Full Bridge LLC ZVS Resonant Converter Based on … One: High Efficiency, Dual SiC MOSFET in...

29
Full Bridge LLC ZVS Resonant Converter Based on Gen2 SiC Power MOSFET Cree Power Application Engineering Rev. 2 Copyright © 2014, Cree Inc. 1

Transcript of Full Bridge LLC ZVS Resonant Converter Based on … One: High Efficiency, Dual SiC MOSFET in...

Full Bridge LLC ZVS Resonant Converter Based on Gen2 SiC Power MOSFET

Cree Power Application Engineering

Rev. 2

Copyright © 2014, Cree Inc. 1

Confidential Copyright © 2012, Cree Inc. 2

SiC MOSFETs can simplify ZVS converter designs AND offer the following advantages: §  Lower system cost §  Improved performance §  Smaller size

ZVS converters are typically used in the following applications: §  Industrial power supply § Telecommunications power supply §  EV Battery charger

Overview

Confidential 3

Silicon: 600V MOS Three-level LLC Full bridge Typical switching frequency: 100KHZ-200KHZ

Silicon Carbide: 1200V SiC MOS Two-level FB ZVS LLC resonant Target switching: >200KZ-400KHZ Can reduce BOM cost and improve efficiency

Copyright © 2014, Cree Inc.

Three-level (3L) Resonant Tank Two-level (2L) Resonant Tank

Si to SiC

Simplify with SiC – Example 1

Confidential 4

Simplify with SiC – Example 2

Silicon: 600V MOS Interleaved Two level LLC Full bridge Typical switching frequency: 100KHZ-200KHZ

Silicon Carbide: 1200V SiC MOS Two-level FB ZVS LLC resonant Target switching: >200KZ-400KHZ Can reduce BOM cost and improve efficiency

Copyright © 2014, Cree Inc.

Two-level (2L) Resonant Tank

Two-level 1

Two-level 2

Resonant Tank 1

Resonant Tank 2

Si to SiC

Confidential

TO-247 MOSFET Parameters Comparison (Gen2 1.2kV SiC MOSFET Vs 650V Si CoolMOS)

5 Copyright © 2014, Cree Inc.

Parameters SiC MOS C2M0160120D

Si CoolMOS SPW47N60CFD

Si CoolMOS IPW65R110CFD

Breakdown Voltage @Tjmax 1200V 650V 650V

Rdson @Tc=110degC 0.22Ω 0.14Ω (x2 for three-level)

0.19Ω (x2 for three-level)

Ciss @f=1MHZ VDS=100V 527pF 7700pF 3240pF

Coss @f=1MHz VDS=100V 100pF 300pF 160pF

Crss @f=1MHz VDS=100V 5pF 10pF 8pF

Td(on)V Turn on delay time 7ns (VDD=800V) 30ns (VDD=400V) 16ns(VDD=400V)

Td(off)V Turn off delay time 13ns (VDD=800V) 100ns(VDD=400V) 68ns(VDD=400V)

Tr Rise time 12ns (VDD=800V) 30ns(VDD=400V) 11ns(VDD=400V)

Tf Fall time 7ns (VDD=800V) 15ns(VDD=400V) 6ns(VDD=400V)

Qg, typ 32.6nC 248nC 118nC

Body diode reverse recovery time trr

35ns 210ns 150ns

Body diode charge Qrr 0.120uC 2uC 0.8uC

Note: The comparison is based on the datasheets

Confidential

Gen2 SiC MOSFET Advantage in ZVS Converters

6 Copyright © 2014, Cree Inc.

§  Over 1.2kV blocking voltage.

§  Low Rdson to reduce conduction losses. §  Lower turn off losses due to short fall

time and low Coss.

§  Short turn off delay time can reduce dead time.

§  Lower Qg will allow lower gate drive losses when switching frequency is high.

§  Low body diode trr and Qrr, which will reduce diode switching losses and electrical noise due to short reverse recovery time.

