Frederick N. Eko, MD Senior Fellow Division of Plastic Surgery Department of Surgery Tulane...

110
Wound Healing and the Problem Wound Frederick N. Eko, MD Senior Fellow Division of Plastic Surgery Department of Surgery Tulane University School of Medicine
  • date post

    22-Dec-2015
  • Category

    Documents

  • view

    214
  • download

    0

Transcript of Frederick N. Eko, MD Senior Fellow Division of Plastic Surgery Department of Surgery Tulane...

  • Slide 1
  • Frederick N. Eko, MD Senior Fellow Division of Plastic Surgery Department of Surgery Tulane University School of Medicine
  • Slide 2
  • History of Wound Healing 1700 BC Papyrus: Lint/animal grease/honey 100 BC Egypt: Wound closure preserved soul 1000 AD Gun Powder 1500 AD Hot Oil 20 th Century Scientific Method
  • Slide 3
  • Wounds Customize Shotgun approach not acceptable No two patients OR wounds are identical 58y DM, Neuropathy: unaware of R foot gangrene
  • Slide 4
  • Slide 5
  • Wounds
  • Slide 6
  • Reconstructive Ladder Simple to Complex Formal Debridement, Elevation/ABIs Appropriate IV ABX, Wound Vac, Skin Graft
  • Slide 7
  • Review of Wound Healing Three basic types of healing Primary Delayed Primary Secondary
  • Slide 8
  • Primary Wound surfaces opposed Healing without complications Minimal new tissue Results optimal
  • Slide 9
  • Delayed Primary Left open initially Edges approximated 4-6 days later
  • Slide 10
  • Secondary Surfaces not approximated Defect filled by granulation Covered with epithelium Less functional More sensitive to thermal and mechanical injury
  • Slide 11
  • Secondary Wound Healing
  • Slide 12
  • Slide 13
  • Slide 14
  • Three Phases of Wound Healing Inflammatory Phase Proliferative Phase Remodeling Phase
  • Slide 15
  • Slide 16
  • Three Phases of Wound Healing Inflammatory Phase Proliferative Phase Begins when wound is covered by epithelium Production of collagen is hallmark 7 days to 6 weeks Remodeling Phase (Maturation Phase)
  • Slide 17
  • Inflammatory Phase Hemostasis and Inflammation Days 4 - 6 Exposed collagen activates clotting cascade and inflammatory phase Fibrin clot = scaffolding and concentrate cytokines and growth factors
  • Slide 18
  • Inflammatory: Granulocytes First 48 hours (Neutrophils) Attracted by inflammatory mediators Oxygen-derived free radicals Non-specific
  • Slide 19
  • Inflammatory: Macrophages Monocytes attracted to area by complement Activated by: fibrin foreign body material exposure to hypoxic and acidotic environment Reached maximum after 24 hours Remain for weeks
  • Slide 20
  • Inflammatory: Macrophages Activated Macrophage: Essential for progression onto Proliferative Phase Mediate: Angiogenesis: FGF, PDGF, TGF- & and TNF- Fibroplasia: ILs, EGF and TNF Synthesize NO Secrete collagenases
  • Slide 21
  • Slide 22
  • Slide 23
  • Inflammatory Phase
  • Slide 24
  • Slide 25
  • Slide 26
  • Three Phases of Wound Healing Inflammatory Phase Proliferative Phase Remodeling Phase
  • Slide 27
  • Proliferative Phase Epithelization, Angiogenesis and Provisional Matrix Formation Begins when wound is covered by epithelium Day 4 through 14 Production of collagen is hallmark 7 days to 6 weeks
  • Slide 28
  • Epithelialization Basal epithelial cells at the wound margin flatten (mobilize) and migrate into the open wound Basal cells at margin multiply (mitosis) in horizontal direction ) Basal cells behind margin undergo vertical growth (differentiation )
  • Slide 29
  • Slide 30
  • Proliferative: Fibroblast Work horse of wound repair Produce Granulation Tissue: Main signals are PDGF and EGF Collagen type III Glycosaminoglycans Fibronectin Elastin fibers Tissue fibroblasts become myofibroblasts induced by TGF-1
  • Slide 31
  • Wound Contraction Actual contraction with pulling of edges toward center making wounds smaller Myofibroblast: contractile properties Surrounding skin stretched, thinned Original dermal thickness maintained No hair follicles, sweat glands
  • Slide 32
  • Epithelialization/Contraction
  • Slide 33
  • Epithelialization
  • Slide 34
  • Slide 35
  • Collagen Homeostasis After Wounding (Optimal Healing) Days 3 - 7 Collagen production begins Days 7 42 Synthesis with a net GAIN of collagen Initial increase in tensile strength due to increased amount of collagen Days 42+ Remodeling with No net collagen gain
  • Slide 36
  • Collagen Normal Skin collagen ratio 4 : 1 Type I/III Hypertrophic Scar collagen ratio 2 : 1 Type I/III
