Friction Modelling and Validation for a Volumetric Contact Dynamics Model

53
Motivation Volumetric Model Experiments Conclusions Friction Modelling and Validation for a Volumetric Contact Dynamics Model Mike Boos and John McPhee Department of Systems Design Engineering University of Waterloo Canada May 30, 2012 Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 1/ 27

description

A volumetric contact dynamics model has been proposed for the purpose of generating reliable and rapid simulations of contact dynamics. Forces and moments between bodies in contact can be expressed in terms of the volume of interference between the undeformed geometries. This allows for the modelling of contact between complex geometries and relatively large contact surfaces. It also permits the modelling of rotational dynamics, such as spinning friction torque or the Contensou effect, when friction forces are distributed over a larger surface area. However, the volumetric model requires experimental validation. Models for simple geometries in contact have been developed for both translational and rotational motion; an apparatus has been developed to experimentally validate these models. This paper focuses on validation of the volumetric friction contact models. Measurements of forces and displacements will be used to identify the parameters related to the friction force, i.e.\ the bristle stiffness and damping, and coefficients of friction for metallic surfaces. The experimental measurements are compared with simulated results to assess the validity of the volumetric friction model.

Transcript of Friction Modelling and Validation for a Volumetric Contact Dynamics Model

Page 1: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Friction Modelling and Validation for aVolumetric Contact Dynamics Model

Mike Boos and John McPhee

Department of Systems Design EngineeringUniversity of Waterloo

Canada

May 30, 2012

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 1/ 27

Page 2: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Outline

1 Motivation

2 Volumetric ModelVolumetric model frameworkBasic friction model frameworkBristle modelContensou effect

3 ExperimentsOverview and apparatusResults

4 Conclusions

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 2/ 27

Page 3: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Outline

1 Motivation

2 Volumetric ModelVolumetric model frameworkBasic friction model frameworkBristle modelContensou effect

3 ExperimentsOverview and apparatusResults

4 Conclusions

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 3/ 27

Page 4: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Motivation

Figure: Dextre at the tip of Canadarm2.

Electrical

Connectors

Alignment

Sleeve

Alignment

Pins

Micro Fixture

Coarse

Alignment Bumper

36"28"

12"

Battery WorksiteBattery

Worksite

SPDM

OTCM

Figure: ISS battery box.

(Gonthier, 2007)

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 4/ 27

Page 5: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Motivation

Figure: Dextre at the tip of Canadarm2.

Falling ISS battery box:real-time.

(Gonthier, 2007)

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 4/ 27

Page 6: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Contact Models

Efficient yet high-fidelitysimulations required

Point contact models

Small contact patches only

Simple, convex geometries

No rolling resistance,spinning friction torque

FEM

Too complex for real-time

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 5/ 27

Page 7: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Outline

1 Motivation

2 Volumetric ModelVolumetric model frameworkBasic friction model frameworkBristle modelContensou effect

3 ExperimentsOverview and apparatusResults

4 Conclusions

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 6/ 27

Page 8: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Volumetric contact dynamics model

Gonthier and McPhee

Larger, more complex, and conforming contact patchespossible

Includes both translational (normal and friction forces) androtational (rolling resistance and spinning friction torque)dynamics

Normal force model validated (Boos and McPhee, 2011)

Friction model validation still required

Tippe-top simulation with volumetric contact model.

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 7/ 27

Page 9: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Volumetric contact dynamics model

Gonthier and McPhee

Larger, more complex, and conforming contact patchespossible

Includes both translational (normal and friction forces) androtational (rolling resistance and spinning friction torque)dynamics

Normal force model validated (Boos and McPhee, 2011)

Friction model validation still required

Tippe-top simulation with volumetric contact model.

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 7/ 27

Page 10: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Volumetric contact dynamics model

Gonthier and McPhee

Larger, more complex, and conforming contact patchespossible

Includes both translational (normal and friction forces) androtational (rolling resistance and spinning friction torque)dynamics

Normal force model validated (Boos and McPhee, 2011)

Friction model validation still required

Tippe-top simulation with volumetric contact model.

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 7/ 27

Page 11: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Volumetric model

B1

B2

fn

kv

Figure: Modified Winkler elasticfoundation model.