Simplifies Topology

Increases efficiency and power density.

Confidential

DC Gain Design with Resonant Tank Parameters

135KHZ Resonant frequency

Large passive LLC resonant tank

Copyright © 2014, Cree Inc.

Small passive LLC resonant tank

260KHZ Resonant frequency

Si to SiC

DC Gain Curve Lm=100uH Lr=15uH Cr=25nF

Lm=150uH Lr=35uH Cr=40nF

Frequency (KHZ)

Voltage Gain (M)

750V I/P DC Gain

700V I/P DC Gain

650V I/P DC Gain

Frequency (KHZ)

Voltage Gain (M)

fr1

2π Lr Cr⋅:= fr

1

2π Lr Cr⋅:=

Confidential

8KW Full Bridge LLC ZVS Resonant Converter Specification

8 Copyright © 2014, Cree Inc.

Item Parameters

Input Voltage 650Vdc-750Vdc

Rated Input Voltage 700Vdc

Output Voltage 270Vdc

Full loading Current 28A

Input Power 8KW

Resonant Frequency 265KHZ

Frequency Range 230KHZ-320KHZ

Efficiency >98%

Board Size 8”x12.5”x3.5”

Power Density >35W/inch^3

Confidential

Board Size of 8KW Full Bridge LLC Resonant Converter (Size: 8”x12.5”x3.5” )

9 Copyright © 2014, Cree Inc.

Input

Output

Resonant Tank Lm

Lr

Cr

SiC MOS with heatsink

SiC SBD

Controller Gate Driver

Confidential

Three-Level with Si Vs Two-level with SiC (8-10KW case)

10 Copyright © 2014, Cree Inc.

Items Three-level FB w/ Si MOS @ 120KHZ resonant freq.

Two-level FB w/ SiC MOS @ 260KHZ resonant freq.

MOSFETs 16pcs SPW47N60CFD 8pcs C2M0160120D

Flying diode 4pcs None Resonant Inductor 2pcs PQ3535 1pcs PQ3535 Lr=15uH

Magnetize transformer 2pcs PQ5050 1pcs PQ6560 Lm=100uH

Resonant Capacitors 35nF 25nF MOS Drivers 8pcs 4pcs

Waveforms

Confidential

Full Loading with 28A/270V and 700Vdc input

12 Copyright © 2014, Cree Inc.

ip(10A/div) Vab(500V/div)

VgsQ3(10Vdiv)

Q3

Q1

Q4

Q2C1 C2

C3 C4

Lr Cr

Lm

T1 DR1

DR2

Cf

Cbus

a

b

1200VSiC MOS

1200VSiC MOS

1200VSiC MOS

1200VSiC MOS

650V-800V

VgsQ4(10Vdiv)

Rise time

Body diode conduction current

Body diode conduction current

1us/div

Confidential

Half Loading with 14A/270V and 700Vdc input

13 Copyright © 2014, Cree Inc.

Q3

Q1

Q4

Q2C1 C2

C3 C4

Lr Cr

Lm

T1 DR1

DR2

Cf

Cbus

a

b

1200VSiC MOS

1200VSiC MOS

1200VSiC MOS

1200VSiC MOS

650V-800V

Rise time

Body diode conduction current

Body diode conduction current

ip(10A/div) Vab(500V/div)

VgsQ3(10Vdiv) VgsQ4(10Vdiv)

1us/div

Confidential 14 Copyright © 2014, Cree Inc.

