Fundamental Quantum Limits to Waveform Sensing...Neeley et al., Na-ture 467, 570 (2010) O’Connell...

23
Fundamental Quantum Limits to Waveform Sensing Mankei Tsang [email protected] http://mankei.tsang.googlepages.com/ Department of Electrical and Computer Engineering and Department of Physics National University of Singapore *Supported by Singapore National Research Foundation Fellowship (NRF-NRFF2011-07) Fundamental Quantum Limits toWaveform Sensing – p. 1/23

Transcript of Fundamental Quantum Limits to Waveform Sensing...Neeley et al., Na-ture 467, 570 (2010) O’Connell...

  • Fundamental Quantum Limits toWaveform Sensing

    Mankei [email protected]

    http://mankei.tsang.googlepages.com/

    Department of Electrical and Computer Engineering and Department of Physics

    National University of Singapore

    *Supported by Singapore National Research Foundation Fellowship (NRF-NRFF2011-07)

    Fundamental Quantum Limits toWaveform Sensing – p. 1/23

  • Quantum Probability Theory

    Wave:

    Probability:

    P (x) = |〈x|ψ〉|2. (1)

    More than classical probability:

    Fundamental Quantum Limits toWaveform Sensing – p. 2/23

  • Quantum Probability Experiments

    Kippenberg and Vahala, Science 321, 1172(2008), and references therein.

    LIGO, Nature Phys.7, 962 (2011).

    Lee et al., Science 332, 330(2011).

    Kimble, Nature 453, 1023 (2008).

    Julsgaard, Kozhekin, andPolzik, Nature 413, 400 (2001).

    Chou et al., Science 329, 1630(2010).

    Castellanos-Beltran et al.,Nature Phys. 4, 928 (2008).

    Neeley et al., Na-ture 467, 570 (2010)

    O’Connell et al., Nature 464,697 (2010).

    Fundamental Quantum Limits toWaveform Sensing – p. 3/23

  • Quantum Sensing/Metrology

    Fundamental Limits: What is the ultimate sensitivity allowed by quantum mechanics?

    Estimation: Optimize data processing

    Control: Optimize experiment

    Examples: optical interferometry, optical imaging, optomechanical force sensing(gravitational-wave detection), atomic magnetometry, electrometer, etc.

    Fundamental Quantum Limits toWaveform Sensing – p. 4/23

  • Quantum Parameter Estimation

    Quantum Cramér-Rao bound (QCRB):

    E`

    δx2´˙

    ∆h2¸

    ≥ ~2

    4, δx ≡ x− x̃(y), ∂ρx

    ∂x=

    1

    2

    hρx + ρxh†”

    . (2)

    C. W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, NewYork, 1976); V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004);Nature Photon. 5, 222 (2011).

    Beyond QCRB: M. Tsang, PRL 108, 230401 (2012); R. Nair, arXiv:1204.3761; seealso V. Giovannetti, S. Lloyd, L. Maccone, PRL 108, 260405 (2012); M. J. W. Hall et al.,PRA 85, 041802(R) (2012).

    Fundamental Quantum Limits toWaveform Sensing – p. 5/23

  • Problem 1: x(t) Changes in Time

    0 100 200 300 400 500 600 700 800 900 1000−80

    −60

    −40

    −20

    0

    20

    40

    60

    Realizations of Wiener Process

    Optical phase, magnetic field, electric field, force, etc. can all vary randomly in time

    Gravitational waves are stochastic [Buonanno et al., Phys. Rev. D 55, 3330 (1997);Apreda et al., Nuclear Physics B 631, 342 (2002)].

    Stochastic processes characterized by a priori statistics (e.g. Langevin,Fokker-Planck, power spectral density)

    Fundamental Quantum Limits toWaveform Sensing – p. 6/23

  • Problem 2: Continuous Dynamics and Measurements

    Continuous coupling of time-varying signal to sensor

    Continuous quantum dynamics of sensor

    Continuous non-destructive measurements: must include measurement backaction

    Braginsky and Khalili, Quantum Measurement (Cambridge University Press, 1992)

    Fundamental Quantum Limits toWaveform Sensing – p. 7/23

  • Quantum Information Theory to the Rescue

    Discretize time, and take continuous limit at the end

    Measurements and dynamics described by a sequence of completely positive mapsrepresented by Kraus operators

    P [y|x] =X

    µN ,...,µ1

    trh

    K̂µN (yN |xN ) . . . K̂µ1 (y1|x1)ρ̂0K̂†µ1 (y1|x1) . . . K̂†µN

    (yN |xN )i

    Larger Hilbert space (Kraus representation theorem, principle of deferredmeasurements):

    K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory (Springer, Berlin, 1983).

    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

    H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2010).

    Fundamental Quantum Limits toWaveform Sensing – p. 8/23

  • Dynamical Quantum Cramér-Rao Bound

    Fisher information matrix J(t, t′)

    Define inverse of J(t, t′) asR

    dt′J(t, t′)J−1(t′, τ) = δ(t− τ).

    Z

    dtdt′C(t, t′)˘

    δx(t)δx(t′)˜

    − J−1(t, t′)¯

    ≥ 0. (3)

    Two components: J(t, t′) = J(Q)(t, t′) + J(C)(t, t′).

    J(Q) is a two-time quantum covariance function:

    J(Q)(t, t′) =4

    ~2EX

    D

    ∆ĥ(t)∆ĥ(t′)E

    , ĥ(t) ≡Z tJ

    t0

    dτÛ†(τ, t0)δĤ(τ)

    δx(t)Û(τ, t0).

    J(C) incorporates a priori waveform information

    J(C)(t, t′) = EX

    δ lnP [x]

    δx(t)

    δ lnP [x]

    δx(t′)

    ff

    . (4)

    M. Tsang, H. M. Wiseman, and C. M. Caves, PRL 106, 090401 (2011).

    Fundamental Quantum Limits toWaveform Sensing – p. 9/23

  • Example 1: Adaptive Optical Phase Estimation

    unpublished: φ(t) =R ∞

    −∞dτh(t− τ)x(τ),

    δx2QCRB =

    Z ∞

    −∞

    1

    4|h(ω)|2S∆Î(ω) + 1/Sx(ω), (5)

    e.g. Scoh∆Î

    (ω) =P̄

    ~ω0, SOUx (ω) =

    κ

    ω2 + ǫ2. (6)

    Filtering: Berry and Wiseman, PRA 65, 043803 (2002); 73, 063824 (2006).

    Filtering does not saturate QCRB!

    Fundamental Quantum Limits toWaveform Sensing – p. 10/23

  • Classical Estimation

    Filtering, Prediction: real-time or advanced estimation

    Smoothing: delayed estimation, more accurate when x(t) is a stochastic process

    Fundamental Quantum Limits toWaveform Sensing – p. 11/23

  • Smoothing for Quantum Sensing

    M. Tsang, PRL 102, 250403 (2009).

    Schrödinger picture (density operator, POVM)

    Smoothing estimation of quantum observables makes sense only if they have classicalprobability representations, e.g., QND observables (Yanagisawa arXiv:0711.3885),nonnegative quasi-probability functions (Tsang, PRA 80, 033840 (2009); 81, 013824(2010)).

    Temporal Nonclassicality: Leggett-Garg inequality, weak valuesFundamental Quantum Limits toWaveform Sensing – p. 12/23

  • Experimental Demonstration

    Optical phase-locked loop with smoother: M. Tsang, J. H. Shapiro, and S. Lloyd, PRA78, 053820 (2008); 79, 053843 (2009); M. Tsang, PRA 80, 033840 (2009):

    Wheatley et al., Phys. Rev. Lett. 104, 093601 (2010); Yonezawa et al., Science (2012);PRACQSYS poster

    very close to QCRB for coherent state.

    QCRB can be lowered by squeezing Fundamental Quantum Limits toWaveform Sensing – p. 13/23

  • Example 2: Optomechanical Force Estimation

    δf2QCRB =

    Z ∞

    −∞

    1

    (4/~2)S∆q̂(ω) + 1/Sf (ω). (7)

    Smoothing can’t saturate QCRB due to the presence of measurement backactionnoise

    Standard Quantum Limit (Braginsky, Caves et al.): backaction noise cannot beremoved.

    Fundamental Quantum Limits toWaveform Sensing – p. 14/23

  • Quantum Noise Cancellation (QNC)

    Coherent Feedforward Quantum Control

    M. Tsang and C. M. Caves, PRL 105, 123601 (2010).

    Fundamental Quantum Limits toWaveform Sensing – p. 15/23

  • Noise Cancellation

    Fundamental Quantum Limits toWaveform Sensing – p. 16/23

  • Quantum-Mechanics-Free Subsystems

    Another way of thinking about QNC:

    Positive-mass oscillator

    back-action

    force

    external

    force

    Negative-mass oscillator

    back-action

    force

    Dynamical Pairs

    Conjugate Pairs

    Positive-mass oscillator

    and negative-mass oscillator

    {Q,Π} are dynamical QND observables:

    Q̇ = Π/m, Π̇ = −mω2Q. (8)

    no measurement backaction.

    M. Tsang and C. M. Caves, PRX 2, 031016 (2012): By engineering the Hamiltonian, itis possible to make a subsystem of observables

    QNDobey any linear/nonlinear classical dynamics.

    Fundamental Quantum Limits toWaveform Sensing – p. 17/23

  • Optimal Force Estimation

    QNC + Smoothing saturate QCRB for coherent state.

    Optical squeezing of input light can lower the QCRB.

    Fundamental Quantum Limits toWaveform Sensing – p. 18/23

  • Example 3: Magnetometry

    Linear Gaussian smoother for magnetometry: Petersen and Mølmer, PRA 74, 043802(2006).

    QNC:Julsgaard, Kozhekin, and Polzik, Nature 413, 400 (2001).Wasilewski et al., PRL 104, 133601 (2010).

    Fundamental Quantum Limits toWaveform Sensing – p. 19/23

  • Quantum Waveform Detection

    Helstrom Bounds: Pe ≥ 12`

    1 −√

    1 − 4P0P1F´

    .

    Fidelity: F = EX |〈ψ|T expR

    dt∆HI(t)|ψ〉|2,∆HI(t) ≡ U†0 (t, t0) [H1(t) −H0(t)]U0(t, t0).

    Wigner remains Gaussian, H1 −H0 = −qx(t):

    F = EX exp

    »

    −14

    Z

    dtdt′x(t)x(t′)J(t, t′)

    , J(t, t′) =4

    ~2

    ˙

    : ∆q(t)∆q(t′) :¸

    . (9)

    M. Tsang and R. Nair, arXiv:1204.3697.

    Fundamental Quantum Limits toWaveform Sensing – p. 20/23

  • Computation of Likelihood Ratio

    Quantum Duncan-Kailath formula for Gaussian measurements in terms of filteringestimates conditioned on either hypotheses µj :

    Λ =P (Y |H1)P (Y |H0)

    =Λ1

    Λ0, Λj = exp

    „Z

    dy⊤R−1µj −1

    2

    Z

    dtµ⊤j R−1µj

    «

    . (10)

    Quantum Snyder’s formula for Poisson measurements:Λj = exp

    `R

    dy lnµj −R

    dtµj´

    .

    M -ary hypothesis testing: P (j|Y ) = ΛjPjPj ΛjPj

    .

    M. Tsang, PRL 108, 170502 (2012).

    Fundamental Quantum Limits toWaveform Sensing – p. 21/23

  • Quantum Receiver Design

    Homodyne is sub-optimal

    Kennedy receiver is near-optimal (optimal error exponent), even if x(t) is stochastic.

    OPABS

    displace by

    Photon detector

    M. Tsang and R. Nair, arXiv:1204.3697.

    Fundamental Quantum Limits toWaveform Sensing – p. 22/23

  • Outlook

    Waveform EstimationFundamental Limits: M. Tsang, H. M. Wiseman, and C. M. Caves, PRL 106, 090401 (2011).

    Estimation: M. Tsang, PRL 102, 250403 (2009); PRA 80, 033840 (2009); 81, 013824 (2010).

    Control: M. Tsang and C. M. Caves, PRL 105, 123601 (2010); PRX 2, 031016 (2012).

    Waveform DetectionFundamental Limits/Control: M. Tsang and R. Nair, arXiv:1204.3697.

    Estimation: M. Tsang, PRL 108, 170502 (2012).

    Parameter Estimation Beyond CRBQuantum Ziv-Zakai Bound: M. Tsang, PRL 108, 230401 (2012).

    Rate distortion: R. Nair, arXiv:1204.3761.

    ImagingStellar Interferometry: M. Tsang, PRL 107, 270402 (2011).

    Waveform Parameter Estimation

    We are hiring postdocs/PhD students!

    Supported by Singapore National Research FoundationFellowship (NRF-NRFF2011-07).

    http://www.nrf.gov.sg/nrf/otherProgrammes.aspx?id=142

    OPABS

    displace by

    Photon detector

    Fundamental Quantum Limits toWaveform Sensing – p. 23/23

    http://www.nrf.gov.sg/nrf/otherProgrammes.aspx?id=142

    Quantum Probability TheoryQuantum Probability ExperimentsQuantum Sensing/MetrologyQuantum Parameter EstimationProblem 1: $x(t)$ Changes in TimeProblem 2: Continuous Dynamics and MeasurementsQuantum Information Theory to the RescueDynamical Quantum Cram'er-Rao BoundExample 1: Adaptive Optical Phase EstimationClassical EstimationSmoothing for Quantum SensingExperimental DemonstrationExample 2: Optomechanical Force EstimationQuantum Noise Cancellation (QNC)Noise CancellationQuantum-Mechanics-Free SubsystemsOptimal Force EstimationExample 3: MagnetometryQuantum Waveform DetectionComputation of Likelihood RatioQuantum Receiver DesignOutlook