Fourier Transforms of Special Functions

47
Fourier Transforms of Special Functions 主主主 主主主 http://www.google.com/search? hl=en&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=unit+step+fourier+transform&spell=1

Transcript of Fourier Transforms of Special Functions

Page 1: Fourier Transforms of Special Functions

Fourier Transforms of Special Functions

主講者:虞台文http://www.google.com/search?hl=en&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=unit+step+fourier+transform&spell=1

Page 2: Fourier Transforms of Special Functions

Content Introduction More on Impulse Function Fourier Transform Related to Impulse Function Fourier Transform of Some Special Functions Fourier Transform vs. Fourier Series

Page 3: Fourier Transforms of Special Functions

Introduction Sufficient condition for the existence of a

Fourier transform

dttf |)(|

That is, f(t) is absolutely integrable. However, the above condition is not the

necessary one.

Page 4: Fourier Transforms of Special Functions

Some Unabsolutely Integrable Functions

Sinusoidal Functions: cos t, sin t,…Unit Step Function: u(t).

Generalized Functions:– Impulse Function (t); and– Impulse Train.

Page 5: Fourier Transforms of Special Functions

Fourier Transforms of Special Functions

More onImpulse Function

Page 6: Fourier Transforms of Special Functions

Dirac Delta Function

000

)(tt

t and 1)(

dtt

0 t

Also called unit impulse function.

Page 7: Fourier Transforms of Special Functions

Generalized Function The value of delta function can also be defined

in the sense of generalized function:

)0()()(

dttt (t): Test Function

We shall never talk about the value of (t). Instead, we talk about the values of integrals

involving (t).

Page 8: Fourier Transforms of Special Functions

Properties of Unit Impulse Function

)()()( 00 tdtttt

Pf)

dtttt )()( 0

Write t as t + t0

dtttt )()( 0

)( 0t

Page 9: Fourier Transforms of Special Functions

Properties of Unit Impulse Function

)0(||

1)()(

adttat

Pf)

dttat )()(

Write t as t/aConsider a>0

dt

att

a)(1

)0(||

1

a

dttat )()(

Consider a<0

dt

att

a)(1

)0(||

1

a

Page 10: Fourier Transforms of Special Functions

Properties of Unit Impulse Function

)()0()()( tfttf

Pf)

dttttf )()]()([

dtttft )]()()[(

)0()0( f

dtttf )()()0(

dtttf )()]()0([

Page 11: Fourier Transforms of Special Functions

Properties of Unit Impulse Function

)()0()()( tfttf

Pf)

dttat )()(

)(||

1)( ta

at

)0(||

1

a

dttt

a)()(

||1

dttt

a)()(

||1

Page 12: Fourier Transforms of Special Functions

Properties of Unit Impulse Function

)()0()()( tfttf )(

||1)( ta

at

0)( tt )()( tt

Page 13: Fourier Transforms of Special Functions

Generalized Derivatives

The derivative f’(t) of an arbitrary generalized function f(t) is defined by:

dtttfdtttf )(')()()('

Show that this definition is consistent to the ordinary definition for the first derivative of a continuous function.

dtttf )()(' dtttfttf

)(')()()(

=0

Page 14: Fourier Transforms of Special Functions

Derivatives of the -Function

)0(')(')()()('

dtttdttt

0

)()0(' ,)()('

tdttd

dttdt

)0()1()()( )()( nnn dttt

0

)()( )()0( ,)()(

tn

nn

n

nn

dttd

dttdt

Page 15: Fourier Transforms of Special Functions

Product Rule)(')()()(')]'()([ ttfttfttf

dttttf )(')]()([

Pf)dttttf )(')]()([

dtttft )](')()[(

dtttfttft )}()(')]'()(){[(

dtttftdtttft )]()'()[()]'()()[(

dtttftdtttft )]()'()[()]()()[('

dtttfttft )()](')()()('[

Page 16: Fourier Transforms of Special Functions

Product Rule)()0(')(')0()(')( tftfttf

)()'()]'()([)(')( ttfttfttf

Pf)

)]'()0([ tf )(')0( tf

)()0(' tf

Page 17: Fourier Transforms of Special Functions

Unit Step Function u(t)

Define

0)()()( dttdtttu

0 t

u(t)

0001

)(tt

tu

Page 18: Fourier Transforms of Special Functions

Derivative of the Unit Step Function

Show that )()(' ttu

dtttu )()('

0)(' dtt

)]0()([ )0(

dtttu )(')(

dttt )()(

Page 19: Fourier Transforms of Special Functions

Derivative of the Unit Step Function

0 t

u(t)Derivative

0 t

(t)

Page 20: Fourier Transforms of Special Functions

Fourier Transforms of Special Functions

Fourier Transform Related toImpulse Function

Page 21: Fourier Transforms of Special Functions

Fourier Transform for (t)

1)( Ft

dtett tj)()]([F 10

t

tje

0 t

(t)

0

1

F(j)

F

Page 22: Fourier Transforms of Special Functions

Fourier Transform for (t)

Show that

det tj

21)(

]1[)( 1 Ft

de tj121

de tj

21

de tj

21

The integration converges to

in the sense of generalized function.

)(t

Page 23: Fourier Transforms of Special Functions

Fourier Transform for (t)

Show that

0

cos1)( tdt

det tj

21)(

dtjt )sin(cos

21

tdjtd sin

2cos

21

0

cos1 td Converges to (t) in the sense of generalized function.

Page 24: Fourier Transforms of Special Functions

Two Identities for (t)

dxey jxy

21)(

0cos1)( xydxy

These two ordinary integrations themselves are meaningless.

They converge to (t) in the sense of generalized function.

Page 25: Fourier Transforms of Special Functions

Shifted Impulse Function

0)( 0tjett F

0)()]([ 0tjejFttf F

0

1

|F(j)|

F

Use the fact

0 t

(t t0)

t0

Page 26: Fourier Transforms of Special Functions

Fourier Transforms of Special Functions

Fourier Transform of a Some Special Functions

Page 27: Fourier Transforms of Special Functions

Fourier Transform of a Constant

)(2)()( AjFAtf F

dAeAjF tj][)( F

dteA tj )(

212

)(2 A

Page 28: Fourier Transforms of Special Functions

Fourier Transform of a Constant

)(2)()( AjFAtf F

F

0 t

A A2()

0

F(j)

Page 29: Fourier Transforms of Special Functions

Fourier Transform of Exponential Wave

)(2)()( 00 jFetf tj F

)(2]1[ F

)]([])([ 00 jFetf tjF

)(2][ 00 tjeF

Page 30: Fourier Transforms of Special Functions

Fourier Transforms of Sinusoidal Functions

)()(cos 000 Ft

)()(sin 000 jjt F

F

(+0)

0

F(j)(0)

0 0

t

f(t)=cos0t

Page 31: Fourier Transforms of Special Functions

Fourier Transform of Unit Step Function

)()]([ jFtuFLet )()]([ jFtuF)0for (except 1)()( ttutu

]1[)]()([ FF tutu

)(2)]([)]([ tutu FF)(2)()( jFjF

F(j)=?

Can you guess it?

Page 32: Fourier Transforms of Special Functions

Fourier Transform of Unit Step Function

)(2)()( jFjF

Guess )()()( BkjF

)()()()()()( BBkkjFjF

)()()(2 BBk

k

0B() must be odd

Page 33: Fourier Transforms of Special Functions

Fourier Transform of Unit Step Function

Guess )()()( BkjF k

)()(' ttu

)()]([ jFtuF1)]([)]('[ ttu FF

)()]('[ jFjtuF)]()([ Bj

)()( Bjj

0

jB 1)(

Page 34: Fourier Transforms of Special Functions

Fourier Transform of Unit Step Function

Guess )()()( BkjF k

jB 1)(

jtu 1)()( F

Page 35: Fourier Transforms of Special Functions

Fourier Transform of Unit Step Function

jtu 1)()( F

F()

0

|F(j)|

0 t

1

f(t)

Page 36: Fourier Transforms of Special Functions

Fourier Transforms of Special Functions

Fourier Transform vs. Fourier Series

Page 37: Fourier Transforms of Special Functions

Find the FT of a Periodic Function

Sufficient condition --- existence of FT

dttf |)(|

Any periodic function does not satisfy this condition.

How to find its FT (in the sense of general function)?

Page 38: Fourier Transforms of Special Functions

Find the FT of a Periodic Function

We can express a periodic function f(t) as:

Tectf

n

tjnn

2 ,)( 00

n

tjnnectfjF 0)]([)( FF

n

tjnn ec ][ 0F

n

n nc )(2 0

n

n nc )(2 0

Page 39: Fourier Transforms of Special Functions

Find the FT of a Periodic Function

We can express a periodic function f(t) as:

Tectf

n

tjnn

2 ,)( 00

n

n ncjF )(2)( 0

The FT of a periodic function consists of a sequence of equidistant impulses located at the harmonic frequencies of the function.

Page 40: Fourier Transforms of Special Functions

Example:Impulse Train

0 tT 2T 3TT2T3T

n

T nTtt )()( Find the FT of the impulse train.

Page 41: Fourier Transforms of Special Functions

Example:Impulse Train

0 tT 2T 3TT2T3T

n

T nTtt )()( Find the FT of the impulse train.

n

tjnT e

Tt 0

1)(

c n

Page 42: Fourier Transforms of Special Functions

Example:Impulse Train

0 tT 2T 3TT2T3T

n

T nTtt )()( Find the FT of the impulse train.

n

tjnT e

Tt 0

1)(

c n

n

T nT

t )(2)]([ 0F 0

Page 43: Fourier Transforms of Special Functions

Example:Impulse Train

0 tT 2T 3TT2T3T

n

T nT

t )(2)]([ 0F 0

0 0 20 3002030

2/T

F

Page 44: Fourier Transforms of Special Functions

Find Fourier Series Using Fourier Transform

n

tjnnectf 0)(

2/

2/0)(1 T

T

tjnn etf

Tc

T/2 T/2

f(t)t

T/2 T/2

fo(t)t

tjoo etfjF )()(

2/

2/)(

T

T

tjetf

)(10 jnF

Tc on

Page 45: Fourier Transforms of Special Functions

Find Fourier Series Using Fourier Transform

n

tjnnectf 0)(

2/

2/0)(1 T

T

tjnn etf

Tc

T/2 T/2

f(t)t

T/2 T/2

fo(t)t

tjoo etfjF )()(

2/

2/)(

T

T

tjetf

)(10 jnF

Tc on

Sampling the Fourier Transform of fo(t) with period 2/T, we can find the Fourier Series of f (t).

Page 46: Fourier Transforms of Special Functions

Example:The Fourier Series of a Rectangular Wave

0

f(t)

d1

t0

t

fo(t)1

dtejFd

d

tjo

2/

2/)(

2sin2 d

n

tjnnectf 0)(

)(10 jnF

Tc on

2sin2 0

0

dnTn

2sin1 0dn

n

Page 47: Fourier Transforms of Special Functions

Example:The Fourier Transform of a Rectangular Wave

0

f(t)

d1

t

n

tjnnectf 0)(

)(10 jnF

Tc on

2sin2 0

0

dnTn

2sin1 0dn

n

F [f(t)]=?

n

n ncjF )(2)( 0

)(2

sin2)( 00

ndnn

jFn