Min Loading with 2A/270V and 700Vdc input

Rise time

Q3

Q1

Q4

Q2C1 C2

C3 C4

Lr Cr

Lm

T1 DR1

DR2

Cf

Cbus

a

b

1200VSiC MOS

1200VSiC MOS

1200VSiC MOS

1200VSiC MOS

650V-800V

ip(10A/div) Vab(500V/div)

VgsQ3(10Vdiv) VgsQ4(10Vdiv)

1us/div

Confidential

Full Loading with 28A/270V and 650Vdc input

15 Copyright © 2014, Cree Inc.

ip(10A/div) Vab(500V/div)

VgsQ3(10Vdiv)

Q3

Q1

Q4

Q2C1 C2

C3 C4

Lr Cr

Lm

T1 DR1

DR2

Cf

Cbus

a

b

1200VSiC MOS

1200VSiC MOS

1200VSiC MOS

1200VSiC MOS

650V-800V

VgsQ4(10Vdiv)

Rise time

Body diode conduct current

Body diode conduct current

1us/div

Confidential

Full Loading with 28A/270V and 750Vdc input

16 Copyright © 2014, Cree Inc.

ip(10A/div) Vab(500V/div)

VgsQ3(10Vdiv)

Q3

Q1

Q4

Q2C1 C2

C3 C4

Lr Cr

Lm

T1 DR1

DR2

Cf

Cbus

a

b

1200VSiC MOS

1200VSiC MOS

1200VSiC MOS

1200VSiC MOS

650V-800V

VgsQ4(10Vdiv)

Rise time

Body diode conduction current

Body diode conduction current

1us/div

Scenario One: High Efficiency, Dual SiC MOSFET in parallel per Switch

(SiC C2M0160120D Vs Si SPW47N60CFD)

Confidential

Calculation Losses Breakdown (700Vdc Input and 28A Output full load) @265KHZ SiC 2L and 135KHZ Si 3L (Dual MOS per switch)

18 Copyright © 2014, Cree Inc.

36.8W

15.2W

1.2W

2.72W 10.5W 9.9W 6.1W

6.3W

43.2W

18W SiC MOS Conduction

SiC MOS Switching

SiC MOS Gate Drive

SiC MOS Body Diode

Xfrm T1 Copper

Xfrm T1 Core

Res Ind. L1 Copper

Res Ind. L1 Core

Output Diode

Miscellaneous (Fan)

SiC Two Level @260KHZ Each Loss

(W) Qty Total Loss

(W) Each Item

Total Loss (W)

SiC MOS Conduc,on 4.6 8 36.8

55.92

SiC MOS Switching 1.9 8 15.2 SiC MOS Gate Drive 0.15 8 1.2 SiC MOS Body Diode 0.34 8 2.72 Xfrm T1 PQ60 Copper 10.5 1 10.5

20.4 Xfrm T1 PQ60 Core 9.9 1 9.9 Res Ind. L1 PQ35 Copper 6.1 1 6.1

12.4 Res Ind. L1 PQ35 Core 6.3 1 6.3 Output Diode 10.8 4 43.2 43.2

Miscellaneous (w/Fan) 18 1 18 18

Target Eff. 98.1% Total Loss 149.92W

40W

16W

8W 3.84W

15W 9W

12W 5W

43.2W

18W MOS Conduction

MOS Switching

MOS Gate Drive

MOS Body Diode

Xfrm T1 Copper

Xfrm T1 Core

Res Ind. L1 Copper Res Ind. L1 Core

Output Diode

Si Three-­‐Level @135KHZ Each Loss

(W) Qty Total Loss (W) Total Loss

(W)

Si MOS Conduc,on 2.5 16 40

67.84

Si MOS Switching 1 16 16 Si MOS Gate Drive 0.5 16 8 Si MOS Body Diode 0.24 16 3.84

Xfrm T1 PQ50 Copper 7.5 2 15 24 Xfrm T1 PQ50 Core 4.5 2 9

Res Ind. L1 PQ35 Copper 6 2 12 17 Res Ind. L1 PQ35 Core 2.5 2 5

Output Diode 10.8 4 43.2 43.2 Miscellaneous (w/Fan) 18 1 18 18

Efficiency 97.8% Total 170.04W

Confidential

Efficiency with loading with different Input Voltage (Dual MOSFET per Switch)

19 Copyright © 2014, Cree Inc.

Note: •  Fan cooling the system and efficiency does not include the auxiliary power supply losses for efficiency test

