FUZZY LOGIC - Lehrstuhl für Automatentheorie ·  · 2012-11-06About the Course Course Material...

44
Faculty of Computer Science Chair of Automata Theory FUZZY LOGIC Felix Distel Dresden, WS 2012/13

Transcript of FUZZY LOGIC - Lehrstuhl für Automatentheorie ·  · 2012-11-06About the Course Course Material...

Faculty of Computer Science Chair of Automata Theory

FUZZY LOGIC

Felix Distel

Dresden, WS 2012/13

About the Course

Course Material• Metamathematics of Fuzzy Logic by Petr Hájek

• available on course website:– Slides– Lecture Notes (from a previous semester)– Exercise Sheets

Contact Information• [email protected]• lat.inf.tu-dresden.de/teaching/ws2012-2012/FL/

ExamsOral exams at the end of the semester or during semester break

TU Dresden, WS 2012/13 Fuzzy Logic Slide 2

Classical Logic

• suited for properties that are– identifiable,– distinct,– clear-cut.

• Examples:– days of the week,– marital status,– . . .

TU Dresden, WS 2012/13 Fuzzy Logic Slide 3

Imprecise Knowledge

Is Italy a small country?

Depends.

Other examples for fuzzy proper-ties

• old

• warm

• tall

• . . .

TU Dresden, WS 2012/13 Fuzzy Logic Slide 4

Imprecise Knowledge

Is Italy a small country?Depends.

Other examples for fuzzy proper-ties

• old

• warm

• tall

• . . .

TU Dresden, WS 2012/13 Fuzzy Logic Slide 4

Imprecise Knowledge

Is Italy a small country?Depends.

Other examples for fuzzy proper-ties

• old

• warm

• tall

• . . .

TU Dresden, WS 2012/13 Fuzzy Logic Slide 4

Degrees of Membership

large

0 2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

0.8

1

area in 106 km2

trut

hde

gree

TU Dresden, WS 2012/13 Fuzzy Logic Slide 5

Degrees of Membership

warm

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

temperature in ◦C

trut

hde

gree

TU Dresden, WS 2012/13 Fuzzy Logic Slide 6

Crisp vs. Fuzzy Logics

• Crisp Logics: Only truth values 1 and 0.=⇒ characteristic function

• Fuzzy Logics: Truth values from the interval [0, 1].=⇒ membership function

TU Dresden, WS 2012/13 Fuzzy Logic Slide 7

Fuzzy vs. Probabilistic Logics

Both use truth values

• Fuzzy Logics: vagueness– statement is neither completely true nor false– e.g. “The Dresden TV Tower is a tall building.”

• Probabilistic Logics: belief or uncertainty– statement is either true nor false, but outcome unknown– e.g. “Tomorrow it will rain.”

TU Dresden, WS 2012/13 Fuzzy Logic Slide 8

Question

How to interpret conjunction?For the country of Turkey we might have:

• membership in Huge: 0.046,

• membership in Asian: 0.969

What is the membership degree of Turkey in Huge u Asian?

Possible choices• Minimum of 0.046 and 0.969

• Product of 0.046 and 0.969

• . . .

=⇒ There is not just one fuzzy logic!

TU Dresden, WS 2012/13 Fuzzy Logic Slide 9

Question

How to interpret conjunction?For the country of Turkey we might have:

• membership in Huge: 0.046,

• membership in Asian: 0.969

What is the membership degree of Turkey in Huge u Asian?

Possible choices• Minimum of 0.046 and 0.969

• Product of 0.046 and 0.969

• . . .

=⇒ There is not just one fuzzy logic!

TU Dresden, WS 2012/13 Fuzzy Logic Slide 9

Generalize Operators

Classical logical operators, such as

• conjunction,

• disjunction,

• negation, and

• implication

need to be generalized.Generalizations should be

• truth functional

• “behave well” logically (e.g. conjunction should be associative, commutative,etc.)

