G Pipeline Hydraulics.ppt

29
Pipeline Hydraulics

Transcript of G Pipeline Hydraulics.ppt

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 1/29

Pipeline Hydraulics

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 2/29

Importance

Irrigation hydraulics involves:

• The determination of the pressure

distribution in the system

• The selection of pipe sizes and fittings

to convey and regulate water delivery

• The determination of the power and

energy requirements to pressurize and

lift water

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 3/29

Basic Relationships

• Q = V m A

f  

• Flow rate = (velocity) x (cross-sectionalarea) 

• Called the continuity equation 

• Units must be consistent • Maximum recommended V in a pipeline is

about 5 feet/second 

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 4/29

Maximum Flow Rates in Pipelines

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 5/29

Energy

• Forms of energy available in water

 – Kinetic energy due to velocity 

 – Potential energy due to elevation 

 – Potential energy due to pressure

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 6/29

Units

• Energy per unit weight of water = "head“ 

Energy (ft-lb)/Weight (lb) = Head (ft)

• Velocity head; Elevation head; Pressure

head 

• Length units (e.g., feet, meters)

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 7/29

Velocity Head

• Velocity head =

• g = gravitational constant = 32.2 ft/s2

• when V is 5 ft/s, V2/(2g) is only about 0.4 ft 

(usually negligible)

 g V 2

2

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 8/29

Elevation Head

• Elevation head (gravitational head) = Z

• Height of water above some arbitrary

reference point (datum) 

• Water at a higher elevation has more

potential energy than water at a lower

elevation

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 9/29

Pressure Head

• Pressure = force per unit area (e.g.,

pounds per square inch) 

• Pressure head = pressure per unit

weight of water  

• h = P /    

 – h = pressure head , P = pressure 

 –   = weight of a unit volume of water

•    = 62.4 lb/ft3 = 0.433 psi/ft

• 1/  = 2.31ft/psi

• h = 2.31*P (P is in psi; h in ft)

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 10/29

Calculate P at the Bottom of a Column of

Water

When depth of 2 ft is considered

V = 2 ft3

W = 2 ft3 * 62.4 lb/ft3

= 124.8 lbA = 144 in2 

P = W/A = 124.8lb / 144 in2

= 0.866 lb/in2 

If depth is 1ft thenV = 1 ft3

W = 62.4lb 

P = 62.4lb/144in2 = 0.433lb/in2

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 11/29

Calculate P at the Bottom of a Column of

Water

V = 2 ft3 

W = 124.8 lb

A = 2ft2 = 288 in2 

P = 124.8lb / 288in2 

= 0.433 lb/in2

The area of a pond or tank does not affect pressure.

Pressure is a function of water depth only.

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 12/29

Manometer Rising up From a Pipeline

Pressure, P = lb/ft2 

γ = specific weight

of water, (62.4 lb/ft3)

H=P/ 

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 13/29

• hydraulic head, H =

• Bernoulli’s equation (conservation of

energy)

• H 1 = H 2  + hL  – H1 = hydraulic head at point 1 in a system

 – H2

 = hydraulic head at point 2 in a system

 – hL= head loss during flow from point 1 to

point 2 (hL is due to friction loss)

h Z 

 g 

2

2

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 14/29

Components of Hydraulic Head for Pipeline With Various Orientations

hL

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 15/29

Components of Hydraulic Head for Pipeline With Various Orientations Contd… 

hL

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 16/29

Components of Hydraulic Head for Pipeline With Various Orientations Contd… 

hL

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 17/29

Friction Loss

• Description:

 – energy loss due to flow resistance as a fluidmoves in a pipeline 

• Factors affecting – flow rate

 – pipe diameter

 – pipe length – pipe roughness

 – type of fluid 

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 18/29

Ways of Calculating Friction Loss 

• Equations

 –   Hazen-Williams is one of many (eq’n 8.8) 

• Tables 

 – for a given pipe material, pipe diameter,

and flow rate, look up values for friction

loss in feet per hundred feet of pipe•  SDR = standard dimension ratio

= pipe diameter  wall thickness 

Di i l C i f S h 40 Cl 160 d Cl 125 PVC Pi

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 19/29

Dimensional Comparison of Sch. 40, Class 160, and Class 125 PVC Pipe

i i f S C i

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 20/29

Friction Loss for IPS PVC Pipe

IPS: Iron Pipe Size (same dimensions as steel pipe of same nominal size)

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 21/29

Friction Loss for IPS PVC Pipe cont’d… 

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 22/29

Example Problem

A 4-inch nominal diameter PVC pipe has a

outside diameter of 4.5 inches and a wall

thickness of 0.173 inches. What is the pipe

SDR?

Solution: SDR = Diameter/Wall Thickness

SDR = 4.50/0.173 = 26.0

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 23/29

Pipes With Multiple Outlets

• lower friction loss because V decreases with

distance down the pipe

(Q decreases as flow is lost through the outlets; V=Q/A) 

• first calculate friction loss as if there were no

outlets, and then multiply by the "multiple

outlet factor", F

M l i l O l F f L l Wi h E ll S d O l f h

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 24/29

Multiple Outlet Factors for Laterals With Equally Spaced Outlets of the

Same Discharge

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 25/29

Example Problem

A 2-inch diameter, SDR 21 PVC pipe carriesa flow of 60 gpm. The flow is dischargedthrough 15 sprinklers evenly spread along its600-ft length. What is the total head loss in

the pipe?Solution: Hf  = 4.62 ft / 100 ft (Table 8.2)

Hf  = 4.62 * 600 ft / 100 ft = 27.72 ft

F = 0.379 (Table 8.3; 15 outlets)Hf  = 27.72 ft * 0.379 = 10.51 ft 

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 26/29

“Minor” Losses 

• Source of minor losses

 – fittings, valves, bends, elbows, etc

 – friction, turbulence, change in flowdirection, etc

 – hm = head loss in fitting (ft)

 – K = resistance coefficient for fitting 

 

 

 

 

 g 

V  K hm

2

2

R i t C ffi i t H f U D t i i H d L i Fitti d V l

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 27/29

Resistance Coefficient H for Use Determining Head Losses in Fittings and Valves

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 28/29

Calculation Shortcuts

 – V in ft/s 

 – Q in gpm 

 – D in inches (INSIDE diameter)

 D

Q

V  24085.0

4

2

386 D

Q K hm  

 – hm in ft – Q in gpm

 – D in inches (INSIDE diameter) 

7/22/2019 G Pipeline Hydraulics.ppt

http://slidepdf.com/reader/full/g-pipeline-hydraulicsppt 29/29

Example Problem

A 4-inch pipe carries a flow of 160 gpm. Howmuch head loss occurs when the flow passes

through a 90o elbow (flanged, regular radius) ?

Solution: K = 0.31

(Table 8.4: 4-in, regular 90o elbow) 

D = 4.0 inches

 ft hm   08.04*386

16031.0 4

2