  • Slide 37
  • Proliferative Phase
  • Slide 38
  • Three Phases of Wound Healing Inflammatory Phase Proliferative Phase Remodeling Phase
  • Slide 39
  • Maturation Phase Random to organized fibrils Day 8 through years Type III replaced by type I Wound may increase in strength for up to 2 years after injury Collagen organization Cross linking of collagen
  • Slide 40
  • Maturation Phase
  • Slide 41
  • Impaired Wound Healing
  • Slide 42
  • Wound Healing To treat the wound, you have to treat the patient Optimize the patient Circulatory Pulmonary Nutrition Associated diseases or conditions
  • Slide 43
  • Oxygen Fibroblasts are oxygen-sensitive PO2 < 40 mmHg collagen synthesis cannot take place Decreased PO2: most common cause of wound infection Healing is Energy Dependent Proliferative Phase has greatly increased metabolism and protein synthesis
  • Slide 44
  • Hypoxia: Endothelium responds with vasodilation Capillary leak Fibrin deposition TNF-a induction and apoptosis
  • Slide 45
  • Edema Increased tissue pressure Compromise perfusion Cell death and tissue ulceration
  • Slide 46
  • Infection Decreased tissue PO2 and prolongs the inflammatory phase Impaired angiogenesis and epithelialization Increased collagenase activity
  • Slide 47
  • Nutrition Low protein levels prolong inflammatory phase Impaired fibroplasia Of the essential amino Methionine is critical Hydration A well hydrated wound will epithelialize faster than a dry one Occlusive wound dressings hasten epithelial repair and control the proliferation of granulation tissue
  • Slide 48
  • Temperature Wound healing is accelerated at environmental temperatures of 30C Tensile strength decreases by 20% in a cold (12C) wound environment Denervation Denervation has no effect on either wound contraction or epithelialization
  • Slide 49
  • Diabetes Mellitus Larger arteries, rather than the arterioles, are typically affected Sorbitol accumulation Increased dermal vascular permeability and pericapillary albumin deposition Impaired oxygen and nutrient delivery Stiffened red blood cells and increased blood viscosity Affinity of glycosylated hemoglobin for oxygen contributing to low O2 delivery Impaired phagocytosis and bacterial killing Neuropathy
  • Slide 50
  • Radiation Therapy Acute radiation injury stasis and occlusion of small vessels fibrosis and necrosis of capillaries decrease in wound tensile strength direct, permanent, adverse effect on fibroblast may be progressive fibroblast defects are the central problem in the healing of chronic radiation injury
  • Slide 51
  • Medications Steroids Stabilize lysosomes and arrest of inflammation response Inhibit both macrophages and neutrophils Interferes with fibrogenesis, angiogenesis, and wound contraction Also direct effect on Fibroblasts Minimal endoplasmic reticulum Vitamin A oral ingestion of 25,000 IU per day pre op and 3d post op (not to pregnant women) Restores inflammatory response and promotes epithelializaton Does not reverse detrimental effects on contraction and infection
  • Slide 52
  • Nutritional Supplements Vitamin C ( Ascorbic Acid) Essential cofactor in synthesis of collagen Excessive concentrations of ascorbic acid do not promote supranormal healing Vitamin E Therapeutic efficacy and indications remain to be defined Large doses of vitamin E inhibit healing Increase the breaking strength of wounds exposed to preoperative irradiation
  • Slide 53
  • Nutritional Supplements Glutamine Enhance actions of lymphocytes, macrophages and neutrophils Glycine Inhibitory effect on leukocytes, might reduce inflammation related tissue injury Zinc common constituent of dozens of enzymes Influences B and T cell activity epithelial and fibroblastic proliferation is impaired in patients with low serum zinc levels
  • Slide 54
  • Factors in Wound Healing Smoking 1ppd = 3x freq of flap necrosis 2ppd = 6x freq of flap necrosis Nicotine acts via the sympathetic system Vasoconstriction and limit distal perfusion 1 cigarette = vasoconstriction > 90 min Decrease proliferation of erythrocytes, macrophages and fibroblasts Smoke contains high levels of carbon monoxide shifts the oxygen-hemoglobin curve to the left decreased tissue oxygen delivery
  • Slide 55
