FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen...

29
FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio Marañón, Madrid

Transcript of FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen...

Page 1: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

FP7 FMTXCT ProjectUMCE-HGUGM first year activity report

Partner FIHGM

Laboratorio de Imagen Médica. Medicina ExperimentalHospital Universitario Gregorio Marañón, Madrid

Page 2: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

Workpackage 2: XCT development

Workpackage 8: FMT-XCT imaging accuracy versus PET-XCT

Page 3: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

Workpackage 2: XCT development

Use of X-ray contrast agents

Double exposure techniques

Dual energy X-ray source

Page 4: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

CT System OutlineMechanical Design

Page 5: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

Multi-Energy data acquisition/processingNew Tube Features

Voltage setting range 40 to 110 kV

Current setting range 10 to 800 μA

Output window Beryllium (thickness 500 μm)

Focal spot size 15 μm (6 W) – 80 μm (50 W)

Emission angle 62 deg (max)

Power 50 W

Page 6: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

Detector Dynamic Range Expansion

Dual-Exposure technique

Main features

• Two datasets acquired

• First

• Low SNR for dense materials

• Detector not saturated for soft materials

• Second

• High SNR for dense materials

• Detector saturated for soft materials

• Same X-ray beam spectral properties

• Different photon flux

Page 7: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

Detector Dynamic Range Expansion

Dual-Exposure technique

Dataset #1 Dataset #2

Page 8: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

Detector Dynamic Range Expansion

Dual-Exposure technique (work in progress)

Dual exposure

CNR (PTFE/Air) = 22.11

Single exposure

CNR (PTFE/Air) = 13.91

Page 9: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

0 50 100 1500

1

2

3

4

5

6

7x 10

4

keV

Pho

ton

Out

put

Predicted Spectrum with and without added filtration

100kVp with 0.5mm Be Inherent filtration

Added Filtration: 2mm Al, 0.75mmCu

0 50 100 1500

1

2

3

4

5

6

7x 10

4

keV

Pho

ton

Out

put

Predicted Spectrum with and without added filtration

100kVp with 0.5mm Be Inherent filtration

Added Filtration: 2mm Al, 0.1mmCu

Mean Energy = 55.6 kV Mean Energy = 66.1 kV

Multi-Energy data acquisition/processingSimulated Spectra for the new tube

• Changing filter setting

Spectral simulations carried out using SPEKTR software librariesSiewerdsen, et.al., “Spektr: A computational tool for x-ray spectral analysis and imaging system optimization”, Med. Phys.31(9), 2004

Page 10: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

0 50 100 1500

1

2

3

4

5

6

7x 10

4

keV

Pho

ton

Out

put

Predicted Spectrum with and without added filtration

100kVp with 0.5mm Be Inherent filtration

Added Filtration: 2mm Al, 0.1mmCu

Mean Energy = 34.9 kV Mean Energy = 66.1 kV

Multi-Energy data acquisition/processingSimulated Spectra for the new tube

• Changing X-ray tube setting

0 50 100 1500

0.5

1

1.5

2

2.5

3x 10

4

keV

Pho

ton

Out

put

Predicted Spectrum with and without added filtration

60kVp with 0.5mm Be Inherent filtration

Added Filtration: 2mm Al, 0.1mmCu

Page 11: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

Fenestra Iopamiro

Use of X-ray contrast agents

Page 12: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

Mouse

200 µA, voltage 50 kV

200 µm

Fenestra LC

Mouse

200 µA, voltage 50 kV

200 µm

Iopamiro

Page 13: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

Mouse

200 µA, voltage 50 kV

200 µm

Iopamiro

Dynamic study

Page 14: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

Workpackage 8: FMT-XCT imaging accuracy versus PET-XCT

Page 15: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

Materials selection for the optical phantom construction

Water

Gelatin

Silicon Ti02 Pro Jet

Polyester resin India ink

Lipid emulsions

(Intralipid)

Polymer microspheres

Bulk materials Scatterers Absorbers

+ +

Page 16: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

Things to have in mind when designing a FMT phantom.

Resolution is depth dependent

Diffusion approximation: One photon mean free path ≈ 1mm

SourceDetector

Source

Page 17: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

Things to have in mind when designing a FMT phantom.

Heterogeneities, surface

Page 18: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

Phantom design

Heterogeneities

4 mm

Fluorescent spheres, 2 mm

(Should their size vary?)

Page 19: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

FMT-XCT

Page 20: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

How to insert the fluorophore in the phantom?

Resin vs Silicon

- Mix the fluorophore with the bulk material*

- Capillaries (diffusive-non diffusive interfaces)

- Pellets

* John Baeten et al “Development of fluorescent materials for Diffuse Fluorescence Tomography standars and phantoms” Optics express vol 15 2007

Page 21: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

What to measure

Resolution. FWHM of point-like source?

Quantification accuracy

Sensitivity: In-vivo specific application

PET phantom remarks

Page 22: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

Will the imaging performance hold in the “many body imaging situation”?

Page 23: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

PET phantom

Page 24: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

PET phantom

Page 25: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

PET phantom

Page 26: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.
Page 27: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

Detector Dynamic Range Expansion

Dual-Exposure techniqueMain features

• X-ray tube current calculation for the second scan

• Based on Histogran processing

• Shift the histogram to place 75% of the total value into the High-Gain region

• Dataset combination

• Detector Model

• Image combination based on a Maximum-Likelihood calculation assuming Independent Gaussian distribution.

( ) j

iij ijx

AY N

e

- i : Acquisition number

- j : Pixel number

- A: Current value

- N: Noise value

Page 28: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

FMT system

Page 29: FP7 FMTXCT Project UMCE-HGUGM first year activity report Partner FIHGM Laboratorio de Imagen Médica. Medicina Experimental Hospital Universitario Gregorio.

Resultados preliminares, maniquíes:

Agar based, TiO2 (scatter), Blank ink (absorption)

coronal Z=0.25 cm

Planar imaging