Fundamental Mechanisms, Predictive Modeling, and Novel … · 2019. 12. 12. · Stage 1. Discharge...

52
Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion AFOSR MURI Review Meeting Andrey Starikovskiy Princeton University November 6, 2012

Transcript of Fundamental Mechanisms, Predictive Modeling, and Novel … · 2019. 12. 12. · Stage 1. Discharge...

  • Fundamental Mechanisms, Predictive Modeling,

    and Novel Aerospace Applications of Plasma Assisted Combustion

    AFOSR

    MURI Review Meeting

    Andrey Starikovskiy Princeton University

    November 6, 2012

  • Main Tasks

    Thrust 1. Experimental studies of nonequilibrium air-fuel plasma kinetics using advanced non-intrusive diagnostics

    Task 1: Low-to-Moderate (T=300-800 K) temperature, spatial and time-dependent radical species concentration and temperature measurements in nanosecond pulse plasmas in a variety of fuel-air mixtures pressures (P=0.5-5 atm), and equivalence ratios

    Task 4: Moderate-to-high (T=800 – 1800 K) temperature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures up to 10 bar

    Task 5: PAC oxidation and combustion initiation at high pressure, high temperature conditions (RCM)

    Thrust 2. Kinetic model development and validation Task 8: Development and validation of a predictive kinetic model of non-equilibrium plasma fuel oxidation

    and ignition Task 9: Mechanism Reduction and Dynamic Multi-time Scale Modeling of Detailed Plasma-Flame Chemistry

    Thrust 3. Experimental and modeling studies of fundamental nonequilibrium discharge processes

    Task 10: Characterization and Modeling of Nanosecond Pulsed Plasma Discharges

    Thrust 4. Studies of diffusion and transport of active species in representative two-dimensional reacting flow geometries

    Task 13: Ignition and flameholding in high-speed non-premixed flows Task 14: High Fidelity Modeling of Plasma Assisted Combustion in Complex Flow Environments

  • PAC: New Dimensions in Combustion

    P, atm

    0.02 1 40

    T, K

    250

    2500

    S/I

    f

    0.1

    3.0

    E/n

    10

    B/S

    0.1

    1

    3

    0.3

  • What is Different at High P

    N2 + e N2(C3Pu) + e

    N2(C3Pu) + O2 N2 + O(

    3P) + O(1D)

    N2(C3Pu) N2 (B

    3Pg) + hn

    N2(B3Pg) + O2 N2 + O(

    3P) + O(3P)

    H2 + {O(3P); O(1D)} OH + H

    HO2; H2O2 …….

  • Plasma Assisted Oxidation P = 1atm; T = 300-800 K

  • Discharge Development

    1 10 100 10001E-3

    0,01

    0,1

    1

    ion

    O2(4.5 eV)

    O2(dis)

    N2(el)

    O2(a+b)

    O2(v)

    N2(v)

    tr+rot

    N2:O

    2 = 4:1

    En

    erg

    y l

    os

    s f

    rac

    tio

    n

    E/N, Td

    E/n, Td

    I, A

  • Influence of Vibrational Excitation on Low-Temperature Kinetics

    N2 + e = N2(C3) + e

    N2(C3) + O2 = N2 + O + O

    O2 + e = O + O + e

    N2 + e = N2(v) + e

    N2(v) + HO2 = N2 + HO2(v)

    HO2(v) = O2 + H

    Synergetic Effect of High and Low Electric Fields

  • Influence of Vibrational Excitation on Low-Temperature Kinetics

    Measured and calculated OH decay time. P = 1 atm.

    a) 3%H2 + air; b) 0.3%C4H10 + air.

  • 3000K

    1000K

    300K

    0.01atm 1atm 100atm

    Flames

    (Ju, Sutton)

    Flow Reactors

    (Yetter,

    Adamovich)

    Shock Tube

    (Starikovskiy)

    RCM

    (Starikovskiy)

    MW+laser

    (Miles)

    JSR

    (Ju) Streamer

    (Adamovich)

  • Forrestal Gas and Plasma Dynamic Lab 9 Months Ago

  • Forrestal Gas and Plasma Dynamic Lab 4 Months Ago

  • Forrestal Gas and Plasma Dynamic Lab 0 Months Ago

  • 3000K

    1000K

    300K

    0.01atm 1atm 100atm

    Flames

    (Ju, Sutton)

    Flow Reactors

    (Yetter,

    Adamovich)

    Shock Tube

    (Starikovskiy)

    RCM

    (Starikovskiy)

    MW+laser

    (Miles)

    JSR

    (Ju) Streamer

    (Adamovich)

  • Rapid Compression Machine: P = 10-70 atm, T = 650-1200 K

  • Driving chamber

    Speedcontrol

    chamber

    Combustionchamber

    Oil reservoirPiston lock chamber

    g

    N2

    Fast active valve

    P=30 bar of N2

    P=1 bar

    Solenoid

    Piston

    Oil

    Scheme of the RCM

  • Pressure Measurements

    Kistler 6025B

    piezoelectric

    pressure transducer

    - range 0-250 bar

    - linearity 0.1%

    0

    10

    20

    30

    40

    50

    60

    70

    80

    -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50

    Time (ms)

    Pre

    ss

    ure

    (b

    ar)

    compression ignition delay

  • Temperature Calculations

    • We assumed adiabatic core presence during measurement time.

    • i- initial values, c- values after compression.

    • Uncertainty < 2K

    ( ) 1ln (ln )

    ( )

    c

    i

    T

    c

    i T

    p Td T

    p T

  • Gas Compression in RCM

    Ini tial pos i tion

    Co l d g a s

    Ho t g a s (c o re )

    Final pos i tion

    Bottom plate

    Piston

    Piston

    Length of the pis ton s trok e

    Clearance height

  • Useful Range of Time

    0

    4

    8

    12

    16

    20

    165 170 175 180 185 190 195

    Time, ms

    Pre

    ssu

    re, b

    ar

    6mm, 1032K, 12.21 bar

    9mm, 1025 K, 11.95 bar

  • Useful Range of Time

    0

    5

    10

    15

    20

    25

    30

    0 30 60 90 120 150 180

    Time (ms)

    Pre

    ssur

    e (b

    ar)

    13mm, 958 K,19.77 bar

    9mm, 967 K, 20.87 bar

  • Useful Range of Time

    0

    50

    100

    150

    200

    250

    0,9 0,95 1 1,05 1,1

    1000/T(K)

    Au

    toig

    nit

    ion

    de

    lay

    tim

    e,

    ms

    9mm

    13mm

    clearance

    height, mm

    time, ms

    6

  • SDBD Plasma Ignition at High Pressure

    ICCD images of the

    discharge at 1 atm dry air.

    Negative polarity of the high-

    voltage electrode, 22 kV, 25

    ns duration, f = 40 Hz

    [Kosarev et al, 2009].

    Mixture C2H6:O2=2:7 at 1 bar

    and ambient initial

    temperature was

    successfully ignited in ~100

    ms in relatively large volume

    [Sagulenko et al, 2009].

