François Massol - présentation MEE2013

56
Evolution of dispersal in heterogeneous and uncertain environments François Massol May 2013 Models in Evolutionary Ecology, Montpellier

Transcript of François Massol - présentation MEE2013

Page 1: François Massol - présentation MEE2013

Evolution of dispersal in heterogeneous and

uncertain environments

François Massol May 2013 – Models in Evolutionary Ecology, Montpellier

Page 2: François Massol - présentation MEE2013

Pros and cons

kin competition

inbreeding avoidance

catastrophes

temporal variability

environmental heterogeneity

cost of dispersal

Pros Cons

van Valen 1971; Balkau & Feldman 1973; Roff 1975;

Hamilton & May 1977; Bengtsson 1978

Page 3: François Massol - présentation MEE2013

The larger picture

Patterns (direct): Processes:

kin competition

inbreeding

catastrophes

temp. variability

heterogeneity

cost of dispersal

dispersal ESS

Page 4: François Massol - présentation MEE2013

The larger picture

Patterns (direct): Processes:

kin competition

inbreeding

catastrophes

temp. variability

heterogeneity

cost of dispersal

dispersal ESS

polymorphism?

Page 5: François Massol - présentation MEE2013

The larger picture

Patterns (direct): Processes:

kin competition

inbreeding

catastrophes

temp. variability

heterogeneity

cost of dispersal

dispersal ESS

polymorphism?

association with other traits

Page 6: François Massol - présentation MEE2013

The larger picture

Patterns (direct): Processes:

Patterns (indirect):

kin competition

inbreeding

catastrophes

temp. variability

heterogeneity

cost of dispersal

dispersal ESS

polymorphism?

association with other traits

diversity

gene flow

Page 7: François Massol - présentation MEE2013

Heterogeneity and variability

• Environments are temporally variable organisms experience temporally variable habitats

• Environments are spatially heterogeneous dispersing allows for different habitats among siblings

Page 8: François Massol - présentation MEE2013

Measuring heterogeneity

First-order measure: proportion of type 1 patch, ρ

Page 9: François Massol - présentation MEE2013

Measuring variability

φ = 0

φ > 0

φ < 0

time

time

time

temporal autocorrelation in patch state, φ

Page 10: François Massol - présentation MEE2013

Questions

1. How can we model the evolution of dispersal in uncertain heterogeneous environments?

2. Case study: the joint evolution of selfing and dispersal when pollinator occurrence is random

3. What happens when dispersal can be informed?

Page 11: François Massol - présentation MEE2013

Adaptive dynamics

Assumptions:

– phenotypic gambit “The phenotypic gambit is to examine the evolutionary basis of a character as if the very simplest genetic system controlled it: as if there were a haploid locus at which each distinct strategy was represented by a distinct allele, as if the payoff rule gave the number of offspring for each allele, and as if enough mutation occurred to allow each strategy the chance to invade.” A. Grafen, in Krebs & Davies 1984

– rare mutations of small effects

Tools:

– expression for fitness (using matrices)

– selection gradient → convergence stability

– Hessian of mutant fitness → evolutionary stability

Page 12: François Massol - présentation MEE2013

Perturbations, life cycle & the evolution of dispersal

with Florence Débarre

Page 13: François Massol - présentation MEE2013

How does environmental state change?

Page 14: François Massol - présentation MEE2013

How does environmental state change?

Page 15: François Massol - présentation MEE2013

Life cycles

Ravigné et al., 2004

Page 16: François Massol - présentation MEE2013

Life cycles

Looking at the evolution of local adaptation…

Ravigné et al., 2004

Page 17: François Massol - présentation MEE2013

Life cycles

What if the order of events is different?