  • Syndromes Associated with Abnormal Wound Healing Cutis Laxa Think defective elastin fibers Congenital AD, recessive or X-linked recessive Acquired Drug, neoplasms or inflammatory skin conditions Ehlers-Danlos Syndrome Think defective collagen metabolism AD and recessive patters 10 phenotypes
  • Slide 56
  • Slide 57
  • Syndromes Associated with Abnormal Wound Healing Ehlers-Danlos Syndrome Connective tissue abnormalities due to defects: Inherent strength Elasticity Integrity Healing properties
  • Slide 58
  • Syndromes Associated with Abnormal Wound Healing Ehlers-Danlos Syndrome Four major clinical features Skin hyper-extensibility Joint hyper-mobility Tissue fragility Poor wound healing
  • Slide 59
  • Slide 60
  • Electrostimulation Electrical current applied to wounds Increases migration of cells 109% increase in collagen 40% increase in tensile strength 1 to 50 mA direct or pulsed based on wound
  • Slide 61
  • Hyperbaric Oxygen Developed 1662 by Henshaw: Domicillium Atmospheric pressure at sea level = 1 ATA = 1.5ml O2/dL Normal SubQ O2 tension is 30-50 mmHg. SubQ O2 tension < 30 mmHg = chronic wound
  • Slide 62
  • Excessive Healing Hypertrophic Scars Keloids
  • Slide 63
  • Hypertropic Scar
  • Slide 64
  • Keloids Extends beyond original bounds Raised and firm Rarely occur distal to wrist or knee Predilection for sternum, mandible and deltoid Rate of collagen synthesis increased Water content higher Increased glycosaminoglycans
  • Slide 65
  • Keloid Treatment Triamcinolone (steroid) injections 3-4 weeks Cross linking modulated Injections continued until no excess abnormal collagen Excise Prevention during healing pressure and injection
  • Slide 66
  • Keloid
  • Slide 67
  • Slide 68
  • Keloid Scar
  • Slide 69
  • Slide 70
  • Marjolins Ulcer Jean-Nicolas Marjolin (1828) Aggressive ulcerating SCC Occurs in setting of chronic inflammation Burn wounds Venous stasis ulcers Previous radiation therapy Characterized by Slow growth Painless Persistent granulation
  • Slide 71
  • Slide 72
  • Questions
  • Slide 73
  • The proliferative phase of wound healing occurs how long after the injury? A. 1 day B. 2 days C. 7 days D. 14 days
  • Slide 74
  • The proliferative phase of wound healing occurs how long after the injury? A. 1 day B. 2 days C. 7 days D. 14 days
  • Slide 75
  • Which type of collagen is most important in wound healing? A. Type III B. Type V C. Type VII D. Type XI
  • Slide 76
  • Which type of collagen is most important in wound healing? A. Type III B. Type V C. Type VII D. Type XI
  • Slide 77
  • The tensile strength of a wound reaches normal (pre-injury) levels: A. 10 days after injury B. 3 months after injury C. 1 year after injury D. never
  • Slide 78
  • The tensile strength of a wound reaches normal (pre-injury) levels: A. 10 days after injury B. 3 months after injury C. 1 year after injury D. never
  • Slide 79
  • Which of the following is commonly seen in Ehlers- Danlos syndrome? A. Small bowel obstructions B. Spontaneous thrombosis C. Direct hernia in children D. Abnormal scarring of the hands with contractures.
  • Slide 80
  • Which of the following is commonly seen in Ehlers- Danlos syndrome? A. Small bowel obstructions B. Spontaneous thrombosis C. Direct hernia in children D. Abnormal scarring of the hands with contractures.
  • Slide 81
  • Steroids impair wound healing by: A. Decreasing angiogenesis and macrophage migration B. Decreasing platelet plug integrity C. Increasing release of lysosomal enzymes D. Increasing fibrinolysis
  • Slide 82
  • Steroids impair wound healing by: A. Decreasing angiogenesis and macrophage migration B. Decreasing platelet plug integrity C. Increasing release of lysosomal enzymes D. Increasing fibrinolysis
  • Slide 83
  • Supplementation of which of the following micronutrients improves wound healing in patients without micronutrient deficiency? A. Vitamin C B. Vitamin A C. Selenium D. Zinc
  • Slide 84
  • Supplementation of which of the following micronutrients improves wound healing in patients without micronutrient deficiency? A. Vitamin C B. Vitamin A C. Selenium D. Zinc
  • Slide 85
  • Signs of malignant transformation in a chronic wound include: A. Persistent granulation tissue with bleeding B. Overturned wound edges C. Non-healing after 2 weeks of therapy D. Distal edema
  • Slide 86
  • Signs of malignant transformation in a chronic wound include: A. Persistent granulation tissue with bleeding B. Overturned wound edges C. Non-healing after 2 weeks of therapy D. Distal edema
  • Slide 87
