochemical staining for a-SMA, vimentin, desmin and GFAP and by stellate cell morphology, as previouslydescribed [20].

    Human chemokine antibody array assay

    The levels of chemokines in the supernatants in the PSC cultures (derived fromthree patients) were determined using a RayBio Human Chemokine Antibody ArrayKit (RayBiotech; Norcross, GA, USA). Briefly, PSCs were cultured in a 6-well plate(3 � 105 cells/well) with 1 ml/well serum-free medium for 16 h and then treatedwith or without 10 mg/ml Recombinant Human Galectin-1 (rhGalectin-1; 450-39;PeproTech; Rocky Hill, NJ, USA) for 24 h. The treated and untreated supernatants(three treated vs. three control) were harvested and analyzed according to themanufacturer's instructions. The array was scanned by a laser scanner (InnoScan300 Microarray Scanner, INNOPSYS, France) using green channel (excitation fre-quency 532 nm).

    Immunohistochemical staining

    Immunohistochemical staining was performed as previously described [22,23].45 cases of pancreatic cancer samples were analyzed. The primary antibodies wereincubated as follows: Anti-Galectin 1 antibody (ab138513; 1:300; Abcam), Anti-SDF-1 (ab9797; 1:1000; Abcam). The results of immunohistochemical staining wereinterpreted by two experienced pathologists, The immunoreactivity level wasestimated by assessing the average staining intensity (on a scale of 0e3) and theproportion of positive cells (0,

  • D. Qian et al. / Cancer Letters 397 (2017) 43e5146

    NF-kB activity assay

    About 1.5 � 104/well sh-Gal-PSCs were seeded into 24-well plates and cultued.Themediumwas replacedwith serum-freemedium containing rhGalectin-1 with orwithout the NF-kB inhibitor, BAY 11-7082 (Beyotime, China). After 24 h, NF-kBactivation was evaluated using an NF-kB activation nuclear translocation assay kit(Beyotime, China). Briefly, the cells were permeabilized and blocked to prevent non-specific staining and incubated with anti-NF-kB p65 at 4 �C overnight. They werethen incubated with secondary Cy3 goat anti-rabbit fluorescent antibody at roomtemperature for 1 h and stained with DAPI for 5 min. The cells were visualized undera fluorescent microscope (Nikon; Japan).

    Total RNA was extracted from the PSCs for analysis by qRT-PCR; and the su-pernatants from cell culture were harvested for ELISA.

    Statistical analysis

    All experiments were performed in triplicate. Differences between groups weredetermined by t-test. The KaplaneMeier method and Log-rank test were used tocompare survival outcomes. c2 tests were used to analyze the correlations betweengalectin-1 and SDF-1 expression. SPSS v. 22.0 (SPSS Inc.; Chicago, IL, USA) was usedfor all of the statistical analyzes. Datawere presented as mean ± SD and P < 0.05 wasconsidered statistically significant.

    Results

    Galectin-1 stimulated production of SDF-1 & expression of SDF-1and Galectin-1

    Activated human-derived cancer-associated PSCs were isolatedfromprimary pancreatic cancer tissue samples and the expression ofa-SMA, vimentin, desmin and GFAP were positive (Fig. 1A). Chemo-kine array analysiswas conductedwith serum-freemedia from three

    Fig. 2. Expression of CXCR4 in PCCs & SDF-1 promoted migration and invasion of PC(Capan-1, BxPC-3, MiaPaCa-2, Panc-1). (B)Representative images and (C)quantification of aPCCs. (D)Representative images and (E)quantification of a matrigel invasion assay show200 � magnification; quantification was performed by counting cells from 10 random field

    primary isolated PSC lines. As shown in Fig.1B, Galectin-1 treatmentresulted in 2.06-fold increase in signal intensity of SDF-1 level in thesupernatants. As shown in Fig. 1C, PSCs express Galectin-1 and SDF-1(PCR: Fig. 1Ca and Cb; WB: Fig. 1Cc; ELISA: Fig. 1Cd and Ce). Cor-relation analysis showed that SDF-1 expression was proportional togalectin-1 expression in pancreatic cancer tissues (Fig. 1D and E).

    Expression of CXCR4 in PCCs & SDF-1 promoted migration andinvasion of PCCs

    QRT-PCR and western blot analysis were used to compare themRNA and protein expression level between PCCs. The effect of theSDF-1/CXCR4 axis on cell migration and invasion in PCCs wasinvestigated. The results showed that treatment with recombinantSDF-1 protein significantly increased migration and invasion of thetumor cells in a dose-dependent manner. Blockade of CXCR4 withantagonist AMD3100 eliminated SDF-1-induced migration andinvasion. These findings were consistent with previous studies[12,15,24] and indicated that inhibition of CXCR4 could signifi-cantly reduce migration and invasion of PCCs (Fig. 2BeE).

    Galectin-1 promoted PSC-augmented migration of pancreatic tumorcells via SDF-1

    Knockdown of Galectin-1 through lentiviral transfection withGalectin-1 shRNA (sh-Gal-PSCs; Fig. 3A) suppressed SDF-1 mRNAexpression and secretion in the supernatants. These observations

    Cs. (A)WB and qRT-PCR analysis show the expression levels of CXCR4 in four PCC linestranswell migration assay showing the effect of SDF-1 on the migration capability ofing the effect of SDF-1 on the invasive capability of PCCs. Images are shown ats; data represent mean ± SD from three independent experiments; *P < 0.05.

  • D. Qian et al. / Cancer Letters 397 (2017) 43e51 47

    were verified by qRT-PCR and ELISA (Fig. 3B), demonstrating thatSDF-1 was a key target of Galectin-1. To determine whetherGalectin-1 mediate PSC-induced migration of PCCs by modulatingexpression of SDF-1, PSCs and PCCs were co-cultured in the pres-ence of an SDF-1 neutralizing antibody (SDF-1 ab). The resultsshowed that reduced migration of PCCs was detected when co-culturing with PSCs transfected with null control (sh-NC-PSCs)but not observed when co-culturing with PSCs transfected withsh-Gal-PSCs (Fig. 3C and D). To investigate the effect of CXCR4 inPCCs migration migration as SDF-1 can bind to CXCR4, antagonist-mediated blockade of CXCR4 with AMD3100 is conducted. Ourresults showed that sh-NC-PSC-induced migration of PCCs wasreduced by addition of AMD3100, but sh-Gal-PSC-inducedmigration was unaffected (Fig. 3E and F). These results demon-strated that expression of Galectin-1 in PSCs stimulated produc-tion of SDF-1 thereby promoting metastasis via the SDF-1-CXCR4interaction.