•  One 12W fan to cooling the system

•  Yokogawa WT230 power meter is used to measure input and output current

•  Each data is measured after 3min operation

0.9500

0.9530

0.9560

0.9590

0.9620

0.9650

0.9680

0.9710

0.9740

0.9770

0.9800

0.9830

0.9860

10% 20% 30% 40% 50% 60% 70% 80% 100%

Eff

icie

ncy

Loading

700VDC Input

650VDC Input

750VDC Input

Vin (V) Iin (A) Pin (W) Vout (V) Iout (A) Pout (W) Eff

699.44 0.8951 626.07 274.76 2.1227 583.23 0.9316 699.41 1.2687 887.34 273.13 3.0924 844.63 0.9519 699.43 2.4157 1689.61 272.99 6.0210 1643.67 0.9728 699.46 3.5119 2456.43 273.58 8.7893 2404.58 0.9789 699.44 4.6993 3286.88 274.07 11.7706 3225.97 0.9815 699.45 5.9640 4171.52 274.26 14.9463 4099.17 0.9827 699.45 6.9910 4889.85 274.31 17.5370 4810.57 0.9838 699.45 8.324 5822.22 274.15 20.8940 5728.09 0.9838 699.45 9.3 6504.89 273.95 23.3410 6394.27 0.9830 699.46 10.973 7675.17 273.42 27.5630 7536.28 0.9819

Confidential

Thermal Performance @ full load with fan cooling system (Dual MOSFET per switch)

20 Copyright © 2014, Cree Inc.

Transformer Tr Resonant Inductor Lr SiC MOS Heatsink Output SiC Diode

High Side MOS

O/P Diode

O/P

Diode

Main transfromer

Resonant Inductor

Input port

Output port

Fan

Low Side MOS

Scenario Two: Low Cost, Single SiC MOSFET per Switch

(SiC C2M0160120D Vs Si SPW47N60CFD)

Confidential

Calculation Losses Breakdown (700Vdc Input and 28A Output full load) @265KHZ SiC 2L and 135KHZ Si 3L (Single MOSFET per switch)

22 Copyright © 2014, Cree Inc.

SiC Two Level @260KHZ Each Loss

(W) Qty Total Loss

(W) Each Item

Total Loss (W)

SiC MOS Conduc,on 19.3 4 77.2

92.6

SiC MOS Switching 3.2 4 12.8 SiC MOS Gate Drive 0.15 4 0.6 SiC MOS Body Diode 0.5 4 2 Xfrm T1 PQ60 Copper 10.5 1 10.5

20.4 Xfrm T1 PQ60 Core 9.9 1 9.9 Res Ind. L1 PQ35 Copper 6.1 1 6.1

12.4 Res Ind. L1 PQ35 Core 6.3 1 6.3 Output Diode 10.8 4 43.2 43.2

Miscellaneous (w/Fan) 25 1 25 25

Target Eff. 97.6% Total Loss 193.6W

Si Three-­‐Level @135KHZ Each Loss

(W) Qty Total Loss (W) Total Loss

(W)

Si MOS Conduc,on 10.7 8 85.6

109.6

Si MOS Switching 1.9 8 15.2 Si MOS Gate Drive 0.5 8 4 Si MOS Body Diode 0.6 8 4.8

Xfrm T1 PQ50 Copper 7.5 2 15 24 Xfrm T1 PQ50 Core 4.5 2 9

Res Ind. L1 PQ35 Copper 6 2 12 17 Res Ind. L1 PQ35 Core 2.5 2 5

Output Diode 10.8 4 43.2 43.2 Miscellaneous (w/Fan) 25 1 25 25

Efficiency 97.3% Total 218.8W

77.2W

12.8W

0.6W

2W 10.5W

9.9W 6.1W 6.3W

43.2W

25W SiC MOS Conduction

SiC MOS Switching

SiC MOS Gate Drive

SiC MOS Body Diode

Xfrm T1 Copper

Xfrm T1 Core

Res Ind. L1 Copper

Res Ind. L1 Core

Output Diode

Miscellaneous (Fan)