– selection gradient on dispersal rate may change direction when reproduction, dispersal and regulation happen in a different order (Johst & Brandl 1997)

– the order of reproduction, dispersal and regulation directly impact the evolution of local adaptation traits (Ravigné et al. 2004)

Page 18: François Massol - présentation MEE2013

A general model

Ingredients: – 2 patch types (1 & 2; affect fecundity), infinity of

patches

– 4 life cycle events: reproduction, dispersal, regulation & environmental change

– discrete, non-overlapping generations

– reproduction: result of local adaptation, not limiting

– regulation: local (but large populations)

– dispersal: global (no limitation by distance)

Massol (2013)

Page 19: François Massol - présentation MEE2013

Classification of life cycles extended from Massol (2013)

Levene soft selection regime

Ravigné type 3

Ravigné type 3

Ravigné et al.’s classification

Order of events

Dempster hard selection regime

D D D D D

D E E E

E E E

R R

R R R R

Simple life cycles Complex life cycles Modelling complexity

Simple life cycles

Page 20: François Massol - présentation MEE2013

Classification of life cycles extended from Massol (2013)

Order of events

D D D D D

D E E E

E E E

R R

R R R R

When dispersal is unconditional

Classes of equivalence for fitness correspond to Ravigné et al.’s

To the really interested audience: • E always commutes with regulation. • With unconditional dispersal, E also commutes with dispersal.

Levene soft selection regime

Ravigné type 3

Ravigné type 3

Ravigné et al.’s classification

Dempster hard selection regime

Page 21: François Massol - présentation MEE2013

Evolution of dispersal Massol & Débarre (in prep)

Order of events

D E

R

D E

R D

E R

Levene Ravigné Ravigné et al.’s classification

Dempster

Page 22: François Massol - présentation MEE2013

Evolution of dispersal Massol & Débarre (in prep)

Order of events

D E

R

D E

R D

E R

Levene Ravigné Ravigné et al.’s classification

Dempster

evolution towards philopatry

Page 23: François Massol - présentation MEE2013

Evolution of dispersal Massol & Débarre (in prep)

Order of events

D E

R

D E

R D

E R

Levene Ravigné Ravigné et al.’s classification

Dempster

0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

dis

pe

rsal

rat

e (

d )

temporal autocorrelation in patch state ( φ )

Bra

nch

ing

Page 24: François Massol - présentation MEE2013

Evolution of dispersal Massol & Débarre (in prep)

Order of events

D E

R

D E

R D

E R

Levene Ravigné Ravigné et al.’s classification

Dempster

Zero dispersal when Total dispersal when Branching when

2

1/2

2 31

gc

g g

2c g

0

Page 25: François Massol - présentation MEE2013

Evolution of dispersal Massol & Débarre (in prep)

Order of events

D E

R

D E

R D

E R

Levene Ravigné Ravigné et al.’s classification

Dempster

dis

pe

rsal

rat

e (

d )

temporal autocorrelation in patch state ( φ )

0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

bis

tab

ility

Page 26: François Massol - présentation MEE2013

Evolution of dispersal Massol & Débarre (in prep)

Order of events

D E

R

D E

R D

E R

Levene Ravigné Ravigné et al.’s classification

Dempster

Zero dispersal when or Total dispersal when 2c g

21/2

2 3 2

21/2

22 3

21 1 4 1

2 2c

1/2

2 2 31/2

2 3 2 2

2

21/2

2 3

4 12 1 1 1 1

1

2 1

cc c

c

c

Page 27: François Massol - présentation MEE2013

Evolution of dispersal Massol & Débarre (in prep)

D E

R

Ravigné

D

E R

Levene

D E

R

Dempster

Evolution towards total philopatry

Intermediate dispersal rates are possible Branching happens for negatively autocorrelated environments

Either total philopatry or total dispersal Bistability can happen

Page 28: François Massol - présentation MEE2013

Baker’s law revisited

with Pierre-Olivier Cheptou

Page 29: François Massol - présentation MEE2013

Words from Baker (1955)

“With a self-compatible individual a single propagule is sufficient to start a sexually reproducing colony”

“Self-compatible flowering plants are usually able to form seeds in the absence of visits from specialised pollinating insects, which may be absent from the new situation”

Page 30: François Massol - présentation MEE2013

Baker’s law

Principle: selfing provides reproductive assurance without pollination

Expectation: island species should be selfers (verbal model)

Corollary belief: selfers disperse more

Page 31: François Massol - présentation MEE2013

Baker’s law revisited

Self-fertilization & dispersal: two major traits

Modifications of these traits are expected to greatly affect fitness

Their evolutions are often considered separately in theoretical models

Page 32: François Massol - présentation MEE2013

Baker’s law revisited

Classical selection pressures on self-fertilization:

– higher transmission rate (Fisher 1941)

– pollination uncertainty (Baker 1955)