    Knockdown of Galectin-1 in PSCs inhibited metastasis of PDAC cellsin vivo

    To validate in vitro finding, in vivo experiments were carried outwith the nude mice. Mice inoculated with MiaPaCa-2 PDAC cellswere divided into three groups which received the followingdifferent treatments: no further treatment (Mia-2), the treatmentwith null control PSCs (Mia-2þsh-NC-PSCs) and Galectin-1-knockdown PSCs (Mia-2þsh-Gal-PSCs). In the survival model,inoculated mice in the group of Mia-2þsh-NC-PSCs died earlierthan the mice in other two groups (Fig. 4A). In the metastatic

    Fig. 3. Galectin-1 promoted PSC-augmented migration of pancreatic tumor cells via SDFlevels of Galectin-1 in PSCs transfected with sh-Gal-PSCs compared to those transfected withELISA showing the expression levels of SDF-1 in PSCs transfected with sh-Gal-PSCs compquantification of transwell migration assays in a PSC-PCC co-culture system: (C, D)SDF-1 neffect on sh-Gal-PSCs induced cell migration. (E, F)Blockade of CXCR4 by AMD3100 s200 � magnification; quantification was performed by counting cells from 10 random field

    model, whole body imaging and HE staining revealed that the nullcontrol group exhibited more metastatic lesions (Fig. 4BeD). Theseobservations indicated that production of Galectin-1 in PSCs maypromote metastasis in pancreatic cancer.

    Galectin-1 stimulated production of SDF-1 via activation of NF-kB

    Fluorescent microscopy shows increased levels of NF-kB/p65nuclei translocation and Western Blot shows IkB-a degradation insh-Gal-PSCs after stimulationwith Galectin-1. This effect is negatedby the addition of NF-kB inhibitor BAY 11-7082 (Fig. 5A and B),suggesting that Galetin-1-induced stimulation of PSCs involvedactivation of NF-kB. This observation was verified by qRT-PCR andELISA by showing that Galectin-1-stimulated secretion of SDF-1 inPSC following knockdown of Galectin-1 (sh-Gal-PSCs) could beinhibited by BAY 11-7082 (Fig. 5C).

    In combination, these findings suggested that Galectin-1may bea critical regulator in PSC-mediated tumor metastasis in pancreaticcancer.

    Discussion

    Chemokine antibody array and genetic knockdown togetherwith blockade with antibody and antagonist are utilized in thepresent studies. The experiments demonstrate that Galectin-1 en-hances SDF-1 production in PSCs through activating NF-kB(Fig. 5D). The resultant PSCs interact with tumor cells to promotetheir migration, leading to the augmented tumor metastasis.

    -1 (A) qRT-PCR assay, Western blot and ELISA assay showing the expression or secretionsh-NC-PSCs (null control); b-actin was used as a loading control. (B) qRT-PCR assay andared to those transfected with sh-NC-PSCs (null control). Representative images andeutralizing antibody suppresses sh-NC-PSC-induced cancer cell migration but has nouppresses sh-NC-PSC-induced cell migration. Representative images are shown ats; data represent mean ± SD from three independent experiments; *P < 0.05.

  • D. Qian et al. / Cancer Letters 397 (2017) 43e5148

    The importance of the tumor microenvironment in the devel-opment of cancer has been widely recognized [22,25]. Some com-ponents consisting of tumor microenvironment play an importantrole in influencing the outcome of the malignancy. The PDACenvironment contains many cells but predominantly PSCs [26].PSCs have been identified as a key source of abnormal levels ofcytokines, chemokines and growth factors, thereby providing amicroenvironment suitable for cancer invasion [21,27]. Persistentactivation of PSCs promotes malignant behavior in PDAC, such asrapid proliferation of tumor cells and local or distant metastasis[28,29]. Studies have also shown that PSC supernatants and PSC-conditioned medium promoted the invasion of PCCs [3,15,30],demonstrating that the paracrine is an important factor in PSC-PCCinteractions.

    Galectin-1 is involved in a wide range of biological activitiesincluding apoptosis, migration, adhesion, malignant trans-formation, carcinogenesis, tumor angiogenesis, and immunosup-pression [23,31e37]. Pancreatic tumor cells have been found to

    Fig. 4. Knockdown of Galectin-1 in PSCs inhibits metastasis of PCCs in vivo. (A) KaplaneM2þsh-NC-PSCs, and Mia-2þsh-Gal-PSCs. These show that mice in the Mia-2þsh-NC-PSCs gtumor in pancreas with no metastasis; (b) thoracic metastasis; (c) and liver metastasis. (C) HEthe Mia-2þsh-NC-PSC group exhibit more metastatic sites.

    stimulate PSCs to express enhanced levels of Galectin-1 bysecreting cytokine transforming growth factor TGF-b1 [20,38]; thisin turn induced activation and proliferation of PSCs resulting in acycle that sustained the stromal reaction and promoted the ma-lignant behavior of PDAC [21,39,40]. We previously demonstratedthat Galectin-1 was overexpressed in PSCs leading to the forma-tion of fibroblasts surrounding the tumor cells and was associatedwith perineural invasion, advanced tumor stage, lower differen-tiation and poor prognosis in patients with pancreatic cancer[16,20,41]. Conversely, in our present study, silencing Galectin-1by lentiviral shRNA suppressed PSC-augmented migration andinvasion in vitro and inhibited tumor progression in vivo. Thesefindings further demonstrated the important role of Galectin-1 inPSC-PCC interaction, and suggested that targeting Galectin-1 inPSCs may offer a potential therapeutic strategy in the treatment ofpancreatic cancer.

    Although chemokines play a crucial role in immune and in-flammatory reactions, they have an equally important role in the

    eier curves compare survival time in mice inoculated with MiaPaCa-2 cells alone, Mia-roup had the shortest survival time. (B) Representative images showing (a) orthotopicstaining of (a) orthotopic tumor; (b) liver metastasis (c) thoracic metastasis (D)Mice in

  • D. Qian et al. / Cancer Letters 397 (2017) 43e51 49

    development of a variety of cancers, such as melanomas, ovarian,breast, lung, and prostate cancers [26]. In addition to inducing theactivation of PSCs and promotes their proliferation, Galectin-1 alsopromotes the secretion of several kinds of chemokines [21].

