Fundamentals of Biology Mrs. Young

47
Fundamentals of Biology Mrs. Young Welcome to B101 Please take a syllabus and an index card On the front of the card write your Last name, first name Underneath your name write cell phone number and email where you can be reached if necessary, major (if decided), year in school, sport if you play one here at TWC, and what hobbies/ subjects you are interested in Then read your syllabus until class begins Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1-1

description

Fundamentals of Biology Mrs. Young. Welcome to B101 Please take a syllabus and an index card On the front of the card write your Last name, first name - PowerPoint PPT Presentation

Transcript of Fundamentals of Biology Mrs. Young

Fundamentals of BiologyMrs. Young

Welcome to B101 Please take a syllabus and an index card On the front of the card write your Last name, first name Underneath your name write cell phone number and email

where you can be reached if necessary, major (if decided), year in school, sport if you play one here at TWC, and what hobbies/ subjects you are interested in

Then read your syllabus until class begins

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-1

Favorite Class

Take a couple of minutes to describe for me (on the back of your index card) your favorite class and why you liked it

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-2

Mrs. Young

Office Fisher 105 252-1116 [email protected] [email protected] Office hours MWF 12:30-2:30 Webpage www.twcnet.edu/cyoung

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-3

Background

M.S. in Physiology and Biophysics

University of Louisville, Louisville, KY Research at University of Louisville School of

Medicine, Department of Neurology – Studied treatment of epileptic seizures in an

animal model– Participated in multicenter drug trial for

antiepileptic medication

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-4

Taught at Univ. of Louisville Taught at Brown Mackie College in Cincinnati Teaching at TWC: A and P I and II (B155, B156)

Environmental Science (B102)

Fundamentals of Biology (B101) and many other Biology and Chemistry labs

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-5

Syllabus

Please read this syllabus completely and sign last page and return to me. Keep it in your notebook for reference throughout the semester.

Textbook, Lab book Schedule Course requirements and means of evaluation Lab Addendum

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-6

Grades

5 Exams at 100 points each= 500 points Homework/ In Class assignments=100 points

Lab= 100 points – For lab grade take total points you have and

divide by total possible Lab grade may either be a quiz or a lab assignment

700 points total

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-7

In Class Assignments: if missed these may be made up with written documentation from Doctor, coach, etc.

Homework must be turned in on time Exams: No open book exams, No curving

grades No extra credit assignments

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-8

Expectations

Attendance Come prepared for active learning Be polite and respectful Be responsible Abide by TWC Honor Code

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-9

What it will take to succeed

You will need to read your textbook, take notes, pay attention in class, do assignments (which includes answering questions in the textbook), study until you understand and can answer questions on the material, attend lab, do lab work, and prepare for lab quizzes….

Whew! That sounds like an awful lot of work! 1-10

Why so much work?

We learn only 10% of what we read, and 20% of what we hear

We have to do more to learn more In biology we are going to be covering some complex

topics: for example we will start with a quick review of basic and organic chemistry, move into cell biology, and then go into enzymes, respiration, and photosynthesis. These topics cannot be learned well by simply listening to lectures.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-11

Memory Tip

Memory researcher Robert Bjork “The typical college student spends far too much time reading and underlining and far too little time summarizing, paraphrasing, and testing his or her ability to retrieve what has been studied”

Inputting and encoding vs retrieval and outputting of information

Testing has to do with retrieval and outputting of information so don’t forget this important step when you are studying

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-12

Some tips

Bring textbook to class Always bring your lab book to lab unless otherwise

specified! Take notes; rework them after class to clear up

anything that is unclear. Look at a classmates notes as well as your own. Have a study buddy. Get their phone number so you will have someone to call if you have to miss class.

Power points will be posted on my website before the exam; www.twcnet.edu/young. Take advantage of this resource

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-13

Learning Styles

http://www.chaminade.org/INSPIRE/LEARNSTL.HTM

Visual Learners: draw diagrams and chart concepts

Auditory Learners: listen to lecture tapes Kinesthetic or Tactile Learners: learn from

models and specimens, learn by doing

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-14

1-15

Chapter 1

Lecture Outline

See PowerPoint Image Slides

for all figures and tables pre-inserted into

PowerPoint without notes.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-16

Why a Study of Biology is Important

To be an informed citizen An understanding of biology is important to

address a number of social issues today.– DNA testing– Birth control – Global warming– AIDS

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-17

So then, what is biology?

