Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

19
Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A
  • date post

    20-Jan-2016
  • Category

    Documents

  • view

    228
  • download

    0

Transcript of Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Page 1: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Fundamentals and Applications of Vacuum Microelectronics

Zhuowen Sun

EE 698A

Page 2: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Outline

• Introduction

• Field emission basics

• Spindt emitters and arrays

• Beyond Spindt emitters

• Field emission display

• Summary

Page 3: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Introduction (I)

• What is vacuum microelectronics

[Ref. 1] [Ref. 1]

Page 4: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Introduction (II)

• GoodPower handling abilityBallistic and coherent transport Resistance to radiation-induced defects

• BadFabrication difficultiesPackaging issues

Page 5: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Field emission basics

F-N equation [Ref. 2]

Page 6: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Spindt emitters and arrays (I)

E = β V E: electric field ( V/m) V: applied voltage (V)

β = R / (k r ( R – r )) ~ 1/ (k r ) when r << R [Ref . 3]

k: const. 1 < k < 5

Assuming field emission onsetE ~ 1x107 V/cm

Classical processing:R = 1mm , r = 2000Åβ = 5x104 / k cm-1

V = 1000 V

Micro-fabrication:R = 5000Å, r = 250Åβ = 4x105 / k cm-1

V = 100 V

Page 7: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Spindt emitters and arrays (II)

[Ref. 3]

Page 8: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Spindt emitters and arrays (III)

• Fields of a triode structure [Ref. 4]

Page 9: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Spindt emitters and arrays (IV)• Structure parameter dependence [Ref. 5]

Page 10: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Spindt emitters and arrays (V)

Before:ΔΦ = 1 eV Σ ~ 0.1%After:ΔΦ = 0.2 eV Σ ~ 20-40%

[Ref . 3]

[Ref . 6]

Page 11: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Beyond Spindt emitters (I)

• Problems with simple Spindt emittersContaminationFocusingUniformity of array fabricationPower consumption

Page 12: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Beyond Spindt emitters (II)

• SolutionsMetal-Insulator-Metal (MIM) emittersSurface Conduction Emitters (SCE)Diamond-coated emittersCarbon nanotube emitters

Page 13: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Field emission display (I)

[Ref. 7] [Ref. 8]

Page 14: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Field emission display (II)

• Beam focusing [Ref. 3]• Large array [Ref. 9]

Page 15: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Field emission display (III)

• Spacers breakdown [Ref. 3]

• Getters [Ref. 3]

Page 16: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Field emission display (IV)

[Ref. 3]

Page 17: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Field emission display (V)

[Ref. 3]

Page 18: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

Summary

• An interesting device family

• Special design/fabrication considerations

• Complementary to conventional solid-state devices

• Important applications

Page 19: Fundamentals and Applications of Vacuum Microelectronics Zhuowen Sun EE 698A.

References

[1] C. A. Spindt et al., J. Appl. Phys., 47 (1976) 5284

[2] F. Charbonnier, Appl. Surf. Sci., 94/95 (1996) 26

[3] W. Zhu, Vacuum Microelectronics, John Wiley & Sons, 2001

[4] W.Dawson et al., J. Vac. Sci. Tech. B, 11(2),(1993) 518

[5] E. G. Zaidman, Trans. Electron Dev., May 1993, 1009-1016

[6] K. L. Jensen, Naval Res. Lab.: Cathode Workshop, 2001

[7] http://www.pctechguide.com/07panels.htm

[8] T. S. Fahlen, Proc. IVMC, 1999, p. 56

[9] T. T. Doan et al., US patent 5229331, 1993