TU Dresden, WS 2012/13 Fuzzy Logic Slide 10

t-Norms

DefinitionBinary operator ⊗ : [0, 1]× [0, 1]→ [0, 1]

• associative,

• commutative,

• monotone, and

• has unit 1.

TU Dresden, WS 2012/13 Fuzzy Logic Slide 11

Continuous t-norms

Fundamental continuous t-normsGödel: x ⊗ y = min(x, y)

Product: x ⊗ y = x · yŁukasiewicz: x ⊗ y = max(0, x + y − 1)

00.2

0.40.6

0.81 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

x ⊗ y

x

y

TU Dresden, WS 2012/13 Fuzzy Logic Slide 12

Continuous t-norms

Fundamental continuous t-normsGödel: x ⊗ y = min(x, y)

Product: x ⊗ y = x · y

Łukasiewicz: x ⊗ y = max(0, x + y − 1)

00.2

0.40.6

0.81 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

x ⊗ y

x

y

TU Dresden, WS 2012/13 Fuzzy Logic Slide 12

Continuous t-norms

Fundamental continuous t-normsGödel: x ⊗ y = min(x, y)

Product: x ⊗ y = x · yŁukasiewicz: x ⊗ y = max(0, x + y − 1)

00.2

0.40.6

0.81 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

x

y

x ⊗ y

TU Dresden, WS 2012/13 Fuzzy Logic Slide 12

Truth Functions for Boolean Connectives

Connective Truth Function Definition

conjunction (&) t-norm (⊗) associative, commutative, monotone,unit 1, (usually also continuous)

implication (→) ?negation (¬) ?disjunction (∨) ?

TU Dresden, WS 2012/13 Fuzzy Logic Slide 13

Generalizing Modus Ponens

Modus Ponens in the Crisp Caseφ ∧ (φ→ ψ) then ψ.

Fuzzy Generalization of Modus Ponensx ⊗ (x ⇒ y)︸ ︷︷ ︸

z

≤ y

ResiduumChoose z maximal with this property:

x ⇒ y = max{z | x ⊗ z ≤ y}

TU Dresden, WS 2012/13 Fuzzy Logic Slide 14

Uniqueness of Residuum

Lemma 1.2For every continous t-norm ⊗

x ⇒ y = max{z | x ⊗ z ≤ y}

is the unique operator satisfying

z ≤ x ⇒ y iff x ⊗ z ≤ y

TU Dresden, WS 2012/13 Fuzzy Logic Slide 15

Truth Functions for Boolean Connectives

Connective Truth Function Definition

conjunction (&) t-norm (⊗) associative, commutative, monotone,unit 1, (usually also continuous)

implication (→) residuum (⇒) x ⊗ y ≤ z iff y ≤ x ⇒ z

negation (¬) precomplement x ⇒ 0

disjunction (∨) ?

TU Dresden, WS 2012/13 Fuzzy Logic Slide 16

Ordinal Sums

DefinitionGiven (ai , bi), i ∈ I family disjoint open intervals, ⊗i , i ∈ I family of t-norms

x ⊗ y =

{s−1

i

(si(x)⊗i si(y)

)if x, y ∈ (ai , bi)

min{x, y} otherwise

wheresi(x) =

x − ai

bi − ai

is the ordinal sum∑

i∈I(⊗i , ai , bi).

