Fractals -1- Dr Christoph Traxler

download Fractals -1- Dr Christoph Traxler

of 22

Transcript of Fractals -1- Dr Christoph Traxler

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    1/22

    1. Introduction

    1.1

    Mathematical Monsters

    Guiseppe PeanoCantor Set, 1870

    Christoph Traxler 1

    Georg Cantor

    Peano Curve, 1890

    Mathematical Monsters

    Koch Curve, 1904

    Waclaw Sierpinski

    Helge von Koch

    Christoph Traxler 2

    Sierpinski Triangle, 1916

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    2/22

    1. Introduction

    1.2

    > 2000 years old Around 30 years old

    Euclidean Geometry Fractal Geometry

    Euclidean vs. Fractal Geometry

    Applicable for

    artificial objects

    Applicable for natural

    objects

    Christoph Traxler 3

    Invariant under scaling,selfShapes change with scaling

    Euclidean vs. Fractal Geometry

    Euclidean Geometry Fractal Geometry

    similar

    scaled by 3

    Christoph Traxler 4

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    3/22

    1. Introduction

    1.3

    Objects defined by recursiveObjects defined by analytical

    Euclidean vs. Fractal Geometry

    Euclidean Geometry Fractal Geometry

    algorithms

    Localy rough, not differentiable

    Elements: iteration of functions

    equations

    Localy smooth, differentiable

    Elements: vertices, edges,

    surfaces

    Christoph Traxler 5

    Fractals

    Classes of Fractals

    not linear

    Julia Sets

    linear

    IFS

    -

    Fractal Brownian

    Motion

    Christoph Traxler 6

    Strange attractors

    Bifurcation diagrams

    Diffusion Limited

    Aggregation

    L-Systems

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    4/22

    1. Introduction

    1.4

    The Cantor Set

    Georg Cantor (1845-1918), founder of settheory

    0 1 X0 = [0,1]

    X1 = [0,1/3] [2/3,1]X2 = [0,1/9] [2/9,1/3]

    [2/3,7/9] [8/9,1]...

    Christoph Traxler 7

    length(C) = length(limXn) = lim(2/3)n = 0

    C ... limit objectC limn

    Xn

    Initiator

    Construction of the Cantor Set

    enera or

    X[0] = initiator;

    for(n=1;n=;n++)X[n] = substitute each span

    Christoph Traxler 8

    o X n- w t generator;

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    5/22

    1. Introduction

    1.5

    The Cantor Set

    Arithmetic description of the Cantor Set withtriadic numbers {0,1,2}

    ,contain the digit 1 in their triadic expansion

    C = {x = 0.x1x2x3...xn | xi #1, i = 1,2,...} uncountable set of points ( Cantor Dust )

    Christoph Traxler 9

    0.0 0.1 0.2

    0.00 0.01 0.02 0.20 0.21 0.22

    The Cantor Set

    The Cantor Set as fix point of afeedback system:

    0Two categories of points: prisoner

    & escapeePrisoner set is the Cantor Set

    Christoph Traxler 10

    Xn Xn+1

    5.0

    5.0

    33

    3

    xif

    xif

    x

    xX

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    6/22

    1. Introduction

    1.6

    The Cantor Set

    Escapee vs.prisoner

    1

    x1

    x2

    Christoph Traxler 11

    x0x0

    x1 x2

    The Cantor Set

    Properties:

    Self similar

    Cant be described analytically

    Cross section of Saturn rings is similar tothe Cantor Set

    Christoph Traxler 12

    errors can be described by Cantor Set(Mandelbrot 62)

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    7/22

    1. Introduction

    1.7

    X4

    Helge von Koch, 1904

    The Koch Curve

    X2

    X3

    nn

    Christoph Traxler 13

    X0

    X1

    Initiator

    Generator

    The Koch Curve

    Self similar

    Length(Xn) = (4/3)n

    Each part of K has

    infinite lengthContinuous but notdifferentiable

    scaled by 3

    Christoph Traxler 14

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    8/22

    1. Introduction

    1.8

    Circumference consists of 3 Koch Curves

    length(Koch Island) =

    The Koch Island

    T/3 T/9 T/27

    Christoph Traxler 15

    T T 3T/3 T 3T/3 12T/9

    T 3T/3 12T/9 48T/27

    The Koch Island

    T/3 T/9 T/27

    21

    21 431343 aAaAAk

    k

    Christoph Traxler 16

    22

    1 35

    2

    5

    9

    12

    3aaAA

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    9/22

    1. Introduction

    1.9

    The Koch Island

    23

    5

    2lim aA

    Christoph Traxler 17

    Infinite

    circumference

    but finite area

    compass setting length

    500 km 2600 km

    Measuring the Coast of Britain

    100 km

    54 km

    17 km

    3800 km

    5770 km

    8640 km

    Christoph Traxler 18

    100 km 50 km

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    10/22

    1. Introduction

    1.10

    Log/Log Diagrams

    Description of the relation between compasssetting and measured length

    log(u)4.0

    3.8

    3.6

    bs

    du log1

    loglog

    b

    Christoph Traxler 19

    d = 0.36log(1/s)