    Fig. 5. Galectin-1 stimulated production of SDF-1 via activation of NF-kB. (A)FluorescentBlot shows IkB-a degradation in sh-Gal-PSCs after stimulation with Galectin-1; this effect is n(nuclei; blue). (C)qRT-PCR assay and ELISA confirm that Galectin-1-stimulated secretion ofproposed pathway: Galectin-1 stimulates PSCs to produce enhanced levels of SDF-200 � magnification; data represent mean ± SD from three independent experiments; *P <referred to the web version of this article.)

    However, there were no published studies fully investigating thechemokine inducer role of Galectin-1. By human chemokine anti-body array, we demonstrated that treatment of PSC supernatantswith Galectin-1 increased the secretion of chemokines in PSCs

    microscopy shows increased levels of NF-kB/p65 nuclei translocation and (B) Westernegated by the addition of NF-kB inhibitor BAY 11-7082. NF-kB p65 antibody (red); DAPISDF-1 in PSCs can be inhibited by BAY 11-7082. (D) A schematic diagram showing the1, thereby promoting metastasis of PCCs. Representative images are shown at0.05. (For interpretation of the references to colour in this figure legend, the reader is

  • D. Qian et al. / Cancer Letters 397 (2017) 43e5150

    (Three cancer-activated PSC lines), especially SDF-1, suggesting thatSDF-1 could be a potential downstream mediator of Galectin-1.

    Stromal cells are an important source of SDF-1 in pancreaticand other primary tumors [12,15,42e44]. Although Galectin-1 hasbeen shown to stimulate MCP-1 production in PSCs via activationof NF-kB [21], there are no published reports on its effect in pro-moting the secretion of SDF-1. Our exploration of the potentialmechanism indicated that this effect was induced via activation ofNF-kB. The role of SDF-1 and its receptor CXCR4 in the develop-ment of pancreatic or other kinds of cancers has been investigatedby various studies: the production of SDF-1 by stromal cellsinfluenced the growth andmalignant behavior of pancreatic tumorcells, whereas secretion of sonic hedgehog by pancreatic tumorcells promoted desmoplasia [6,45]; SDF-1 induced cell invasionand epithelialemesenchymal transition of PCCs [12]; SDF-1expressed in lymph node fibroblasts elevated lymph node me-tastases in oral squamous cell carcinoma [46]; paracrine SDF-1mediated the effect of PSCs on chemoresistance in pancreaticcancer [47]; SDF-1 played a pivotal role in perineural invasion ofPCCs and was associated with metastasis in pancreatic cancer [24];whereas, expression of CXCR4 mediated organ-specific metastasisof PCCs [48]. Our study supported these reports by demonstratingthat SDF-1 was predominantly expressed in PSCs and that CXCR4was predominately expressed in PCCs. We also validated theseprevious findings by demonstrating that SDF-1 promoted migra-tion and invasion of PCCs. It has been reported that SDF-1 can alsoexert its biological function by binding to another chemokine re-ceptor, CXCR7 [49]. To further confirmwhether the SDF-1-inducedmigration and invasion are dependent upon the activation ofCXCR4, we used a CXCR4 antagonist AMD3100 to block it, that inturn reduced the effect of SDF-1. Our study was the first study todemonstrate that SDF-1 was an important chemokine mediated byGalectin-1 in PSC. Although our results confirmed that SDF-1 wasimportant in the progression of pancreatic cancer, other chemo-kines mediated by Galectin-1 may also be involved. Studies onother potential chemokines have been scarce and further researchis required.

    Our present studies demonstrate a pivotal role of Galectin-1 indriving SDF-1 production in PSCs through activation of NF-kBwhich promotes tumor metastasis. The findings provide innovativeinsight into the mechanism by which tumor microenvironmentmediates tumor metastasis and potential targets which can beapplied in the treatment of pancreatic cancer.

    Funding

    This work was supported by the National Natural Science Fundof China [grant number: No. 81272382, Kuirong Jiang, PI]; the Na-tional Natural Science Fund of China for Young Scholars [grantnumber: No. 81300351, Zipeng Lu, PI] and the “Six Talent Peaks”Project of Jiangsu Province [grant number: No. 2014-WSW-006,Kuirong Jiang, PI].

    Conflict of interest

    No conflicts of interest to declare.

    References

    [1] C. Whatcott, H. Han, R.G. Posner, D.D. Von Hoff, Tumor-stromal interactions inpancreatic cancer, Crit. Rev. Oncog. 18 (1e2) (2013) 135e151.

    [2] Z. Xu, A. Vonlaufen, P.A. Phillips, E. Fiala-Beer, X. Zhang, L. Yang, et al., Role ofpancreatic stellate cells in pancreatic cancer metastasis, Am. J. Pathol. 177 (5)(2010) 2585e2596.

    [3] R.F. Hwang, T. Moore, T. Arumugam, V. Ramachandran, K.D. Amos, A. Rivera, etal., Cancer-associated stromal fibroblasts promote pancreatic tumor progres-sion, Cancer Res. 68 (3) (2008) 918e926.

    [4] P.F. Wu, Z.P. Lu, B.B. Cai, L. Tian, C. Zou, K.R. Jiang, et al., Role of CXCL12/CXCR4 signaling axis in pancreatic cancer, Chin. Med. J. 126 (17) (2013)3371e3374.

    [5] M. Burger, A. Glodek, T. Hartmann, A. Schmitt-Graff, L.E. Silberstein, N. Fujii, etal., Functional expression of CXCR4 (CD184) on small-cell lung cancer cellsmediates migration, integrin activation, and adhesion to stromal cells, Onco-gene 22 (50) (2003) 8093e8101.

    [6] A.P. Singh, S. Arora, A. Bhardwaj, S.K. Srivastava, M.P. Kadakia, B. Wang, et al.,CXCL12/CXCR4 protein signaling axis induces sonic hedgehog expression inpancreatic cancer cells via extracellular regulated kinase- and Akt kinase-mediated activation of nuclear factor kappaB: implications for bidirectionaltumor-stromal interactions, J. Biol. Chem. 287 (46) (2012) 39115e39124.