  • Rapid Compression Machine: Plasma-Assisted Ignition

  • Plasma RCM: Electrode Geometries

    localized

    nanosecond

    spark

    nanosecond

    SDBD

  • Plasma RCM: Regimes of Discharge Development

  • PAC at High Pressure: ER = 0.4

    T2 = 794 K

    P2 = 32.0 bar

    Propane

    Surface DBD

    E < 50mJ

  • High-Pressure PAC: Lean Conditions

  • High Pressure PAC: Discharge Before Compression Stroke

    T2 = 836 K, P2 = 40 bar. Discharge before compression

  • High-Pressure PAC: Lean Conditions

    Discharge 20 ms before compression

  • PAC at High Pressure: ER = 1

    T2 = 713 K

    P2 = 26.5 bar

    Propane

    Surface DBD

    E < 50mJ

  • High-Pressure PAC: ER = 1

  • High Pressure PAC: ER = 1 Discharge 20 ms Before Compression

    T2 = 672 K, P2 = 20 bar

  • High Pressure PAC: ER = 1 Discharge 20 ms Before Compression

  • Comparison of Different Types of Discharges

  • Plasma-Assisted Ignition at High Pressures

    CH4 + O CH3 + OH CH3 + OH CH2O+H2 CH3 + O2 CH2O + OH CH3 + O2 +M CH3O2 + M

    T2 = 672 K, P2 = 20 bar. T2 = 794 K, P2 = 32 bar

    Ignition delay time for

    modified mixtures, f=1.0,

    EGR=30%. Discharge 20ms

    before compression stroke

  • Kinetics of Ignition Development

    Stage 1. Discharge in

    Methane‐Air mixture at temperature ~ 330 K, 1 atm.

    Production of metastable

    components. Stage 2. Fast adiabatic

    compression to a

    temperature of 800‐950 K. Metastable components

    decomposition and ignition

    development.

  • 3000K

    1000K

    300K

    0.01atm 1atm 100atm

    Flames

    (Ju, Sutton)

    Flow Reactors

    (Yetter,

    Adamovich)

    Shock Tube

    (Starikovskiy)

    RCM

    (Starikovskiy)

    MW+laser

    (Miles)

    JSR

    (Ju) Streamer

    (Adamovich)

  • Shock Tube with Discharge Section. U ≤ 150 kV, M ≤ 3 – MIPT

    Test Section of the Shock Tube 0.5 0.6 0.7 0.8

    100

    101

    102

    103

    104

    105

    I

    II

    III

    autoignition

    autoignition, experimentautoignition, calculations

    PAI, calculations

    PAI, calculations

    PAI, experiments

    PAI, experiments

    PAIPAI

    Ign

    itio

    n d

    ela

    y t

    ime

    , s

    1000/T5, K

  • PAC Kinetics at High T, Low P

    Shock Tube with Discharge Section. U ≤ 500 kV, M ≤ 5 – Princeton

  • Hypersonic Shock Tunnel - MIPT

    4.0 4.5 5.0 5.5 6.0 6.5

    108

    109

    1010

    Inte

    nsi

    ty,

    W/k

    g

    Velocity, km/s

    Non-equilibrium Peak

    Intensity, CO:N2=7:3

  • Discharge Formation and Flame Stabilization in High Speed Flow - SCRAMJets

  • Princeton Shock Tube/Shock Tunnel

    Operating regimes for Princeton’s combustion-driven Shock Tube/Shock Tunnel in Air

    Comparison with others

  • 3000K

    1000K

    300K

    0.01atm 1atm 100atm

    Flames

    (Ju, Sutton)

    Flow Reactors

    (Yetter,

    Adamovich)

    Shock Tube

    (Starikovskiy)

    RCM

    (Starikovskiy)

    MW+laser

    (Miles)

    JSR

    (Ju) Streamer

    (Adamovich)

  • Physics of Nonequilibrium

    Systems Laboratory

    DBD Discharges Development

  • Physics of Nonequilibrium

    Systems Laboratory

    DBD Discharges: 20 kV, 10kHz, 10th pulse

    10 Torr 50 Torr

    100 Torr 200 Torr

  • DBD Discharges: 20kV, 10kHz, 10 Torr Pulse N5

  • DBD Discharges: 20kV, 10kHz, 100th pulse

    100 Torr 200 Torr

    10 Torr 20 Torr 50 Torr

  • DBD Discharges: 20 kV, 10kHz ICCD gate 50 ns

    Side view: T0=500 K, ϕ=0.3 Side view: T0=300 K, ϕ=0.0, pulse#10

    End view: T0=500 K, ϕ=0.3 End view: T0=300 K, ϕ=0.0

    200 Torr -

    instabilities

  • Major International Collaborations and International Projects

    Nickolay Aleksandrov (MIPT, Russia) Sergey Pancheshnyi (ABB, Austria) Svetlana Starikovskaya (LPP, France) PROJECTS: PARTNER UNIVERSITY FUND “Physics and Chemistry of Plasma-Assisted Combustion” (Princeton-LPP) RUSSIAN FEDERAL PROGRAM “Plasma-Assisted Combustion Ultra-Lean Fuel-Air Mixtures for Energy Devices Efficiency Increase” (Princeton-MIPT)