Biology is the science that deals with life. What is science?

– A process used to solve problems and understand natural events

– Involves the scientific method

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-18

Basic Assumptions in Science

Scientists approach their work with some basic assumptions:

– Natural events have specific causes.– The causes for events in nature can be identified.– Natural events follow general rules and patterns.– A recurrent natural event has a common cause.– Different people can observe the same natural events.– Natural laws hold true regardless of time and place.

Example: Lightning

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-19

Scientists Look for Cause and Effect Relationships

Events that happen simultaneously are correlated, but– may or may not have a cause and effect

relationship.– Example: Autumn and falling leaves

Events have a cause and effect relationship– when one event happens as a direct result of a

preceding event.– Example: Lightning causes thunder.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-20

*The Scientific Method

A way of gaining information about the world that involves– forming possible solutions to questions.– rigorous testing to determine if the solutions are

supported.– continual checking and rechecking to make sure

that previous conclusions are still supported.– modification of unsupported conclusions.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-21

Components of the Scientific Method

Observation Questioning and exploration Forming and testing hypotheses Evaluation of new information Review by peers

*Scientific Method

Identify question

Form testable hypothesis

Consult prior Collect data to test hypothesis If hypothesis is

knowledge rejected

Interpret results

Report for peer review

Publish findings

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-22

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-23

Observation, Questioning and Exploration

An observation is a thoughtful and careful recognition of an event or a fact.

The careful observation of a phenomenon leads to a question.– How does this happen?– What causes it to occur?

The question must be testable. Scientists then explore scientific

publications to find any information that has been gathered about the question.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-24

Constructing Hypotheses

Once the question is asked, scientists propose answers.

These answers are hypotheses. Hypotheses must:

– be logical– account for all current information– be testable– make the least possible assumptions

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-25

Testing Hypotheses

Hypotheses need to be tested to see if they are supported or disproved.– Disproved hypotheses are rejected.– Hypotheses can be supported but not proven.

There are several ways to test a hypothesis:– Gathering relevant historical information– Make additional observations from the natural

world.– Experimentation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-26

Experimentation

An experiment is a re-creation of an occurrence. – It tests whether or not the hypothesis can be

supported or rejected. Experiments must be controlled.

– This means that all aspects except for one variable must be kept constant.

– They usually include any two groups. Experimental group: variable is altered Control group: variable is not altered

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-27

Experimental Design

The variable that is altered is called the independent variable. (What are we changing?)

– Experiments should have only one independent variable. The variables that change in response to the

independent variable are called dependent variables.– Changes in the dependent variables are documented as

data. (What are we measuring?) Data from the experiment is analyzed and

hypotheses are rejected and revised or supported.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-28

*A Sample Experiment

Hypothesis: Male sex hormones produced by the testes stimulate male birds to sing.

Experimental group: Male birds with testes removed at birth. Control group: Male birds subjected to a similar surgery that

were allowed to develop normally with testes. Independent variable: presence or absence of testes. Dependent variable: presence of singing behavior. Data: Male songbirds without testes do not exhibit singing

behavior. Conclusion: Hypothesis is supported.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-29

Experimental Data

Experiments must:– use large numbers of subjects or must be

repeated several times (replication).– be independently reproducible.

The validity of experimental results must: – be tested statistically.– be scrutinized by other scientists.

If the hypothesis is supported by ample experimental data, it leads to a theory.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-30

*Theory

A theory may be defined as a widely accepted, plausible general statement about a fundamental concept in science.– The germ theory states that infectious diseases are

caused by microorganisms. Many diseases are not caused by microorganisms, so we

must be careful not to generalize theories too broadly.

– Theories continue to be tested. Exceptions identified Modifications made

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-31

A Scientific Law

A scientific law is a uniform and constant fact of nature that describes what happens in nature.

– An example: All living things come from pre-existing living things.