    [7] S. Singh, U.P. Singh, W.E. Grizzle, J.W. Lillard Jr., CXCL12-CXCR4 interactionsmodulate prostate cancer cell migration, metalloproteinase expression andinvasion, Laboratory Investig. J. Tech. Methods Pathol. 84 (12) (2004)1666e1676.

    [8] K. Yasumoto, K. Koizumi, A. Kawashima, Y. Saitoh, Y. Arita, K. Shinohara, et al.,Role of the CXCL12/CXCR4 axis in peritoneal carcinomatosis of gastric cancer,Cancer Res. 66 (4) (2006) 2181e2187.

    [9] B. Xue, W. Wu, K. Huang, T. Xie, X. Xu, H. Zhang, et al., Stromal cell-derivedfactor-1 (SDF-1) enhances cells invasion by alphavbeta6 integrin-mediatedsignaling in ovarian cancer, Mol. Cell. Biochem. 380 (1e2) (2013) 177e184.

    [10] I. Fridrichova, B. Smolkova, V. Kajabova, I. Zmetakova, T. Krivulcik, M. Mego, etal., CXCL12 and ADAM23 hypermethylation are associated with advancedbreast cancers, Transl. Res. J. Lab. Clin. Med. 165 (6) (2015) 717e730.

    [11] J.J. Liang, S. Zhu, R. Bruggeman, R.J. Zaino, D.B. Evans, J.B. Fleming, et al., Highlevels of expression of human stromal cell-derived factor-1 are associatedwith worse prognosis in patients with stage II pancreatic ductal adenocarci-noma, Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res.Cosponsored by Am. Soc. Prev. Oncol. 19 (10) (2010) 2598e2604.

    [12] X. Li, Q. Ma, Q. Xu, H. Liu, J. Lei, W. Duan, et al., SDF-1/CXCR4 signaling inducespancreatic cancer cell invasion and epithelial-mesenchymal transition in vitrothrough non-canonical activation of Hedgehog pathway, Cancer Lett. 322 (2)(2012) 169e176.

    [13] F. Marchesi, P. Monti, B.E. Leone, A. Zerbi, A. Vecchi, L. Piemonti, et al.,Increased survival, proliferation, and migration in metastatic human pancre-atic tumor cells expressing functional CXCR4, Cancer Res. 64 (22) (2004)8420e8427.

    [14] T. Koshiba, R. Hosotani, Y. Miyamoto, J. Ida, S. Tsuji, S. Nakajima, et al.,Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor systemin pancreatic cancer: a possible role for tumor progression, Clin. Cancer Res.Off. J. Am. Assoc. Cancer Res. 6 (9) (2000) 3530e3535.

    [15] Z. Gao, X. Wang, K. Wu, Y. Zhao, G. Hu, Pancreatic stellate cells increase theinvasion of human pancreatic cancer cells through the stromal cell-derivedfactor-1/CXCR4 axis, Pancreatology 10 (2e3) (2010) 186e193.

    [16] D. Tang, Z. Yuan, X. Xue, Z. Lu, Y. Zhang, H. Wang, et al., High expression ofGalectin-1 in pancreatic stellate cells plays a role in the development andmaintenance of an immunosuppressive microenvironment in pancreaticcancer, Int. J. Cancer 130 (10) (2012) 2337e2348.

    [17] K. Ito, K. Stannard, E. Gabutero, A.M. Clark, S.-Y. Neo, S. Onturk, et al., Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment,Cancer Metastasis Rev. 31 (3e4) (2012) 763e778.

    [18] J. Shen, M.D. Person, J. Zhu, J.L. Abbruzzese, D. Li, Protein expression profiles inpancreatic adenocarcinoma compared with normal pancreatic tissue andtissue affected by pancreatitis as detected by two-dimensional gel electro-phoresis and mass spectrometry, Cancer Res. 64 (24) (2004) 9018e9026.

    [19] P.O. Berberat, H. Friess, L. Wang, Z. Zhu, T. Bley, L. Frigeri, et al., Comparativeanalysis of galectins in primary tumors and tumor metastasis in humanpancreatic cancer, J. Histochem. Cytochem. Off. J. Histochem. Soc. 49 (4)(2001) 539e549.

    [20] X. Xue, Z. Lu, D. Tang, J. Yao, Y. An, J. Wu, et al., Galectin-1 secreted by acti-vated stellate cells in pancreatic ductal adenocarcinoma stroma promotesproliferation and invasion of pancreatic cancer cells: an in vitro study on themicroenvironment of pancreatic ductal adenocarcinoma, Pancreas 40 (6)(2011) 832e839.

    [21] A. Masamune, M. Satoh, J. Hirabayashi, K. Kasai, K. Satoh, T. Shimosegawa,Galectin-1 induces chemokine production and proliferation in pancreaticstellate cells, Am. J. Physiol. Gastrointest. Liver Physiol. 290 (4) (2006)G729eG736.

    [22] D. Tang, D. Wang, Z. Yuan, X. Xue, Y. Zhang, Y. An, et al., Persistent activationof pancreatic stellate cells creates a microenvironment favorable for themalignant behavior of pancreatic ductal adenocarcinoma, Int. J. Cancer J. Int.du Cancer 132 (5) (2013) 993e1003.

    [23] D. Tang, J. Gao, S. Wang, Z. Yuan, N. Ye, Y. Chong, et al., Apoptosis and anergyof T cell induced by pancreatic stellate cells-derived galectin-1 in pancreaticcancer, Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 36 (7) (2015)5617e5626.

    [24] Q. Xu, Z. Wang, X. Chen, W. Duan, J. Lei, L. Zong, et al., Stromal-derived factor-1alpha/CXCL12-CXCR4 chemotactic pathway promotes perineural invasion inpancreatic cancer, Oncotarget 6 (7) (2015) 4717e4732.

