Fungal Glucuronoyl and Feruloyl Esterases for Wood Processing...

1
INDUSTRIAL BIOTECHNOLOGY Introduc9on Feruloyl esterases (FAEs, E.C. 3.1.1.73, CAZy family CE1) and glucuronoyl esterases (GEs, E.C. 3.1.1., CAZy family CE15) are involved in the degrada9on of plant biomass by hydrolysing ester linkages in plant cell walls, and thus have poten9al use in biofuel produc9on from lignocellulosic materials and in biorefinery applica9ons with the aim of developing new wood based compounds [1, 2]. GEs and FAEs are present in the genomes of a wide range of fungi and bacteria. Under condi9ons of low water content, these enzymes can also carry out (trans)esterifica9on reac9ons, making them promising biocatalysts for the modifica9on of compounds with applica9ons in the food, cosme9c and pharmaceu9cal industry. Compared to the chemical process, enzyma9c synthesis can be carried out under lower process temperatures (5060°C) and results in fewer side products, thus reducing the environmental impact. Cita9ons [1] Topakas, E., Vafiadi, C., and Christakopoulos, P. (2007). Microbial produc9on, characteriza9on and applica9ons of feruloyl esterases. Process Biochemistry, 42(4), 497–509. doi: 10.1016/j.procbio.2007.01.007 [2] Spániková, S., and Biely, P. (2006). Glucuronoyl esterase Novel carbohydrate esterase produced by Schizophyllum commune. FEBS Le9ers, 580(19), 4597–601. doi:10.1016/ j.febslet.2006.07.033 [3] Chávez, R., Bull, P., & Eyzaguirre, J. (2006). The xylanoly9c enzyme system from the genus Penicillium. Journal of Biotechnology, 123(4), 413–433. doi:10.1016/j.jbiotec.2005.12.036 [4] Wood, S. J., Li, X.L., Coka, M. a, Biely, P., Duke, N. E. C., Schiffer, M., & Pokkuluri, P. R. (2008). Crystalliza9on and preliminary Xray diffrac9on analysis of the glucuronoyl esterase cataly9c domain from Hypocrea jecorina. Acta Crystallographica. Sec9on F, Structural Biology and Crystalliza9on Communica9ons, 64(Pt 4), 255–7. doi:10.1107/S1744309108004594 [5] Thörn, C., Gustafsson, H., & Olsson, L. (2011). Immobiliza9on of feruloyl esterases in mesoporous materials leads to improved transesterifica9on yield. Journal of Molecular Catalysis B: Enzyma9c, 72(12), 57–64. doi:10.1016/j.molcatb.2011.05.002 Conclusions We characterised new FAE and GE enzymes from mesophilic, thermophilic and coldtolerant filamentous fungi produced in Pichia pastoris. The enzymes were characterised for both their hydroly9c abili9es on various model substrates (methyl ferulate, pNPferulate) for poten9al applica9ons in deconstruc9on of lignocellulosic materials and extrac9on of valuable compounds as well as for their biosynthe9c capaci9es. We tested and op9mised the FAEs’ transesterifica9on capabili9es on ferulate esters in a 1butanolbuffer system, with the aim of using the most promising candidates for the produc9on of an9oxidant compounds with improved hydrophobic or hydrophilic proper9es, such as prenyl ferulate, prenyl caffeate, glyceryl ferulate and 5O(transferuloyl) arabinofuranose. Chávez et al., 2006 Feruloyl esterases (FAEs) Glucuronoyl esterases (GEs) Figure 1. Schema’c representa’on of secondary cell wall polymers in wood (courtesy of Gunnar Henriksson, WWSC). Figure 2. The structure of xylan and site of ac’on of the enzymes of the xylanase complex. 1: endoxylanases; 2: αlarabinofuranosidases; 3: glucuronidases; 4: feruloyl and coumaroyl esterases; 5: acetyl xylan esterases. Adapted from Chávez et al., 2006 [3]. Figure 3. Proposed crosslink structure between lignin and glucuronoxylan in plant cell walls. MeGlcA = 4OmethylDglucuronic acid. The arrow indicates the ester bond hydrolyzed by GE. Adapted from Wood et al., 2008 [4]. Hydroly’c assays GEs MFA FA FAE pNPF pNP FAE BenzD GlcA GlcA GE Methods & Results FAEs For screening of they hydroly9c ac9vity of FAEs and GEs, spectrophotometric assays were used Immobilisa’on on mesoporous silica par’cles (SBA15) Figure 8. Enzyme loading on mesoporous par’cles at different pH values. Immobilisa9on of enzymes can improve the stability and reusability of the biocatalyst, and can also change the substrate specificity [5]. SBA15 (Santa Barbara Amorphous material) is a wellordered, hexagonal mesoporous silica (MPS) matrix with a controllable pore size. It is an akrac9ve support material, as it has a very large surface area that can be func9onalized if desired, and proper9es such as pore structure can be adjusted to individual needs. Immobilisa9on on MPS is done by simple adsorp9on. The enzyme loading is es9mated by measuring protein concentra9on in the supernatant aser immobilisa9on. Adsorp9on is mediated mostly by electrosta9c and hydrophobic interac9on, thus the pH of the used buffer is very important for immobilisa9on efficiency. wash (5x) add enzyme incubate overnight wash (3x) dry & store add MPS 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 pH 3 pH 4 pH 5 pH 6 pH 7 pH 8 pH 9 Enzyme loading (mg Engzyme / mg MPS) 0.1 M citrate phosphate 0.1 M TrisHCl Genome mining Produc’on of fungal enzymes in Pichia pastoris Homologues of known FAEs were found in the genomes of two coldtolerant Aspergillus strains (A. glaucus and A. zonatus), several candidate genes were cloned and subsequently expressed in Pichia pastoris. Ini’al screening of 19 fungal strains (mesophilic and thermophilic) isolated from soil, wood and agricultural compost in Vietnam 0 10 20 30 40 50 60 FEC 40 FEC42 FEC93 FEC108 FEC110 FEC128 FEC130 FEC161 FEC162 FEC258 FEC385 FCH 5.2 FCH 5.4 FCH 5.5 FCH 5.7 FCH 9.4 FCH 10.4 FCH 10.5 mU 0.1M MOPS pH 6.0, 37°C, 30 min 0.1M MOPS pH 6.0, 45°C, 30 min 0 10 20 30 40 50 60 70 80 FEC40 FEC42 FEC93 FEC108 FEC110 FEC128 FEC130 FEC156 FEC161 FEC162 FEC258 FEC385 FCH5.2 FCH5.4 FCH5.5 FCH5.7 FCH9.4 FCH10.4 FCH10.5 mU 0.1 M K3phosphate buffer, pH 6.0, 45°C, 30 min Selec’on of novel FAEs/GEs DNA & RNA sequencing Figure 4. Screening of mesophilic (FEC) and thermophilic (FCH) fungal strains for FAE ac’vity on methyl ferulate (MFA). Figure 5. Screening of mesophilic (FEC) and thermophilic (FCH) fungal strains for GE ac’vity on benzylDglucuronate (BenzDGlcA). Two thermophilic fungal strains were chosen for DNA and RNA sequencing. Mycelium was grown for 48h at 50°C on glucose, washed thoroughly and subsequently divided between shake flasks containing 1% glucose, 1% wheat bran, 1% beechwood xylan or 1% wheat bran + 0.01% ferulic acid as the sole carbon source. Samples were taken at different 9me points, RNA extracted and sequenced. Comparing the expression pakerns of genes on different (inducing and noninducing) media will allow the iden9fica9on of novel FAEs and GEs. These enzymes will then be cloned and overexpressed in the heterologous host Pichia pastoris. condition 1 (e.g. growth on glucose) condition 2 (e.g. growth on wheat bran/xylan)) Transesterifica’on reac’on Figure 6. Example of a chromatogram obtained from HPLC analysis of the products of the transesterifica’on reac’on methyl ferulate (MFA) to butyl ferulate (BFA) in a reac’on system with 92.5% 1 butanol and 7.5% buffer. In a reac9on system with very low water content, FAEs preferably carry out a (trans)esterifica9on reac9on. We used a Myceliophthora thermophila FAE to produce butyl ferulate (BFA) from methyl ferulate (MFA) in a binary reac9on system consis9ng of 1butanol and 7.5% buffer, pH 6.5. At 30°C, aser 69h more than 55% of MFA is converted to BFA, while only 14% of MFA is hydrolysed to ferulic acid (FA). Figure 7. Ra’os of BFA, FA and MFA present in the reac’on at different ’me points. BFA FA MFA MFA + butanol ( ( BFA FA FAE FAE 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0h 4h 6h 23h 27h 48h 69h % BFA % FA % MFA Cellulose Glucomannan Xylan Lignin Cellulose

Transcript of Fungal Glucuronoyl and Feruloyl Esterases for Wood Processing...