– inbreeding depression (Lande & Schemske 1985)

Page 33: François Massol - présentation MEE2013

Baker’s law revisited

Common selection pressures?

catastrophes

temp. variability

heterogeneity

dispersal rate ESS

pollination uncertainty

selfing rate ESS

pollinator dynamics

Page 34: François Massol - présentation MEE2013

Baker’s law revisited

Infinite island model with large populations

Fluctuations in pollination, e

Inbreeding depression, δ

Migrant survival, q

Two traits under selection (s,d)

δ

q

d

1-e

1 - s

e

Cheptou & Massol (2009)

Page 35: François Massol - présentation MEE2013

Baker’s law revisited Cheptou & Massol (2009)

In terms of life cycles…

… with zero autocorrelation

(with autocorrelation: see Massol & Cheptou 2011)

D E

R

Ravigné

Page 36: François Massol - présentation MEE2013

Baker’s law revisited

(1 )s

(1 )

1

2

1

2

s

s

s

1 d

1 d

d

d

q

q

/mutant residentw w

/mutant residentw w

reproduction dispersal regulation

e

1 e

W

Cheptou & Massol (2009)

Page 37: François Massol - présentation MEE2013

Baker’s law revisited

Scenario I

dis

pe

rsal

rat

e (

d)

selfing rate (s)

“dispersal/outcrossing” syndrome

*

*

0

1 (1 )

s

ed

q e

Cheptou & Massol (2009)

Page 38: François Massol - présentation MEE2013

Baker’s law revisited

Scenario II

dis

pe

rsal

rat

e (

d)

selfing rate (s)

“no dispersal/selfing” syndrome

(may be mixed selfing) *

*

2

2 1

0

es

d

e

Cheptou & Massol (2009)

Page 39: François Massol - présentation MEE2013

Baker’s law revisited

Scenario III

dis

pe

rsal

rat

e (

d)

Both syndromes exist (bistability) 2 ESS (evolutionary stable eq.) 1 evolutionary repellor (saddle)

selfing rate (s)

Cheptou & Massol (2009)

Page 40: François Massol - présentation MEE2013

Baker’s law revisited

1. Three scenarios for evolutionary equilibria

2. Two syndromes for trait associations: dispersal/outcrossing vs. no dispersal/partial selfing

goes against Baker’s law

3. Under scenario III (two ESS), bistability with Ravigné life cycles

Cheptou & Massol (2009)

Page 41: François Massol - présentation MEE2013

Baker’s law revisited

Understanding Baker’s law:

– need separating extrinsic (e.g. pollinators) vs. intrinsic (e.g. mate density) determinants of pollen limitation

– the asymmetry of dispersal (mainland/island vs. metapopulation) dictates the reproductive value of “island” populations

– with local regulation, evolution will not “optimize”

Massol & Cheptou (2011)

Page 42: François Massol - présentation MEE2013

Informed dispersal in an uncertain world

with Florence Débarre

Page 43: François Massol - présentation MEE2013

Informed dispersal and life cycles

• Conditioning dispersal decision on patch “quality” may decrease the indirect cost of dispersing

• First theoretical argument using two-patch models (McPeek & Holt 1992)

• With almost static environments and bad cues, dispersal is not conditioned on current perceived patch quality (McNamara & Dall 2011) → bang-bang dispersal (all or nothing), with no

polymorphism (informed dispersal vs. polymorphism)

Page 44: François Massol - présentation MEE2013

Informed dispersal

Perceived environment

True environment

Error ε

Emigration rate strategy (ei)

Dispersal strategy (di)

Statistical expectation

1 2 21d e e

2 1 11d e e

after McNamara & Dall (2011)

Page 45: François Massol - présentation MEE2013

Classification of life cycles

Ravigné et al.’s classification

Ravigné Ravigné Levene

E E

E E R

R R R D

D

D D

Order of events

Page 46: François Massol - présentation MEE2013

Information & life cycles

Ravigné et al.’s classification

Ravigné Ravigné Levene

E E

E E R

R R R D

D

D D

Order of events

evolution towards philopatry

Massol & Débarre (in prep)

Page 47: François Massol - présentation MEE2013

Information & life cycles

Ravigné et al.’s classification

Ravigné Ravigné Levene

E E

E E R

R R R D

D

D D

Order of events

Massol & Débarre (in prep)