    3.4

    -2.7 -2.3 -1.9 -1.5 -1.1

    log(b)

    ower aw: dsu

    scale 1

    log3(u)

    2

    Measuring the Koch Curve

    scale 1/3

    log3(1/s)

    4

    1

    2691.04

    lo d

    Christoph Traxler 20

    scale 1/9

    3

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    11/22

    1. Introduction

    1.11

    3 1/3

    number ofpieces

    reductionfactor

    Self Similarity of Line, Square, Cube

    1/6

    9=32

    36=62

    42 1/42

    1764=422

    6

    1/3

    1/6

    1/42

    Christoph Traxler 21

    27=33

    216=63

    74088=423

    1/3

    1/61/42

    Scaling factors are not arbitrary

    Self Similarity of Fractals

    num er opieces

    re uc onfactor

    2 1/31/9

    2k 1/3k4

    Christoph Traxler 22

    4 1/3

    1/9

    4k 1/3k

    16

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    12/22

    1. Introduction

    1.12

    Self Similarity of Fractals

    Scaling factors are characteristic for thedecomposition of fractals into self similar parts

    n number of self similar pieces

    s

    nD

    sn

    D 1log

    log1

    Christoph Traxler 23

    s scaling factor

    D self similarity dimension D = 1 + d

    Self Similarity of Fractals

    Line: log3/log3 = 1

    Square: log9/log3 = 2

    Cube: log27/log3 = 3

    Cantor Set:

    log2k /log3k = log2/log3 0.6309

    Christoph Traxler 24

    Koch Curve:

    log4k /log3k = log4/log3 1.2619

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    13/22

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    14/22

    1. Introduction

    1.14

    The Peano Curve

    Parametrization of the square

    Each point of the square can be adressed by

    0.2 0.28

    0.82

    Contradiction to classic notion of dimension

    Christoph Traxler 27

    0.0. .

    0.4

    0.5

    0.6

    0.7

    0.8.

    0.77

    The Sierpinski Gasket

    Waclaw Sierpinski, 1916

    Initiator X0 Generator X1 X2 X3

    Christoph Traxler 28

    Dimension: log3 /log2 = log3/log2 1.5849

    The limit object consists of branching points

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    15/22

    1. Introduction

    1.15

    The Sierpinski Gasket

    Corner pointAllows the branching orders:

    Touching points 2 (corner of initial triangle)

    4 (touching point)

    3 (any other point)

    Christoph Traxler 29

    The Sierpinski Carpet

    Initiator X0 Generator X1 X2 X3

    Dimension: log8k /log3k = log8/log3 1.892

    Christoph Traxler 30

    Univeral: it contains a topological versionof any 1-dimensional object

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    16/22

    1. Introduction

    1.16

    Contains branching points with any order

    Order 4 branchin

    The Sierpinski Carpet

    structure

    Cantor set

    Christoph Traxler 31

    Square

    Line

    Fractals in 3D

    Sierpinski Tetrahedron,D = log4/log2 = 2

    Menger Sponge, D = log20/log3 2.726

    Christoph Traxler 32

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    17/22

    1. Introduction

    1.17

    Fractals in 3D

    The Sierpinski tetrahedron can be seen asnetwork of branching points with spatial

    Since its dimension is 2 it should be possibleto fold it into the plane

    In the plane it becomes a space filling networkof branching points

    Christoph Traxler 33

    Fractals in 3D

    Folding the Sierpinski tetrahedron

    Christoph Traxler 34

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    18/22

    1. Introduction

    1.18

    Fractals in 3D

    Christoph Traxler 35

    The Sierpinski Gasket

    Haptic fractals creation without computers

    Christoph Traxler 36

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    19/22

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    20/22

    1. Introduction

    1.20

    Wada Basin Fractals

    Complex inter-reflection pattern of mirrorspheres shows fractal properties

    Christoph Traxler 39

    Wada Basin Fractals

    Can be simulated by ray tracing

    Christoph Traxler 40

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    21/22

    1. Introduction

    1.21

    Wada Basin Fractals

    Web sites:

    www.miqel.com/fractals_math_patterns/visual- - - - .

    local.wasp.uwa.edu.au/~pbourke/fractals/wada/index.html

    www.youtube.com/watch?v=C1VZkP2dNXM

    Christoph Traxler 41

    Application of Fractal Geometry

    Computer Graphics, - 3D modeling of naturalphenomena, textures, animation

    Electronics and signal processing

    Material engineeringFlow simulation

    -

    Christoph Traxler 42

    ,theory), measuring dimensions, selforganisation patterns

  • 7/27/2019 Fractals -1- Dr Christoph Traxler

    22/22

    1. Introduction

    1 22

    Application of Fractal Geometry

    Fractal antenna for a cellular phone

    More efficient, - less space

    Christoph Traxler 43

    Application of Fractal Geometry

    Indigenous people in several African regionsarrange their villages in fractal patterns

    Ron Eglashs African fractals web site:

    csdt.rpi.edu/african/afractal/afractal.htm

    Christoph Traxler 44