Page 1: Fungal Glucuronoyl and Feruloyl Esterases for Wood Processing …publications.lib.chalmers.se/records/fulltext/253149/... · 2017. 11. 15. · Title: Fungal Glucuronoyl and Feruloyl

IN

DU

STRIAL  B

IO

TECHN

OLO

GY  

Introduc9on  Feruloyl   esterases   (FAEs,   E.C.   3.1.1.73,   CAZy   family   CE1)   and  glucuronoyl  esterases  (GEs,  E.C.  3.1.1.-­‐,  CAZy  family  CE15)  are  involved   in   the   degrada9on   of   plant   biomass   by   hydrolysing  ester  linkages  in  plant  cell  walls,  and  thus  have  poten9al  use  in  biofuel   produc9on   from   lignocellulosic   materials   and   in  biorefinery  applica9ons  with  the  aim  of  developing  new  wood-­‐based   compounds   [1,   2].   GEs   and   FAEs   are   present   in   the  genomes  of  a  wide  range  of  fungi  and  bacteria.    Under   condi9ons   of   low   water   content,   these   enzymes   can  also   carry   out   (trans)esterifica9on   reac9ons,   making   them  promising  biocatalysts  for  the  modifica9on  of  compounds  with  applica9ons   in   the   food,   cosme9c   and   pharmaceu9cal  industry.   Compared   to   the   chemical   process,   enzyma9c  synthesis   can   be   carried   out   under   lower   process  temperatures   (50-­‐60°C)   and   results   in   fewer   side   products,  thus  reducing  the  environmental  impact.      

Cita9ons  [1]  Topakas,  E.,  Vafiadi,  C.,  and  Christakopoulos,  P.  (2007).  Microbial  produc9on,  characteriza9on  and  applica9ons  of  feruloyl  esterases.  Process  Biochemistry,  42(4),  497–509.  doi:10.1016/j.procbio.2007.01.007  [2]  Spániková,  S.,  and  Biely,  P.  (2006).  Glucuronoyl  esterase  -­‐  Novel  carbohydrate  esterase  produced  by  Schizophyllum  commune.  FEBS  Le9ers,  580(19),  4597–601.  doi:10.1016/j.febslet.2006.07.033  [3]  Chávez,  R.,  Bull,  P.,  &  Eyzaguirre,  J.  (2006).  The  xylanoly9c  enzyme  system  from  the  genus  Penicillium.  Journal  of  Biotechnology,  123(4),  413–433.  doi:10.1016/j.jbiotec.2005.12.036  [4]  Wood,  S.  J.,  Li,  X.-­‐L.,  Coka,  M.  a,  Biely,  P.,  Duke,  N.  E.  C.,  Schiffer,  M.,  &  Pokkuluri,  P.  R.  (2008).  Crystalliza9on  and  preliminary  X-­‐ray  diffrac9on  analysis  of  the  glucuronoyl  esterase  cataly9c  domain  from  Hypocrea  jecorina.  Acta  Crystallographica.  Sec9on  F,  Structural  Biology  and  Crystalliza9on  Communica9ons,  64(Pt  4),  255–7.  doi:10.1107/S1744309108004594  [5]  Thörn,  C.,  Gustafsson,  H.,  &  Olsson,  L.  (2011).  Immobiliza9on  of  feruloyl  esterases  in  mesoporous  materials  leads  to  improved  transesterifica9on  yield.  Journal  of  Molecular  Catalysis  B:  Enzyma9c,  72(1-­‐2),  57–64.  doi:10.1016/j.molcatb.2011.05.002  

Conclusions  We  characterised  new  FAE  and  GE  enzymes   from  mesophilic,   thermophilic  and  cold-­‐tolerant   filamentous   fungi   produced   in  Pichia   pastoris.   The   enzymes  were  characterised   for   both   their   hydroly9c   abili9es   on   various   model   substrates  (methyl   ferulate,   pNP-­‐ferulate)   -­‐   for   poten9al   applica9ons   in  deconstruc9on  of  lignocellulosic  materials   and   extrac9on   of   valuable   compounds   -­‐   as  well   as   for  their   biosynthe9c   capaci9es.   We   tested   and   op9mised   the   FAEs’  transesterifica9on   capabili9es   on   ferulate   esters   in   a   1-­‐butanol-­‐buffer   system,  with   the   aim   of   using   the   most   promising   candidates   for   the   produc9on   of  an9oxidant   compounds   with   improved   hydrophobic   or   hydrophilic   proper9es,  such  as  prenyl  ferulate,  prenyl  caffeate,  glyceryl  ferulate  and  5-­‐O-­‐(trans-­‐feruloyl)-­‐arabinofuranose.    

Chávez  et  al.,  2006  

Feruloyl  esterases  (FAEs)  

Glucuronoyl  esterases  (GEs)  

Figure   1.   Schema'c   representa'on  of   secondary   cell   wall   polymers   in  wood     (courtesy   of   Gunnar  Henriksson,  WWSC).  

Figure   2.   The   structure   of   xylan   and   site   of  ac'on  of  the  enzymes  of  the  xylanase  complex.  1:  endoxylanases;  2:  α-­‐l-­‐arabinofuranosidases;  3:  glucuronidases;   4:   feruloyl   and   coumaroyl  esterases;   5:   acetyl   xylan   esterases.   Adapted  from  Chávez  et  al.,  2006  [3].    

Figure   3.   Proposed   cross-­‐link   structure   between   lignin   and  glucuronoxylan   in  plant  cell  walls.  MeGlcA  =  4-­‐O-­‐methyl-­‐D-­‐glucuronic  acid.   The   arrow   indicates   the   ester   bond   hydrolyzed   by   GE.   Adapted  from  Wood  et  al.,  2008  [4].  

                   

                   

                   

Hydroly'c  assays  

GEs  

MFA     FA    FAE    

pNPF     pNP    FAE    

Benz-­‐D-­‐GlcA     GlcA  

GE    

Methods  &  Results  

FAEs  

For   screening   of   they   hydroly9c   ac9vity   of   FAEs   and   GEs,  spectrophotometric  assays  were  used  

Immobilisa'on  on  mesoporous  silica  par'cles  (SBA-­‐15)    

Figure  8.  Enzyme  loading  on  mesoporous  par'cles  at  different  pH  values.  

Immobilisa9on  of  enzymes  can  improve  the  stability  and  reusability  of  the  biocatalyst,   and   can   also   change   the   substrate   specificity   [5].   SBA-­‐15  (Santa   Barbara   Amorphous   material)   is   a   well-­‐ordered,   hexagonal  mesoporous   silica   (MPS)   matrix   with   a   controllable   pore   size.   It   is   an  akrac9ve  support  material,  as  it  has  a  very  large  surface  area  that  can  be  func9onalized   if   desired,   and   proper9es   such   as   pore   structure   can   be  adjusted  to  individual  needs.    Immobilisa9on  on  MPS  is  done  by  simple  adsorp9on.  The  enzyme  loading  is  es9mated  by  measuring  protein  concentra9on  in  the  supernatant  aser  immobilisa9on.   Adsorp9on   is   mediated   mostly   by   electrosta9c   and  hydrophobic  interac9on,  thus  the  pH  of  the  used  buffer  is  very  important  for  immobilisa9on  efficiency.    

wash (5x)

add enzyme

incubate overnight

wash (3x)

dry & store

add MPS

0"

0.002"

0.004"

0.006"

0.008"

0.01"

0.012"

0.014"

0.016"

0.018"

pH"3" pH"4" pH"5" pH"6" pH"7" pH"8" pH"9"

Enzyme'load

ing'(m

g'En

gzym

e'/'mg'

MPS)'

0.1"M"citrate"phosphate"

0.1"M"TrisHCl"

Genome  mining  

Produc'on  of  fungal  enzymes  in  Pichia  pastoris  

Homologues   of   known   FAEs   were   found   in   the   genomes   of   two  cold-­‐tolerant   Aspergillus   strains   (A.   glaucus   and   A.   zonatus),  several  candidate  genes  were  cloned  and  subsequently  expressed  in  Pichia  pastoris.  

Ini'al  screening  of  19  fungal  strains  (mesophilic  and  thermophilic)  isolated  from  soil,  wood  and  agricultural  compost  in  Vietnam    

0"

10"

20"

30"

40"

50"

60"

FEC"40"

FEC42"

FEC93"

FEC108"

FEC110"

FEC128"

FEC130"

FEC161"

FEC162"

FEC258"

FEC385"

FCH"5.2"

FCH"5.4"

FCH"5.5"

FCH"5.7"

FCH"9.4"

FCH"10.4"

FCH"10.5"

mU#

0.1M"MOPS"pH"6.0,"37°C,"30"min"

0.1M"MOPS"pH"6.0,"45°C,"30"min"

0"

10"

20"

30"

40"

50"

60"

70"

80"

FEC40"

FEC42"

FEC93"

FEC108"

FEC110"

FEC128"

FEC130"

FEC156"

FEC161"

FEC162"

FEC258"

FEC385"

FCH5.2"

FCH5.4"

FCH5.5"

FCH5.7"

FCH9.4"

FCH10.4"

FCH10.5"

mU#

0.1"M"K3phosphate"buffer,"pH"6.0,"45°C,"30"min""

Selec'on  of  novel  FAEs/GEs  

DNA  &  RNA  sequencing  

Figure  4.  Screening  of  mesophilic  (FEC)  and  thermophilic  (FCH)  fungal  strains  for  FAE  ac'vity  on  methyl  ferulate  (MFA).    

Figure  5.  Screening  of  mesophilic  (FEC)  and  thermophilic  (FCH)  fungal  strains  for  GE  ac'vity  on  benzyl-­‐D-­‐glucuronate  (Benz-­‐D-­‐GlcA).  

Two   thermophilic   fungal   strains   were   chosen   for   DNA   and   RNA  sequencing.  Mycelium  was  grown  for  48h  at  50°C  on  glucose,  washed  thoroughly  and  subsequently  divided  between  shake  flasks  containing  1%  glucose,  1%  wheat  bran,  1%  beechwood  xylan  or  1%  wheat  bran  +  0.01%   ferulic   acid   as   the   sole   carbon   source.   Samples   were   taken   at  different  9me  points,  RNA  extracted  and  sequenced.    

Comparing  the  expression  pakerns  of  genes  on  different  (inducing  and  non-­‐inducing)  media  will  allow  the  iden9fica9on  of  novel  FAEs  and  GEs.  These   enzymes   will   then   be   cloned   and   overexpressed   in   the  heterologous  host  Pichia  pastoris.    

condition 1 (e.g. growth on glucose)

condition 2 (e.g. growth

on wheat bran/xylan))

Transesterifica'on  reac'on  

Figure  6.  Example  of  a  chromatogram  obtained   from  HPLC  analysis  of   the   products   of   the   transesterifica'on   reac'on  methyl   ferulate  (MFA)   to   butyl   ferulate   (BFA)   in   a   reac'on   system   with   92.5%   1-­‐butanol  and  7.5%  buffer.  

In   a   reac9on   system   with   very   low   water   content,   FAEs   preferably  carry  out  a  (trans)esterifica9on  reac9on.    We  used  a  Myceliophthora  thermophila  FAE  to  produce  butyl  ferulate  (BFA)   from   methyl   ferulate   (MFA)   in   a   binary   reac9on   system    consis9ng   of   1-­‐butanol   and   7.5%   buffer,   pH   6.5.   At   30°C,   aser   69h  more  than  55%  of  MFA  is  converted  to  BFA,  while  only  14%  of  MFA  is  hydrolysed  to  ferulic  acid  (FA).    

Figure   7.  Ra'os   of   BFA,   FA   and  MFA   present   in   the   reac'on   at  different  'me  points.    

BFA  

FA  

MFA  

MFA    +  butanol  

(   (  

BFA    FA    FAE     FAE    

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

0h# 4h# 6h# 23h# 27h# 48h# 69h#

%#BFA#

%#FA#

%#MFA#

Cellulose

Glucomannan

Xylan

Lignin

Cellulose