    [25] L.A. Liotta, E.C. Kohn, The microenvironment of the tumour-host interface,Nature 411 (6835) (2001) 375e379.

    http://refhub.elsevier.com/S0304-3835(17)30198-2/sref1http://refhub.elsevier.com/S0304-3835(17)30198-2/sref1http://refhub.elsevier.com/S0304-3835(17)30198-2/sref1http://refhub.elsevier.com/S0304-3835(17)30198-2/sref1http://refhub.elsevier.com/S0304-3835(17)30198-2/sref2http://refhub.elsevier.com/S0304-3835(17)30198-2/sref2http://refhub.elsevier.com/S0304-3835(17)30198-2/sref2http://refhub.elsevier.com/S0304-3835(17)30198-2/sref2http://refhub.elsevier.com/S0304-3835(17)30198-2/sref3http://refhub.elsevier.com/S0304-3835(17)30198-2/sref3http://refhub.elsevier.com/S0304-3835(17)30198-2/sref3http://refhub.elsevier.com/S0304-3835(17)30198-2/sref3http://refhub.elsevier.com/S0304-3835(17)30198-2/sref4http://refhub.elsevier.com/S0304-3835(17)30198-2/sref4http://refhub.elsevier.com/S0304-3835(17)30198-2/sref4http://refhub.elsevier.com/S0304-3835(17)30198-2/sref4http://refhub.elsevier.com/S0304-3835(17)30198-2/sref5http://refhub.elsevier.com/S0304-3835(17)30198-2/sref5http://refhub.elsevier.com/S0304-3835(17)30198-2/sref5http://refhub.elsevier.com/S0304-3835(17)30198-2/sref5http://refhub.elsevier.com/S0304-3835(17)30198-2/sref5http://refhub.elsevier.com/S0304-3835(17)30198-2/sref6http://refhub.elsevier.com/S0304-3835(17)30198-2/sref6http://refhub.elsevier.com/S0304-3835(17)30198-2/sref6http://refhub.elsevier.com/S0304-3835(17)30198-2/sref6http://refhub.elsevier.com/S0304-3835(17)30198-2/sref6http://refhub.elsevier.com/S0304-3835(17)30198-2/sref6http://refhub.elsevier.com/S0304-3835(17)30198-2/sref7http://refhub.elsevier.com/S0304-3835(17)30198-2/sref7http://refhub.elsevier.com/S0304-3835(17)30198-2/sref7http://refhub.elsevier.com/S0304-3835(17)30198-2/sref7http://refhub.elsevier.com/S0304-3835(17)30198-2/sref7http://refhub.elsevier.com/S0304-3835(17)30198-2/sref8http://refhub.elsevier.com/S0304-3835(17)30198-2/sref8http://refhub.elsevier.com/S0304-3835(17)30198-2/sref8http://refhub.elsevier.com/S0304-3835(17)30198-2/sref8http://refhub.elsevier.com/S0304-3835(17)30198-2/sref9http://refhub.elsevier.com/S0304-3835(17)30198-2/sref9http://refhub.elsevier.com/S0304-3835(17)30198-2/sref9http://refhub.elsevier.com/S0304-3835(17)30198-2/sref9http://refhub.elsevier.com/S0304-3835(17)30198-2/sref9http://refhub.elsevier.com/S0304-3835(17)30198-2/sref10http://refhub.elsevier.com/S0304-3835(17)30198-2/sref10http://refhub.elsevier.com/S0304-3835(17)30198-2/sref10http://refhub.elsevier.com/S0304-3835(17)30198-2/sref10http://refhub.elsevier.com/S0304-3835(17)30198-2/sref11http://refhub.elsevier.com/S0304-3835(17)30198-2/sref11http://refhub.elsevier.com/S0304-3835(17)30198-2/sref11http://refhub.elsevier.com/S0304-3835(17)30198-2/sref11http://refhub.elsevier.com/S0304-3835(17)30198-2/sref11http://refhub.elsevier.com/S0304-3835(17)30198-2/sref11http://refhub.elsevier.com/S0304-3835(17)30198-2/sref12http://refhub.elsevier.com/S0304-3835(17)30198-2/sref12http://refhub.elsevier.com/S0304-3835(17)30198-2/sref12http://refhub.elsevier.com/S0304-3835(17)30198-2/sref12http://refhub.elsevier.com/S0304-3835(17)30198-2/sref12http://refhub.elsevier.com/S0304-3835(17)30198-2/sref13http://refhub.elsevier.com/S0304-3835(17)30198-2/sref13http://refhub.elsevier.com/S0304-3835(17)30198-2/sref13http://refhub.elsevier.com/S0304-3835(17)30198-2/sref13http://refhub.elsevier.com/S0304-3835(17)30198-2/sref13http://refhub.elsevier.com/S0304-3835(17)30198-2/sref14http://refhub.elsevier.com/S0304-3835(17)30198-2/sref14http://refhub.elsevier.com/S0304-3835(17)30198-2/sref14http://refhub.elsevier.com/S0304-3835(17)30198-2/sref14http://refhub.elsevier.com/S0304-3835(17)30198-2/sref14http://refhub.elsevier.com/S0304-3835(17)30198-2/sref15http://refhub.elsevier.com/S0304-3835(17)30198-2/sref15http://refhub.elsevier.com/S0304-3835(17)30198-2/sref15http://refhub.elsevier.com/S0304-3835(17)30198-2/sref15http://refhub.elsevier.com/S0304-3835(17)30198-2/sref15http://refhub.elsevier.com/S0304-3835(17)30198-2/sref16http://refhub.elsevier.com/S0304-3835(17)30198-2/sref16http://refhub.elsevier.com/S0304-3835(17)30198-2/sref16http://refhub.elsevier.com/S0304-3835(17)30198-2/sref16http://refhub.elsevier.com/S0304-3835(17)30198-2/sref16http://refhub.elsevier.com/S0304-3835(17)30198-2/sref17http://refhub.elsevier.com/S0304-3835(17)30198-2/sref17http://refhub.elsevier.com/S0304-3835(17)30198-2/sref17http://refhub.elsevier.com/S0304-3835(17)30198-2/sref17http://refhub.elsevier.com/S0304-3835(17)30198-2/sref17http://refhub.elsevier.com/S0304-3835(17)30198-2/sref18http://refhub.elsevier.com/S0304-3835(17)30198-2/sref18http://refhub.elsevier.com/S0304-3835(17)30198-2/sref18http://refhub.elsevier.com/S0304-3835(17)30198-2/sref18http://refhub.elsevier.com/S0304-3835(17)30198-2/sref18http://refhub.elsevier.com/S0304-3835(17)30198-2/sref19http://refhub.elsevier.com/S0304-3835(17)30198-2/sref19http://refhub.elsevier.com/S0304-3835(17)30198-2/sref19http://refhub.elsevier.com/S0304-3835(17)30198-2/sref19http://refhub.elsevier.com/S0304-3835(17)30198-2/sref19http://refhub.elsevier.com/S0304-3835(17)30198-2/sref20http://refhub.elsevier.com/S0304-3835(17)30198-2/sref20http://refhub.elsevier.com/S0304-3835(17)30198-2/sref20http://refhub.elsevier.com/S0304-3835(17)30198-2/sref20http://refhub.elsevier.com/S0304-3835(17)30198-2/sref20http://refhub.elsevier.com/S0304-3835(17)30198-2/sref20http://refhub.elsevier.com/S0304-3835(17)30198-2/sref21http://refhub.elsevier.com/S0304-3835(17)30198-2/sref21http://refhub.elsevier.com/S0304-3835(17)30198-2/sref21http://refhub.elsevier.com/S0304-3835(17)30198-2/sref21http://refhub.elsevier.com/S0304-3835(17)30198-2/sref21http://refhub.elsevier.com/S0304-3835(17)30198-2/sref22http://refhub.elsevier.com/S0304-3835(17)30198-2/sref22http://refhub.elsevier.com/S0304-3835(17)30198-2/sref22http://refhub.elsevier.com/S0304-3835(17)30198-2/sref22http://refhub.elsevier.com/S0304-3835(17)30198-2/sref22http://refhub.elsevier.com/S0304-3835(17)30198-2/sref23http://refhub.elsevier.com/S0304-3835(17)30198-2/sref23http://refhub.elsevier.com/S0304-3835(17)30198-2/sref23http://refhub.elsevier.com/S0304-3835(17)30198-2/sref23http://refhub.elsevier.com/S0304-3835(17)30198-2/sref23http://refhub.elsevier.com/S0304-3835(17)30198-2/sref24http://refhub.elsevier.com/S0304-3835(17)30198-2/sref24http://refhub.elsevier.com/S0304-3835(17)30198-2/sref24http://refhub.elsevier.com/S0304-3835(17)30198-2/sref24http://refhub.elsevier.com/S0304-3835(17)30198-2/sref25http://refhub.elsevier.com/S0304-3835(17)30198-2/sref25http://refhub.elsevier.com/S0304-3835(17)30198-2/sref25