Scientific laws promote the process of generalization.– Inductive reasoning– Since every bird that has been studied lays eggs, we can generalize

that all birds lay eggs. (IGA)

Once a theory becomes established, it can be used to predict specific facts.

– Deductive reasoning– We can predict that a newly discovered bird species will lay eggs.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-32

Scientific Communication

Data is shared with the scientific community through research articles published in scientific journals.

– These articles are usually scrutinized by other scientists before they are published.

Scientists present preliminary data at conferences.

Scientists collaborate directly by phone and e-mail.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-33

Fundamental Attitudes in Science

Scientists must distinguish between opinions and scientific facts.

– Scientists’ opinions may become facts if supported by data. A good scientist must

– be skeptical.– not be biased.– be honest in analyzing and reporting data.

The critical difference between science and non-science is that in science, one can test the principle. In non-science, one may not be able to.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-34

Theoretical vs. Applied Science

Initially, some scientific data seems to be purely informational and not very practical.

Practical applications usually follow the discoveries of basic science.

– The discovery of the structure of DNA has led to new drug treatments for many diseases.

– The discovery of microorganisms has led to a dramatic decrease in infectious disease and food preservation.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-35

Science vs. Nonscience

Scientists continually challenge and test principles to determine cause-and-effect relationships.– Biology, Physics, Chemistry, Astronomy

Nonscientists cannot test their hypotheses directly and often cannot establish cause-and-effect relationships.– History, Literature, Philosophy, Art, Sociology,

etc.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-36

Pseudoscience

A deceptive practice that uses the language of science to convince people into thinking that a claim has scientific validity.

– Marketing claims of nutritional supplements.

– Marketing claims of organic foods.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-37

Limitations of Science

The scientific method can only be applied to questions that have a factual base.

Questions of morality, values, social issues and attitudes cannot be tested scientifically.

Science is limited by scientists.– People are fallible.– The sun orbits the earth.

But, science is self-correcting.– New data shapes new

hypotheses.– The earth rotates on its axis, so

maybe the earth orbits the sun.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-38

The Science of Biology

Biology is the study of living things. Theoretical biology

– Evolutionary biology, animal behavior, biochemistry

Applied biology– Medicine, crop science, plant breeding, wildlife

management

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-39

*What makes something alive?

Living things can manipulate energy and matter.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-40

*Characteristics of Living Things

Metabolic processes– Organisms gain and store energy in the

chemical bonds in the nutrients they take in.Generative processes

– Organisms grow by increasing the number of cells.

– Organisms reproduce either sexually or asexually.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-41

Characteristics of Living Things

Responsive processes– Organisms react to changes in their

environment.Irritability: the ability to recognize that

something in its surroundings has changed (a stimulus) and respond to it quickly.

Individual adaptation: a longer term response to an environmental change.

Evolution: changes in a population over time.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-42

Characteristics of Living Things

Control processes– Enable organisms to carry out metabolic

processes in the right order.Coordination: Enzymes coordinate metabolic

reactions.Regulation: Enzymes are regulated in order to

maintain homeostasis.

Unique structural organization– Organisms are made of cells.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-43

*Levels of Biological Organization

Biosphere—the worldwide ecosystem. Ecosystem—communities that interact with

one another in a particular place. Communities—populations of different

organisms interacting with each other in a particular place.

Population—a group of individual organisms in a particular place.

Organism—an independent living unit.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-44

Levels of Biological Organization

Organ system—many organs that perform a particular function.

Organ—many tissues that perform a particular function. Tissue—many cells that perform a particular function. Cell—simplest unit that shows characteristics of life. Molecules—specific arrangements of atoms. Atoms—the fundamental units of matter.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-45

The Significance of Biology in our Lives

Biology has significantly contributed to our high standard of living.

For example:– Advanced food production– Significant progress in health – Advances in disease control– Advances in plant and animal breeding– Advances in biotechnology– Progress in genome studies

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-46

Biological Research Improves Food Production

Chapter 1 Homework

Concept Review #3, 6 #7 List the parts of the scientific method in order and describe

each #13, 14 Discuss how the birdsong experiment we discussed in class

exemplifies the scientific method in terms of the first 4 steps. Define independent variable vs dependent variable Inductive reasoning vs deductive reasoning

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.1-47