TU Dresden, WS 2012/13 Fuzzy Logic Slide 17

Plots of Ordinal Sums

x0 0.3 0.7 1

0

0.3

0.7

1y

Product

Łukasiewicz

Gödel

Gödel

Gödel

TU Dresden, WS 2012/13 Fuzzy Logic Slide 18

Plots of Ordinal Sums

x0 0.3 0.7 1

0

0.3

0.7

1y

Product

Łukasiewicz

Gödel

Gödel

Gödel

TU Dresden, WS 2012/13 Fuzzy Logic Slide 18

Plots of Ordinal Sums

x0 0.3 0.7 1

0

0.3

0.7

1y

Product

Łukasiewicz

Gödel

Gödel

Gödel

TU Dresden, WS 2012/13 Fuzzy Logic Slide 18

Plots of Ordinal Sums

x0 0.3 0.7 1

0

0.3

0.7

1y

Product

Łukasiewicz

Gödel

Gödel

Gödel

TU Dresden, WS 2012/13 Fuzzy Logic Slide 18

Plots of Ordinal Sums

x0 0.3 0.7 1

0

0.3

0.7

1y

Product

Łukasiewicz

Gödel

Gödel

Gödel

TU Dresden, WS 2012/13 Fuzzy Logic Slide 18

Plots of Ordinal Sums

00.2

0.40.6

0.81 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

x

y

x ⊗ y

TU Dresden, WS 2012/13 Fuzzy Logic Slide 18

Isomorphisms between t-norms

Isomorphic t-normsIf there is s is a bijective, monotone function

s : [0, 1]→ [0, 1]

satisfyingx ⊗1 y = s−1(s(x)⊗2 s(y)

)then ⊗1 and ⊗2 are called isomorphic.

TU Dresden, WS 2012/13 Fuzzy Logic Slide 19

Isomorphic t-norms

00.2

0.40.6

0.81 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

x

y

x ⊗ y

Łukasiewicz t-norm (aka 1st Schweizer-Sklar t-norm)

x ⊗ y = max{x + y − 1, 0}

TU Dresden, WS 2012/13 Fuzzy Logic Slide 20

Isomorphic t-norms

00.2

0.40.6

0.81 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

x ⊗ y

x

y

2nd Schweizer-Sklar t-norm

x ⊗ y =√

max{x2 + y2 − 1, 0}

TU Dresden, WS 2012/13 Fuzzy Logic Slide 20

Basic Logic

SyntaxP countable set of propositional variables, ⊗ continuous t-norm.Formulas of PC(⊗) are

• 0,

• p,

• f1 & f2, and

• f1 → f2.

SemanticsValuation V : P → [0, 1]

Zero V(0) = 0,

Strong Conjunction V(φ&ψ) = V(φ)⊗ V(ψ),Implication V(φ→ ψ) = V(φ)⇒ V(ψ).

TU Dresden, WS 2012/13 Fuzzy Logic Slide 21

Abbreviations

Weak Conjunction φ ∧ ψ := φ&(φ→ ψ),

Weak Disjunction φ ∨ ψ :=((φ→ ψ)→ ψ

)∧((ψ → φ)→ φ

)Negation ¬φ := φ→ 0

Equivalence φ ≡ ψ := (φ→ ψ)&(ψ → φ)

One 1 := 0→ 0.

TU Dresden, WS 2012/13 Fuzzy Logic Slide 22

1-Tautologies

Formula φ such thatV(φ) = 1

for every valuation V.

TU Dresden, WS 2012/13 Fuzzy Logic Slide 23

Different t-Norms, Different 1-Tautologies

¬¬φ→ φ

• Łukasiewicz:

V(¬¬φ→ φ) = V(φ)⇒ V(φ)= 1−

(1− V(φ)

)⇒ V(φ)

= V(φ)⇒ V(φ)= 1

1-tautology for Łukasiewicz

• Gödel or Product: Not a 1-tautology! Assume V(φ) = 0.5, then

V(¬¬φ→ φ) = V(φ)⇒ V(φ)= 0⇒ V(φ)= 1⇒ 0.5 = 0.5

TU Dresden, WS 2012/13 Fuzzy Logic Slide 24

Different t-Norms, Different 1-Tautologies

¬¬φ→ φ

• Łukasiewicz:

V(¬¬φ→ φ) = V(φ)⇒ V(φ)= 1−

(1− V(φ)

)⇒ V(φ)