  • D. Qian et al. / Cancer Letters 397 (2017) 43e51 51

    [26] F. Balkwill, Cancer and the chemokine network, Nat. Rev. Cancer 4 (7) (2004)540e550.

    [27] E. Schneider, A. Schmid-Kotsas, J. Zhao, H. Weidenbach, R.M. Schmid,A. Menke, et al., Identification of mediators stimulating proliferation andmatrix synthesis of rat pancreatic stellate cells, Am. J. Physiol. Cell Physiol. 281(2) (2001) C532eC543.

    [28] F. Mbeunkui, D.J. Johann Jr., Cancer and the tumor microenvironment: a re-view of an essential relationship, Cancer Chemother. Pharmacol. 63 (4) (2009)571e582.

    [29] C.P. Zambirinis, E. Levie, S. Nguy, A. Avanzi, R. Barilla, Y. Xu, et al., TLR9 ligationin pancreatic stellate cells promotes tumorigenesis, J. Exp. Med. (2015).

    [30] H.B. Jiang, M. Xu, X.P. Wang, Pancreatic stellate cells promote proliferationand invasiveness of human pancreatic cancer cells via galectin-3, World J.Gastroenterol. WJG 14 (13) (2008) 2023e2028.

    [31] F.T. Liu, G.A. Rabinovich, Galectins as modulators of tumour progression, Nat.Rev. Cancer 5 (1) (2005) 29e41.

    [32] I. Camby, M. Le Mercier, F. Lefranc, R. Kiss, Galectin-1: a small protein withmajor functions, Glycobiology 16 (11) (2006) 137Re157R.

    [33] N. Martinez-Bosch, M.G. Fernandez-Barrena, M. Moreno, E. Ortiz-Zapater,J. Munne-Collado, M. Iglesias, et al., Galectin-1 drives pancreatic carcinogen-esis through stroma remodeling and Hedgehog signaling activation, CancerRes. 74 (13) (2014) 3512e3524.

    [34] E.M. Yazawa, J.E. Geddes-Sweeney, F. Cedeno-Laurent, K.C. Walley,S.R. Barthel, M.J. Opperman, et al., Melanoma cell Galectin-1 ligands func-tionally correlate with malignant potential, J. Investig. Dermatol. 135 (7)(2015) 1849e1862.

    [35] V.L. Thijssen, R. Heusschen, J. Caers, A.W. Griffioen, Galectin expression incancer diagnosis and prognosis: a systematic review, Biochimica Biophys. Acta1855 (2) (2015) 235e247.

    [36] J. Li, R.R. Sun, Z.J. Yu, H. Liang, S. Shen, Q. Kan, Galectin-1 modulates thesurvival and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)sensitivity in human hepatocellular carcinoma cells, Cancer BiotherapyRadiopharm. 30 (8) (2015) 336e341.

    [37] D. Tang, Z. Yuan, X. Xue, Z. Lu, Y. Zhang, H. Wang, et al., High expression ofGalectin-1 in pancreatic stellate cells plays a role in the development andmaintenance of an immunosuppressive microenvironment in pancreaticcancer, Int. J. Cancer J. Int. du Cancer 130 (10) (2012) 2337e2348.

    [38] X. Jiang, I. Abiatari, B. Kong, M. Erkan, T. De Oliveira, N.A. Giese, et al.,Pancreatic islet and stellate cells are the main sources of endocrine gland-derived vascular endothelial growth factor/prokineticin-1 in pancreatic can-cer, Pancreatology 9 (1e2) (2009) 165e172.

    [39] B. Fitzner, H. Walzel, G. Sparmann, J. Emmrich, S. Liebe, R. Jaster, Galectin-1 isan inductor of pancreatic stellate cell activation, Cell. Signal. 17 (10) (2005)1240e1247.

    [40] O. Roda, E. Ortiz-Zapater, N. Martinez-Bosch, R. Gutierrez-Gallego, M. Vila-Perello, C. Ampurdanes, et al., Galectin-1 is a novel functional receptor fortissue plasminogen activator in pancreatic cancer, Gastroenterology 136 (4)(2009) 1379e1390. e1371-1375.