  • The treatment of choice for keloids is: A. Excision alone B. Excision with adjuvant therapy (e.g. radiation) C. Pressure treatment D. Intralesional injection of steroids
  • Slide 88
  • The treatment of choice for keloids is: A. Excision alone B. Excision with adjuvant therapy (e.g. radiation) C. Pressure treatment D. Intralesional injection of steroids
  • Slide 89
  • The major cause of impaired wound healing is: A. Anemia B. Diabetes mellitus C. Local tissue infection D. Malnutrition
  • Slide 90
  • The major cause of impaired wound healing is: A. Anemia B. Diabetes mellitus C. Local tissue infection D. Malnutrition
  • Slide 91
  • Bradykinin, serotonin, and histamine in wounds are released from: A. Lymphocytes B. Mast cells C. Polymorphonuclear leukocytes D. Platelets
  • Slide 92
  • Bradykinin, serotonin, and histamine in wounds are released from: A. Lymphocytes B. Mast cells C. Polymorphonuclear leukocytes D. Platelets
  • Slide 93
  • Platelets in the wound form a hemostatic clot and release clotting factors to produce: A. Fibrin B. Fibrinogen C. Thrombin D. Thromboplastin
  • Slide 94
  • Platelets in the wound form a hemostatic clot and release clotting factors to produce: A. Fibrin B. Fibrinogen C. Thrombin D. Thromboplastin
  • Slide 95
  • In a healing wound, metalloproteinases are responsible for: A. Establishing collagen cross-link B. Glycosylation of collagen molecules C. Incorporation of hydroxyproline into the collagen chain D. Initiating collagen degradation
  • Slide 96
  • In a healing wound, metalloproteinases are responsible for: A. Establishing collagen cross-link B. Glycosylation of collagen molecules C. Incorporation of hydroxyproline into the collagen chain D. Initiating collagen degradation
  • Slide 97
  • Severe cases of hidradenitis suppurativa in the groin area are best managed by excision of the involved area and? A. Closure by secondary intension B. Delayed primary closure C. Primary closure D. Split thickness skin grafting
  • Slide 98
  • Severe cases of hidradenitis suppurativa in the groin area are best managed by excision of the involved area and? A. Closure by secondary intension B. Delayed primary closure C. Primary closure D. Split thickness skin grafting
  • Slide 99
  • All of the following statements about keloids are true except? A. Keloids do not regress spontaneously B. Keloids extend beyond the boundaries of the original wound C. Keloids or hypertrophic scars are best managed by excision and careful reapproximation of the wound D. Keloid tissue contains an abnormally large amount of collagen.
  • Slide 100
  • All of the following statements about keloids are true except? A. Keloids do not regress spontaneously B. Keloids extend beyond the boundaries of the original wound C. Keloids or hypertrophic scars are best managed by excision and careful reapproximation of the wound D. Keloid tissue contains an abnormally large amount of collagen.
  • Slide 101
  • The following photograph most accurately demonstrates: A. Hypertropic Scar B. Auricular Lymphedema C. Keloid Scar D. Cauliflower ear
  • Slide 102
  • The following photograph most accurately demonstrates: A. Hypertropic Scar B. Auricular Lymphedema C. Keloid Scar D. Cauliflower ear
  • Slide 103
  • The Proliferative Phase of wound healing is classically described as beginning: A. Immediately after injury B. When the wound is covered with epithelium C. When the collagen content has reached equilibrium D. When the macrophage enters the wound
  • Slide 104
  • The Proliferate Phase of wound healing is classically described as beginning: A. Immediately after injury B. When the wound is covered with epithelium C. When the collagen content has reached equilibrium D. When the macrophage enters the wound
  • Slide 105
  • Under ideal circumstances the tensile strength of the wounded area reaches what % of strength compared to normal skin? A. 10-20% B. 20-40% C. 60-70% D. 70-90%
  • Slide 106
  • Under ideal circumstances the tensile strength of the wounded area reaches what % of strength compared to normal skin? A. 10-20% B. 20-40% C. 60-70% D. 70-90%
  • Slide 107
  • Which of the following does NOT affect wound healing A. Infection B. Hydration C. Nutrition D. Denervation
  • Slide 108
  • Which of the following does NOT affect wound healing A. Infection B. Hydration C. Nutrition D. Denervation
  • Slide 109
  • Acknowledgements Edward R. Newsome, MD
  • Slide 110
  • Thank You