= V(φ)⇒ V(φ)= 1

1-tautology for Łukasiewicz

• Gödel or Product: Not a 1-tautology! Assume V(φ) = 0.5, then

V(¬¬φ→ φ) = V(φ)⇒ V(φ)= 0⇒ V(φ)= 1⇒ 0.5 = 0.5

TU Dresden, WS 2012/13 Fuzzy Logic Slide 24

Different t-Norms, Different 1-Tautologies

¬¬φ→ φ

• Łukasiewicz:

V(¬¬φ→ φ) = V(φ)⇒ V(φ)= 1−

(1− V(φ)

)⇒ V(φ)

= V(φ)⇒ V(φ)= 1

1-tautology for Łukasiewicz

• Gödel or Product: Not a 1-tautology! Assume V(φ) = 0.5, then

V(¬¬φ→ φ) = V(φ)⇒ V(φ)= 0⇒ V(φ)= 1⇒ 0.5 = 0.5

TU Dresden, WS 2012/13 Fuzzy Logic Slide 24

1-Tautologies for all t-Norms

1-tautologiesfor ⊗Ł

1-tautologiesfor ⊗min

1-tautologiesfor ⊗Π

We are interested in 1-tautologies for all t-norms.

TU Dresden, WS 2012/13 Fuzzy Logic Slide 25

1-Tautologies for all t-Norms

1-tautologiesfor ⊗Ł

1-tautologiesfor ⊗min

1-tautologiesfor ⊗Π

We are interested in 1-tautologies for all t-norms.

TU Dresden, WS 2012/13 Fuzzy Logic Slide 25

Axioms of Basic Logic

(A1) (φ→ ψ)→((ψ → χ)→ (φ→ χ)

)(A2) φ&ψ → φ

(A3) φ&ψ → ψ&φ

(A4) φ&(φ→ ψ)→ ψ&(ψ → φ)

(A5)(φ→ (ψ → χ)

)→ (φ&ψ → χ)

(A6) (φ&ψ → χ)→(φ→ (ψ → χ)

)(A7)

((φ→ ψ)→ χ

)→

(((ψ → φ)→ χ

)→ χ

)(A8) 0→ φ

• Deduction Rule: Modus Ponens

TU Dresden, WS 2012/13 Fuzzy Logic Slide 26

Proofs in Basic Logic

InstantiationSubstitution arbitrary formulae for variable names, e.g.

(ρ→ σ)&ψ → (ρ→ σ)

is obtained from φ&ψ → φ by substituting ρ→ σ for φ.

Application of Modus PonensBL ` ρ&σ → σ& ρ Instance of (A3)

BL ` (ρ&σ → σ& ρ)→((σ& ρ→ σ)→ (ρ&σ → σ)

)Instance of (A1)

BL ` (σ& ρ→ σ)→ (ρ&σ → σ) modus ponens

BL ` σ& ρ→ σ Instance of (A2)

BL ` ρ&σ → σ modus ponens

TU Dresden, WS 2012/13 Fuzzy Logic Slide 27

Proofs in Basic Logic

InstantiationSubstitution arbitrary formulae for variable names, e.g.

(ρ→ σ)&ψ → (ρ→ σ)

is obtained from φ&ψ → φ by substituting ρ→ σ for φ.

Application of Modus PonensBL ` ρ&σ → σ& ρ Instance of (A3)

BL ` (ρ&σ → σ& ρ)→((σ& ρ→ σ)→ (ρ&σ → σ)

)Instance of (A1)

BL ` (σ& ρ→ σ)→ (ρ&σ → σ) modus ponens

BL ` σ& ρ→ σ Instance of (A2)

BL ` ρ&σ → σ modus ponens

TU Dresden, WS 2012/13 Fuzzy Logic Slide 27

Goal

1-tautologiesfor ⊗Ł

1-tautologiesfor ⊗min

1-tautologiesfor ⊗Π

=BL?

TU Dresden, WS 2012/13 Fuzzy Logic Slide 28

Goal

1-tautologiesfor ⊗Ł

1-tautologiesfor ⊗min

1-tautologiesfor ⊗Π

=BL?

TU Dresden, WS 2012/13 Fuzzy Logic Slide 28