  • PUBLICATIONS BOOKS Aeronautics and Astronautics. Edited by: Max Mulder; TUDelft, The Nethrlands . ISBN 978-953-307-473-3. 2011

    A.Starikovskiy, N.Aleksandrov

    Plasma-Assisted Ignition and Combustion

    http://www.intechopen.com/books/show/title/aeronautics-and-astronautics

    http://www.intechopen.com/books/show/title/aeronautics-and-astronauticshttp://www.intechopen.com/books/show/title/aeronautics-and-astronauticshttp://www.intechopen.com/books/show/title/aeronautics-and-astronauticshttp://www.intechopen.com/books/show/title/aeronautics-and-astronauticshttp://www.intechopen.com/books/show/title/aeronautics-and-astronauticshttp://www.intechopen.com/books/show/title/aeronautics-and-astronauticshttp://www.intechopen.com/books/show/title/aeronautics-and-astronautics

  • PUBLICATIONS - 2012 A.Starikovskiy, N.Aleksandrov. Plasma-assisted ignition and combustion. Progress in Energy and Combustion Science (2012), doi:10.1016/j.pecs.2012.05.003 N.L.Aleksandrov, E.M.Anokhin, S.V.Kindysheva, A.A.Kirpichnikov, I.N.Kosarev, M.M.Nudnova, S.M.Starikovskaia and A.Yu.Starikovskii. Plasma decay in air and O2 after a high-voltage nanosecond discharge. J. Phys. D: Appl. Phys. 45 (2012) 255202 (10pp) A.Starikovskiy, N.Aleksandrov, A.Rakitin. Plasma-Assisted Ignition and Deflagration-to-Detonation Transition. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, Jan. 9-12, 2012. AIAA-2012-829 A.Starikovskiy, A.Rakitin, G.Correale, A.Nikipelov, T.Urushihara, T.Shiraishi. Ignition of hydrocarbon-air mixtures with non-equilibrium plasma at elevated pressures. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, Jan. 9-12, 2012. AIAA-2012-828 A.Yu. Starikovskiy, S.V.Pancheshnyi, A.E.Rakitin. Periodic Pulse Discharge Self-focusing and Streamer-to-Spark Transition in Under-critical Electric Field. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, Jan. 9-12, 2012. AIAA-2012-665 N.Aleksandrov, E.Anokhin, S.Kindusheva, A.Kirpichnikov, I.Kosarev, M.Nudnova, S.Satikovskaia, and A.Starikovskiy. Plasma Decay in Air Excited by High-Voltage Nanosecond Discharge. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, Jan. 9-12, 2012. AIAA-2012-511 M.Nudnova, S.Kindusheva, N.Aleksahdrov, A.Starikovskiy. Fast Nonequilibrium Plasma Thermalization in N2-O2 Mixtures at Different Pressures. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, Jan. 9-12, 2012. AIAA-2012-510 A.Yu. Starikovskiy, V.P. Zhukov, V.A. Sechenov. Ignition Delay Times of Jet-A/Air Mixtures. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, Jan. 9-12, 2012. AIAA-2012-501 M.M.Nudnova, A.Yu.Starikovskiy. Ozone formation in pulsed SDBD at wide pressure range. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, Jan. 9-12, 2012, AIAA-2012-407 A. Starikovskiy. Kinetics of Plasma-Assisted Oxidation and Ignition below Self-Ignition Threshold. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, Jan. 9-12, 2012. AIAA-2012-244

  • SUMMARY Major Results

    1. Rapid Compression Machine is assembled;

    2. Plasma Shock Tube is assembled;

    3. Shock Tunnel is assembled;

    4. Plasma assisted ignition demonstration up to P = 40 atm;

    5. DBD discharge development is analyzed

    Future Plans

    1. High-temperature kinetics of PAC;

    2. High-pressure kinetics of PAC;

    3. Physics of pulsed discharges – nano- and picosecond scale;

    4. Kinetics of nonequilibrium plasma – role of plasma density;

    5. Plasma-assisted flame stabilization for GTEs and SCRAMJets.