    [41] D. Tang, J. Zhang, Z. Yuan, J. Gao, S. Wang, N. Ye, et al., Pancreatic satellite cellsderived galectin-1 increase the progression and less survival of pancreaticductal adenocarcinoma, PLoS One 9 (3) (2014) e90476.

    [42] A. Orimo, P.B. Gupta, D.C. Sgroi, F. Arenzana-Seisdedos, T. Delaunay, R. Naeem,et al., Stromal fibroblasts present in invasive human breast carcinomas pro-mote tumor growth and angiogenesis through elevated SDF-1/CXCL12secretion, Cell 121 (3) (2005) 335e348.

    [43] H. Kang, G. Watkins, C. Parr, A. Douglas-Jones, R.E. Mansel, W.G. Jiang, Stromalcell derived factor-1: its influence on invasiveness and migration of breastcancer cells in vitro, and its association with prognosis and survival in humanbreast cancer, Breast Cancer Res. BCR 7 (4) (2005) R402eR410.

    [44] A.J. Daly, L. McIlreavey, C.R. Irwin, Regulation of HGF and SDF-1 expression byoral fibroblastseimplications for invasion of oral cancer, Oral Oncol. 44 (7)(2008) 646e651.

    [45] J.M. Bailey, B.J. Swanson, T. Hamada, J.P. Eggers, P.K. Singh, T. Caffery, et al.,Sonic hedgehog promotes desmoplasia in pancreatic cancer, Clin. Cancer Res.Off. J. Am. Assoc. Cancer Res. 14 (19) (2008) 5995e6004.

    [46] D. Uchida, N.M. Begum, A. Almofti, K. Nakashiro, H. Kawamata, Y. Tateishi, etal., Possible role of stromal-cell-derived factor-1/CXCR4 signaling on lymphnode metastasis of oral squamous cell carcinoma, Exp. Cell Res. 290 (2) (2003)289e302.

    [47] H. Zhang, H. Wu, J. Guan, L. Wang, X. Ren, X. Shi, et al., Paracrine SDF-1alphasignaling mediates the effects of PSCs on GEM chemoresistance through an IL-6 autocrine loop in pancreatic cancer cells, Oncotarget 6 (5) (2015)3085e3097.

    [48] D. Saur, B. Seidler, G. Schneider, H. Algul, R. Beck, R. Senekowitsch-Schmidtke,et al., CXCR4 expression increases liver and lung metastasis in a mouse modelof pancreatic cancer, Gastroenterology 129 (4) (2005) 1237e1250.

    [49] D. Heckmann, P. Maier, S. Laufs, L. Li, J.P. Sleeman, M.J. Trunk, et al., Thedisparate twins: a comparative study of CXCR4 and CXCR7 in SDF-1alpha-induced gene expression, invasion and chemosensitivity of colon cancer,Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 20 (3) (2014) 604e616.