85.6W

15.2W

4W 4.8W 15W

9W

12W

5W

43.2W

25W MOS Conduction

MOS Switching

MOS Gate Drive

MOS Body Diode

Xfrm T1 Copper

Xfrm T1 Core

Res Ind. L1 Copper

Res Ind. L1 Core

Output Diode

Miscellaneous Fan

Confidential

Efficiency with loading with different Input Voltage (Single MOSFET per switch)

23 Copyright © 2014, Cree Inc.

Note: •  Fan cooling the system and efficiency does not include the auxiliary power supply losses for efficiency test

•  Two 12W fan to cooling the system

•  Yokogawa WT230 power meter is used to measure input and output current

•  Each data is measured after 3min operation

Vin(V) Iin (A) Pin(W) Vout(V) Iout(A) Pout(W) Eff

699.34 0.8886 621.43 274.41 2.1173 581.01 0.9349 699.36 1.2630 883.29 273.43 3.0762 841.13 0.9523 699.36 2.3918 1672.73 271.55 5.9916 1627.02 0.9727 699.37 3.4630 2421.92 271.92 8.7177 2370.52 0.9788 699.48 4.6241 3234.47 272.17 11.6563 3172.50 0.9808 699.39 5.8720 4106.82 272.29 14.8070 4031.80 0.9817 699.41 6.9010 4826.63 272.60 17.3850 4739.15 0.9819 699.43 8.262 5778.69 273.01 20.7690 5670.14 0.9812 699.41 9.272 6484.93 273.2 23.2650 6356.00 0.9801 699.43 10.998 7692.33 272.91 27.5770 7526.04 0.9784

0.930 0.933 0.936 0.939 0.942 0.945 0.948 0.951 0.954 0.957 0.960 0.963 0.966 0.969 0.972 0.975 0.978 0.981 0.984

10% 20% 30% 40% 50% 60% 70% 80% 100% E

ffic

ien

cy

Loading

Input 700V

Input 650V

Input 750V

Confidential

Thermal Performance @ full load with fan cooling system (Single MOSFET per switch)

24 Copyright © 2014, Cree Inc.

Transformer Tr Resonant Inductor Lr SiC MOS Heatsink Output SiC Diode

High Side MOS

O/P Diode

O/P

Diode

Main transfromer

Resonant Inductor

Input port

Output

port

Fan

Low Side MOS

Fan

Confidential

Efficiency Difference Dual MOSFET vs. Single MOSFET per switch @ 700Vdc Input

25 Copyright © 2014, Cree Inc.

93.0%

93.5%

94.0%

94.5%

95.0%

95.5%

96.0%

96.5%

97.0%

97.5%

98.0%

98.5%

5% 10% 20% 30% 40% 50% 60% 70% 80% 100%

Eff

icie

ncy

Loading

Single MOS Per Switch

Dual MOS Per Switch

Confidential

Summary

•  Reduce system complexity and lower part count with a simplified 2-Level ZVS

topology.

•  Optimize solution

–  To Improve efficiency performance.

–  To reduce system cost.

•  Reduce system weight and size by designing to a higher resonant frequency.

26 Copyright © 2012, Cree Inc.

Appendix: Simplify SiC MOS driver Circuit for LLC Full

Bridge Topology

27 Copyright © 2014 Cree Inc.

Confidential

Proposed Full Bridge topology SiC MOS gate drive circuit

28 Copyright © 2014, Cree Inc.

Minus voltage generator for turn off

§  The -ve voltage for turn-off is generated by charging 1uF cap across 2V zener when MOS is turned on.

§  The MOSFET on secondary side of gate drive transformer speeds up turn off turn-off of SiC MOS.

§  1:2 gate drive transformer turns ratio allows a single 12V supply voltage for gate drive without any additional voltage supply requirements.

Confidential