B1

B2

n

S

δ(s)

s

Contact plate

Force element

dfn = kvδ(s)n

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 8/ 27

Page 12: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Volumetric model

B1

B2

n

S

δ(s)

s

Contact plate

B1

B2

n

S

pc

sc

ρs ρv

sp

V =∫S δ(s)dS

pc =∫V pdV

V

Js =∫S((ρs ·ρs)I−ρsρs)δ(s)dS

Jv =∫V ((ρv · ρv)I− ρvρv)dV

J{s,v}n = r2gyrV n

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 9/ 27

Page 13: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Volumetric model

B1

B2

n

S

δ(s)

s

Contact plate

B1

B2

n

S

pc

sc

ρs ρv

sp

V =∫S δ(s)dS

pc =∫V pdV

V

Js =∫S((ρs ·ρs)I−ρsρs)δ(s)dS

Jv =∫V ((ρv · ρv)I− ρvρv)dV

J{s,v}n = r2gyrV n

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 9/ 27

Page 14: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Volumetric model

B1

B2

n

S

δ(s)

s

Contact plate

B1

B2

n

S

pc

sc

ρs ρv

sp

V =∫S δ(s)dS

pc =∫V pdV

V

Js =∫S((ρs ·ρs)I−ρsρs)δ(s)dS

Jv =∫V ((ρv · ρv)I− ρvρv)dV

J{s,v}n = r2gyrV n

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 9/ 27

Page 15: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Volumetric model

B1

B2

n

S

δ(s)

s

Contact plate

B1

B2

n

S

pc

sc

ρs ρv

sp

V =∫S δ(s)dS

pc =∫V pdV

V

Js =∫S((ρs ·ρs)I−ρsρs)δ(s)dS

Jv =∫V ((ρv · ρv)I− ρvρv)dV

J{s,v}n = r2gyrV n

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 9/ 27

Page 16: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Volumetric model

B1

B2

n

S

δ(s)

s

Contact plate

B1

B2

n

S

pc

sc

ρs ρv

sp

V =∫S δ(s)dS

pc =∫V pdV

V

Js =∫S((ρs ·ρs)I−ρsρs)δ(s)dS

Jv =∫V ((ρv · ρv)I− ρvρv)dV

J{s,v}n = r2gyrV n

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 9/ 27

Page 17: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Normal Forces

B1

B2

τ s

τ r

fn

f t

dfn = kvδ(s)(1 + a vn)n

a - damping factor

vn - relative normal velocity

Normal force

fn = kvV (1 + a vcn)n

vcn - relative normal velocity atcentroid

Rolling resistance torque

τ r = kv aJs · ωt

ωt - relative tangential angularvelocity

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 10/ 27

Page 18: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Normal Forces

B1

B2

τ s

τ r

fn

f t

dfn = kvδ(s)(1 + a vn)n

a - damping factor

vn - relative normal velocity

Normal force

fn = kvV (1 + a vcn)n

vcn - relative normal velocity atcentroid

Rolling resistance torque

τ r = kv aJs · ωt

ωt - relative tangential angularvelocity

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 10/ 27

Page 19: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Normal Forces

B1

B2

τ s

τ r

fn

f t

dfn = kvδ(s)(1 + a vn)n

a - damping factor

vn - relative normal velocity

Normal force

fn = kvV (1 + a vcn)n

vcn - relative normal velocity atcentroid

Rolling resistance torque

τ r = kv aJs · ωt

ωt - relative tangential angularvelocity

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 10/ 27

Page 20: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Basic friction model

B1

B2

τ s

τ r

fn

f t

df t = −µdfnvt

vt - relative tangential velocity

Friction force

f t = −µ fnvsct

vsct - relative tangentialvelocity at centroid

Spinning friction torque

τ s = −µ r2gyrfnωn

ωn - relative normal angularvelocity

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 11/ 27

Page 21: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Basic friction model

B1

B2

τ s

τ r

fn

f t

df t = −µdfnvt

vt - relative tangential velocity

Friction force

f t = −µ fnvsct

vsct - relative tangentialvelocity at centroid

Spinning friction torque

τ s = −µ r2gyrfnωn

ωn - relative normal angularvelocity

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 11/ 27

Page 22: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Basic friction model

B1

B2

τ s

τ r

fn

f t

df t = −µdfnvt

vt - relative tangential velocity

Friction force

f t = −µ fnvsct

vsct - relative tangentialvelocity at centroid

Spinning friction torque

τ s = −µ r2gyrfnωn

ωn - relative normal angularvelocity

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 11/ 27

Page 23: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Stick-slip state

Average surface velocity

v2avg = vsct · vsct + (rgyr|ωn|)2

Stick-slip state

s = e−

v2avgv2s vs - Stribeck velocity

Maximum friction coefficient

µmax = µC + (µS − µC) sCan add lag to s for dwell time dependency.

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 12/ 27

Page 24: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Stick-slip state

Average surface velocity

v2avg = vsct · vsct + (rgyr|ωn|)2

Stick-slip state

s = e−

v2avgv2s vs - Stribeck velocity

Maximum friction coefficient

µmax = µC + (µS − µC) sCan add lag to s for dwell time dependency.

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 12/ 27

Page 25: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Stick-slip state

Average surface velocity

v2avg = vsct · vsct + (rgyr|ωn|)2

Stick-slip state

s = e−

v2avgv2s vs - Stribeck velocity

Maximum friction coefficient

µmax = µC + (µS − µC) s

Can add lag to s for dwell time dependency.

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 12/ 27

Page 26: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Stick-slip state

Average surface velocity

v2avg = vsct · vsct + (rgyr|ωn|)2

Stick-slip state

s = e−

v2avgv2s vs - Stribeck velocity

Maximum friction coefficient

µmax = µC + (µS − µC) sCan add lag to s for dwell time dependency.

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 12/ 27

Page 27: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Bristle model

fN

Contact sites

Surface asperities (‘bristles’) incontact.

Bristle properties

Deformation: zsc

Rotation: θn

Parameters

Stiffness: σo

Damping: σ1

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 13/ 27

Page 28: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Bristle model

fN

Contact sites

Surface asperities (‘bristles’) incontact.

Bristle properties

Deformation: zsc

Rotation: θn

Parameters

Stiffness: σo

Damping: σ1

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 13/ 27

Page 29: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Tangential friction forces

Friction force

f t = −fn (sat(σo zsc + σ1 zsc, µmax) + σ2 vsct)

Bristle deformation rate

zsc = svsct + (1− s)(1σ1 µC dirε(vsct, vε)− σo

σ1 zsc

)

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 14/ 27

Page 30: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Tangential friction forces

Friction force

f t = −fn (sat(σo zsc + σ1 zsc, µmax) + σ2 vsct)

Bristle deformation rate

zsc = svsct + (1− s)(1σ1 µC dirε(vsct, vε)− σo

σ1 zsc

)

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 14/ 27

Page 31: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Spinning friction torque

Spinning friction torque

τ s = −r2gyr fn(sat(σo θn + σ1 θn,

µmaxrgyr

)+ σ2 ωn

)n

Bristle deformation rate

θn = s ωn + (1− s)(

µCσ1 rgyr sgn(ωn)− σo

σ1 θn

)

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 15/ 27

Page 32: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

Spinning friction torque

Spinning friction torque

τ s = −r2gyr fn(sat(σo θn + σ1 θn,

µmaxrgyr

)+ σ2 ωn

)n

Bristle deformation rate

θn = s ωn + (1− s)(

µCσ1 rgyr sgn(ωn)− σo

σ1 θn

)

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 15/ 27

Page 33: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

The Contensou effect

Translational friction forcestend to ‘cancel out’ as angularvelocity increases.

Contensou factors

Cv =|vsct|vavg

Cω =rgyr|ωn|vavg

We now need to update theslipping coefficient in ourbristle dyanmics equations toinclude these factors.

C

A Bv

ωvA

vB

vC

vDD

ω r

ω r

ω r

ω r

v << ωr (Gonthier, 2007)

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 16/ 27

Page 34: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

The Contensou effect

Translational friction forcestend to ‘cancel out’ as angularvelocity increases.

Contensou factors

Cv =|vsct|vavg

Cω =rgyr|ωn|vavg

We now need to update theslipping coefficient in ourbristle dyanmics equations toinclude these factors.

C

A Bv

ωvA

vB

vC

vDD

ω r

ω r

ω r

ω r

v << ωr (Gonthier, 2007)

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 16/ 27

Page 35: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Volumetric model frameworkBasic friction model frameworkBristle modelContensou effect

The Contensou effect

Translational friction forcestend to ‘cancel out’ as angularvelocity increases.

Contensou factors

Cv =|vsct|vavg

Cω =rgyr|ωn|vavg

We now need to update theslipping coefficient in ourbristle dyanmics equations toinclude these factors.

C

A Bv

ωvA

vB

vC

vDD

ω r

ω r

ω r

ω r

v << ωr (Gonthier, 2007)

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 16/ 27

Page 36: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Overview and apparatusResults

Outline

1 Motivation

2 Volumetric ModelVolumetric model frameworkBasic friction model frameworkBristle modelContensou effect

3 ExperimentsOverview and apparatusResults

4 Conclusions

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 17/ 27

Page 37: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Overview and apparatusResults

Friction force experiments

Identify parameters

Verify parameters Contensou effect

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 18/ 27

Page 38: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Overview and apparatusResults

Friction force experiments

Identify parameters Verify parameters

Contensou effect

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 18/ 27

Page 39: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Overview and apparatusResults

Friction force experiments

Identify parameters Verify parameters Contensou effect

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 18/ 27

Page 40: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Overview and apparatusResults

Friction apparatus

Cylindrical

payload

Rotational

motor

Linear

motor

Encoder

reference

Linear

encoder

3DOF force sensors

Contact

surface

z

y

x

z

y

x

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 19/ 27

Page 41: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Overview and apparatusResults

Static friction, tangential motion

Coefficient of static friction

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

0.05

0.1

0.15

0.2

0.25

Displacement (mm)

Friction o

ver

norm

al fo

rce m

agnitudes

Force measurements

Force measurements adjusted by rotation

Average µS ≈ 0.2

Bristle parameters

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time (s)

Coeffic

ient of fr

ictio

n

Measured coefficients

Model − bristle stiffness only

Model − bristle stiffness and damping

σo ≈ 4500 m−1 σ1 ≈ 300 sm−1

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 20/ 27

Page 42: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Overview and apparatusResults

Static friction, tangential motion

Coefficient of static friction

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

0.05

0.1

0.15

0.2

0.25

Displacement (mm)

Friction o

ver

norm

al fo

rce m

agnitudes

Force measurements

Force measurements adjusted by rotation

Average µS ≈ 0.2

Bristle parameters

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time (s)C

oeffic

ient of fr

ictio

n

Measured coefficients

Model − bristle stiffness only

Model − bristle stiffness and damping

σo ≈ 4500 m−1 σ1 ≈ 300 sm−1

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 20/ 27

Page 43: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Overview and apparatusResults

Dynamic friction, tangential motion

Coefficient of kinetic friction

0 1 2 3 4 5 6 7 8 90

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (s)

Coeffic

ient of fr

iction

Average µC ≈ 0.2

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 21/ 27

Page 44: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Overview and apparatusResults

Rotational motion

Coefficient of static friction

0 0.5 1 1.5 2 2.5−0.05

0

0.05

0.1

0.15

0.2

Rotation (degrees)

Coeffic

ient of fr

iction

Average µS ≈ 0.2

Coefficient of kinetic friction

0 1 2 3 4 5 6 7 8 9 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (s)

Coeffic

ient of fr

iction

Average µC ≈ 0.2

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 22/ 27

Page 45: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Overview and apparatusResults

Rotational motion

Coefficient of static friction

0 0.5 1 1.5 2 2.5−0.05

0

0.05

0.1

0.15

0.2

Rotation (degrees)

Coeffic

ient of fr

iction

Average µS ≈ 0.2

Coefficient of kinetic friction

0 1 2 3 4 5 6 7 8 9 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (s)C

oeffic

ient of fr

iction

Average µC ≈ 0.2

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 22/ 27

Page 46: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Overview and apparatusResults

Contensou effect

Tangential friction force

0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (s)

Co

eff

icie

nt

of

Frictio

n

Measured coefficients

Model coefficients

Spinning friction torque

0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (s)

Co

eff

icie

nt

of

Frictio

n

Measured coefficients

Model coefficients

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 23/ 27

Page 47: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Outline

1 Motivation

2 Volumetric ModelVolumetric model frameworkBasic friction model frameworkBristle modelContensou effect

3 ExperimentsOverview and apparatusResults

4 Conclusions

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 24/ 27

Page 48: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Conclusions

Volumetric contact dynamics model discussed

Experimental procedure and apparatus developed for frictionforce parameter identification and validation

Parameters identified and verified for translation and rotation

Contensou effect demonstrated and Contensou factorsvalidated

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 25/ 27

Page 49: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Conclusions

Volumetric contact dynamics model discussed

Experimental procedure and apparatus developed for frictionforce parameter identification and validation

Parameters identified and verified for translation and rotation

Contensou effect demonstrated and Contensou factorsvalidated

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 25/ 27

Page 50: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Conclusions

Volumetric contact dynamics model discussed

Experimental procedure and apparatus developed for frictionforce parameter identification and validation

Parameters identified and verified for translation and rotation

Contensou effect demonstrated and Contensou factorsvalidated

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 25/ 27

Page 51: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Conclusions

Volumetric contact dynamics model discussed

Experimental procedure and apparatus developed for frictionforce parameter identification and validation

Parameters identified and verified for translation and rotation

Contensou effect demonstrated and Contensou factorsvalidated

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 25/ 27

Page 52: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Research supported by

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 26/ 27

Page 53: Friction Modelling and Validation for a Volumetric Contact Dynamics Model

MotivationVolumetric Model

ExperimentsConclusions

Questions

Mike Boos and John McPhee Friction for a Volumetric Contact Dynamics Model 27/ 27