    http://refhub.elsevier.com/S0304-3835(17)30198-2/sref26http://refhub.elsevier.com/S0304-3835(17)30198-2/sref26http://refhub.elsevier.com/S0304-3835(17)30198-2/sref26http://refhub.elsevier.com/S0304-3835(17)30198-2/sref27http://refhub.elsevier.com/S0304-3835(17)30198-2/sref27http://refhub.elsevier.com/S0304-3835(17)30198-2/sref27http://refhub.elsevier.com/S0304-3835(17)30198-2/sref27http://refhub.elsevier.com/S0304-3835(17)30198-2/sref27http://refhub.elsevier.com/S0304-3835(17)30198-2/sref28http://refhub.elsevier.com/S0304-3835(17)30198-2/sref28http://refhub.elsevier.com/S0304-3835(17)30198-2/sref28http://refhub.elsevier.com/S0304-3835(17)30198-2/sref28http://refhub.elsevier.com/S0304-3835(17)30198-2/sref29http://refhub.elsevier.com/S0304-3835(17)30198-2/sref29http://refhub.elsevier.com/S0304-3835(17)30198-2/sref30http://refhub.elsevier.com/S0304-3835(17)30198-2/sref30http://refhub.elsevier.com/S0304-3835(17)30198-2/sref30http://refhub.elsevier.com/S0304-3835(17)30198-2/sref30http://refhub.elsevier.com/S0304-3835(17)30198-2/sref31http://refhub.elsevier.com/S0304-3835(17)30198-2/sref31http://refhub.elsevier.com/S0304-3835(17)30198-2/sref31http://refhub.elsevier.com/S0304-3835(17)30198-2/sref32http://refhub.elsevier.com/S0304-3835(17)30198-2/sref32http://refhub.elsevier.com/S0304-3835(17)30198-2/sref32http://refhub.elsevier.com/S0304-3835(17)30198-2/sref33http://refhub.elsevier.com/S0304-3835(17)30198-2/sref33http://refhub.elsevier.com/S0304-3835(17)30198-2/sref33http://refhub.elsevier.com/S0304-3835(17)30198-2/sref33http://refhub.elsevier.com/S0304-3835(17)30198-2/sref33http://refhub.elsevier.com/S0304-3835(17)30198-2/sref34http://refhub.elsevier.com/S0304-3835(17)30198-2/sref34http://refhub.elsevier.com/S0304-3835(17)30198-2/sref34http://refhub.elsevier.com/S0304-3835(17)30198-2/sref34http://refhub.elsevier.com/S0304-3835(17)30198-2/sref34http://refhub.elsevier.com/S0304-3835(17)30198-2/sref35http://refhub.elsevier.com/S0304-3835(17)30198-2/sref35http://refhub.elsevier.com/S0304-3835(17)30198-2/sref35http://refhub.elsevier.com/S0304-3835(17)30198-2/sref35http://refhub.elsevier.com/S0304-3835(17)30198-2/sref36http://refhub.elsevier.com/S0304-3835(17)30198-2/sref36http://refhub.elsevier.com/S0304-3835(17)30198-2/sref36http://refhub.elsevier.com/S0304-3835(17)30198-2/sref36http://refhub.elsevier.com/S0304-3835(17)30198-2/sref36http://refhub.elsevier.com/S0304-3835(17)30198-2/sref37http://refhub.elsevier.com/S0304-3835(17)30198-2/sref37http://refhub.elsevier.com/S0304-3835(17)30198-2/sref37http://refhub.elsevier.com/S0304-3835(17)30198-2/sref37http://refhub.elsevier.com/S0304-3835(17)30198-2/sref37http://refhub.elsevier.com/S0304-3835(17)30198-2/sref38http://refhub.elsevier.com/S0304-3835(17)30198-2/sref38http://refhub.elsevier.com/S0304-3835(17)30198-2/sref38http://refhub.elsevier.com/S0304-3835(17)30198-2/sref38http://refhub.elsevier.com/S0304-3835(17)30198-2/sref38http://refhub.elsevier.com/S0304-3835(17)30198-2/sref38http://refhub.elsevier.com/S0304-3835(17)30198-2/sref39http://refhub.elsevier.com/S0304-3835(17)30198-2/sref39http://refhub.elsevier.com/S0304-3835(17)30198-2/sref39http://refhub.elsevier.com/S0304-3835(17)30198-2/sref39http://refhub.elsevier.com/S0304-3835(17)30198-2/sref40http://refhub.elsevier.com/S0304-3835(17)30198-2/sref40http://refhub.elsevier.com/S0304-3835(17)30198-2/sref40http://refhub.elsevier.com/S0304-3835(17)30198-2/sref40http://refhub.elsevier.com/S0304-3835(17)30198-2/sref40http://refhub.elsevier.com/S0304-3835(17)30198-2/sref41http://refhub.elsevier.com/S0304-3835(17)30198-2/sref41http://refhub.elsevier.com/S0304-3835(17)30198-2/sref41http://refhub.elsevier.com/S0304-3835(17)30198-2/sref42http://refhub.elsevier.com/S0304-3835(17)30198-2/sref42http://refhub.elsevier.com/S0304-3835(17)30198-2/sref42http://refhub.elsevier.com/S0304-3835(17)30198-2/sref42http://refhub.elsevier.com/S0304-3835(17)30198-2/sref42http://refhub.elsevier.com/S0304-3835(17)30198-2/sref43http://refhub.elsevier.com/S0304-3835(17)30198-2/sref43http://refhub.elsevier.com/S0304-3835(17)30198-2/sref43http://refhub.elsevier.com/S0304-3835(17)30198-2/sref43http://refhub.elsevier.com/S0304-3835(17)30198-2/sref43http://refhub.elsevier.com/S0304-3835(17)30198-2/sref44http://refhub.elsevier.com/S0304-3835(17)30198-2/sref44http://refhub.elsevier.com/S0304-3835(17)30198-2/sref44http://refhub.elsevier.com/S0304-3835(17)30198-2/sref44http://refhub.elsevier.com/S0304-3835(17)30198-2/sref44http://refhub.elsevier.com/S0304-3835(17)30198-2/sref45http://refhub.elsevier.com/S0304-3835(17)30198-2/sref45http://refhub.elsevier.com/S0304-3835(17)30198-2/sref45http://refhub.elsevier.com/S0304-3835(17)30198-2/sref45http://refhub.elsevier.com/S0304-3835(17)30198-2/sref46http://refhub.elsevier.com/S0304-3835(17)30198-2/sref46http://refhub.elsevier.com/S0304-3835(17)30198-2/sref46http://refhub.elsevier.com/S0304-3835(17)30198-2/sref46http://refhub.elsevier.com/S0304-3835(17)30198-2/sref46http://refhub.elsevier.com/S0304-3835(17)30198-2/sref47http://refhub.elsevier.com/S0304-3835(17)30198-2/sref47http://refhub.elsevier.com/S0304-3835(17)30198-2/sref47http://refhub.elsevier.com/S0304-3835(17)30198-2/sref47http://refhub.elsevier.com/S0304-3835(17)30198-2/sref47http://refhub.elsevier.com/S0304-3835(17)30198-2/sref48http://refhub.elsevier.com/S0304-3835(17)30198-2/sref48http://refhub.elsevier.com/S0304-3835(17)30198-2/sref48http://refhub.elsevier.com/S0304-3835(17)30198-2/sref48http://refhub.elsevier.com/S0304-3835(17)30198-2/sref49http://refhub.elsevier.com/S0304-3835(17)30198-2/sref49http://refhub.elsevier.com/S0304-3835(17)30198-2/sref49http://refhub.elsevier.com/S0304-3835(17)30198-2/sref49http://refhub.elsevier.com/S0304-3835(17)30198-2/sref49

  • 本文献由“学霸图书馆-文献云下载”收集自网络,仅供学习交流使用。

    学霸图书馆(www.xuebalib.com)是一个“整合众多图书馆数据库资源,

    提供一站式文献检索和下载服务”的24 小时在线不限IP

    图书馆。

    图书馆致力于便利、促进学习与科研,提供最强文献下载服务。

    图书馆导航:

    图书馆首页 文献云下载 图书馆入口 外文数据库大全 疑难文献辅助工具

    http://www.xuebalib.com/cloud/http://www.xuebalib.com/http://www.xuebalib.com/cloud/http://www.xuebalib.com/http://www.xuebalib.com/vip.htmlhttp://www.xuebalib.com/db.phphttp://www.xuebalib.com/zixun/2014-08-15/44.htmlhttp://www.xuebalib.com/

    Galectin-1-driven upregulation of SDF-1 in pancreatic stellate cells promotes pancreatic cancer metastasisIntroductionMaterials and methodsPatients and pancreatic tissue samplesCell lines and cultureHuman chemokine antibody array assayImmunohistochemical stainingQuantitative reverse transcription polymerase chain reaction (qRT-PCR)Western blot analysisQuantification of Galectin-1 and SDF-1 by enzyme-linked immunosorbent assay (ELISA)Transfection of pancreatic satellite cells with lentiviral shRNAInvasion and migration assayIn vivo assaysNF-κB activity assayStatistical analysis

    ResultsGalectin-1 stimulated production of SDF-1 & expression of SDF-1 and Galectin-1Expression of CXCR4 in PCCs & SDF-1 promoted migration and invasion of PCCsGalectin-1 promoted PSC-augmented migration of pancreatic tumor cells via SDF-1Knockdown of Galectin-1 in PSCs inhibited metastasis of PDAC cells in vivoGalectin-1 stimulated production of SDF-1 via activation of NF-κB

    DiscussionFundingConflict of interestReferences

    学霸图书馆link:学霸图书馆