0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

dis

pe

rsal

rat

e (

ei )

temporal autocorrelation in patch state ( φ )

e1 (out of bad patches)

e2 (out of good patches)

Results with perfect cue

Page 48: François Massol - présentation MEE2013

Information & life cycles

Ravigné et al.’s classification

Ravigné Ravigné Levene

E E

E E R

R R R D

D

D D

Order of events

Massol & Débarre (in prep)

dis

pe

rsal

rat

e (

ei )

temporal autocorrelation in patch state ( φ )

Results with imperfect cue

0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

e2 (out of good patches)

bra

nch

ing

e1 (out of bad patches)

Page 49: François Massol - présentation MEE2013

Information & life cycles

Ravigné et al.’s classification

Ravigné Ravigné Levene

E E

E E R

R R R D

D

D D

Order of events

Massol & Débarre (in prep)

dis

pe

rsal

rat

e (

ei )

temporal autocorrelation in patch state ( φ )

0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

e2 (out of good patches)

e1 (out of bad patches)

bra

nch

ing

Results with perfect cue

Page 50: François Massol - présentation MEE2013

Information & life cycles

Ravigné et al.’s classification

Ravigné Ravigné Levene

E E

E E R

R R R D

D

D D

Order of events

Massol & Débarre (in prep)

dis

pe

rsal

rat

e (

ei )

temporal autocorrelation in patch state ( φ )

Results with imperfect cue

0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

e1 (out of bad patches) b

ran

chin

g

e2 (out of good patches)

Page 51: François Massol - présentation MEE2013

Making sense of all of that…

0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

dis

pe

rsal

rat

e (

ei )

temporal autocorrelation in patch state ( φ ) temporal autocorrelation in patch state ( φ )

e1 (out of bad patches)

e2 (out of good patches)

e2 (out of good patches)

e1 (out of bad patches)

Massol & Débarre (in prep)

be regulated where it’s easy…

… & go find a better place to reproduce

E

E R

R D D Results with perfect cue

Page 52: François Massol - présentation MEE2013

Making sense of all of that… d

isp

ers

al r

ate

( e

i )

temporal autocorrelation in patch state ( φ ) temporal autocorrelation in patch state ( φ )

Massol & Débarre (in prep)

be regulated where it’s easy…

E

E R

R D D

0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

e2 (out of good patches)

e1 (out of bad patches)

0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

e1 (out of bad patches)

e2 (out of good patches)

… & go find a better place to reproduce

Results with imperfect cue

Page 53: François Massol - présentation MEE2013

Informed dispersal and life cycles

Take-home messages:

– informed dispersal follows different rationales with different life cycles

– disruptive selection can happen in an informed dispersal model

Not shown here but true:

– bang-bang dispersal strategies happen for some parameter values only, and are not often robust to the cost of dispersal

– bistability can occur with certain life cycles

Massol & Débarre (in prep)

Page 54: François Massol - présentation MEE2013

Final take-home messages

1. Environmental variability can affect the evolution of dispersal in a variety of ways

2. The joint evolution of dispersal and other traits (e.g. selfing) yields interesting, bistable patterns that deserve more attention

3. Informed dispersal and dispersal polymorphisms are not mutually exclusive

Page 55: François Massol - présentation MEE2013

Discussion

• Evolution of dispersal: “mature topic”

• Combination of factors determining selection

• Feeds back on other traits (e.g. local adaptation, selfing)

→ understanding the evolution of dispersal might be key to understanding patterns (diversity, functioning, resilience…) in spatially structured models

Page 56: François Massol - présentation MEE2013

Acknowledgements

Ongoning collaborations on this topic:

P.-O. Cheptou, P. David, F. Débarre, A. Duputié, P. Jarne, F. Laroche, T. Perrot

Any kind of help & comments:

J. Auld, N. Barton, J. C. Brock, M. Burd, J. Busch, V. Calcagno,

J. Chave, M. Daufresne, C. Eckert, D. Fairbairn, S. Gandon, I. Hanski,

J. Hermisson, K. Holsinger, J. Kelly, M. Leibold, R. Morteo,

N. Mouquet, I. Olivieri, M. Palaseanu-Lovejoy, O. Ronce, D. Schoen

Usual suspects: