Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution:...

53
Fourier series Part - A 1.Define Dirichlet’s conditions Ans: A function defined in ≀≀ +2 can be expanded as an infinite trigonometric series of the form 0 2 + cos + sin , provided ∞ =1 i) is single valued and periodic in , +2 ii) is continuous or piecewise continuous with finite number of finite discontinuous in , +2 iii) has no or finite number of maxima or minima in , +2. 2. Write the Fourier series for the function f(x) in the interval ≀≀ + . Solution: = 0 2 + cos + sin ∞ =1 Where 0 = 1 +2 = 1 +2 = 1 +2 3. Write the Fourier series for the function f(x) in the interval ≀ ≀ . Solution:

Transcript of Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution:...

Page 1: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

Fourier series

Part - A

1.Define Dirichlet’s conditions

Ans:

A function defined in 𝑐 ≀ π‘₯ ≀ 𝑐 + 2𝑙 can be expanded as an infinite trigonometric series of

the form

π‘Ž0

2+ π‘Žπ‘› cos

π‘›πœ‹π‘₯

𝑙+ 𝑏𝑛 sin

π‘›πœ‹π‘₯

𝑙 , provided

∞

𝑛=1

i) 𝑓 π‘₯ is single valued and periodic in 𝑐, 𝑐 + 2𝑙

ii) 𝑓 π‘₯ is continuous or piecewise continuous with finite number of finite discontinuous in

𝑐, 𝑐 + 2𝑙

iii) 𝑓 π‘₯ has no or finite number of maxima or minima in 𝑐, 𝑐 + 2𝑙 .

2. Write the Fourier series for the function f(x) in the interval 𝒄 ≀ 𝒙 ≀ 𝒄 + πŸπ’.

Solution:

𝑓 π‘₯ =π‘Ž0

2+ π‘Žπ‘› cos

π‘›πœ‹π‘₯

𝑙+ 𝑏𝑛 sin

π‘›πœ‹π‘₯

𝑙

∞

𝑛=1

Where

π‘Ž0 =1

𝑙 𝑓 π‘₯ 𝑑π‘₯

𝑐+2𝑙

𝑐

π‘Žπ‘› =1

𝑙 𝑓 π‘₯ π‘π‘œπ‘ 

π‘›πœ‹π‘₯

𝑙𝑑π‘₯

𝑐+2𝑙

𝑐

𝑏𝑛 =1

𝑙 𝑓 π‘₯ 𝑠𝑖𝑛

π‘›πœ‹π‘₯

𝑙𝑑π‘₯

𝑐+2𝑙

𝑐

3. Write the Fourier series for the function f(x) in the interval 𝟎 ≀ 𝒙 ≀ πŸπ’.

Solution:

Page 2: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

𝑓 π‘₯ =π‘Ž0

2+ π‘Žπ‘› cos

π‘›πœ‹π‘₯

𝑙+ 𝑏𝑛 sin

π‘›πœ‹π‘₯

𝑙

∞

𝑛=1

Where

π‘Ž0 =1

𝑙 𝑓 π‘₯ 𝑑π‘₯

2𝑙

0

π‘Žπ‘› =1

𝑙 𝑓 π‘₯ π‘π‘œπ‘ 

π‘›πœ‹π‘₯

𝑙𝑑π‘₯

2𝑙

0

𝑏𝑛 =1

𝑙 𝑓 π‘₯ 𝑠𝑖𝑛

π‘›πœ‹π‘₯

𝑙𝑑π‘₯

2𝑙

0

4. Write the Fourier series for the function f(x) in the interval βˆ’π’ ≀ 𝒙 ≀ 𝒍.

Solution:

𝑓 π‘₯ =π‘Ž0

2+ π‘Žπ‘› cos

π‘›πœ‹π‘₯

𝑙+ 𝑏𝑛 sin

π‘›πœ‹π‘₯

𝑙

∞

𝑛=1

Where

π‘Ž0 =1

𝑙 𝑓 π‘₯ 𝑑π‘₯

𝑙

βˆ’π‘™

π‘Žπ‘› =1

𝑙 𝑓 π‘₯ π‘π‘œπ‘ 

π‘›πœ‹π‘₯

𝑙𝑑π‘₯

𝑙

βˆ’π‘™

𝑏𝑛 =1

𝑙 𝑓 π‘₯ 𝑠𝑖𝑛

π‘›πœ‹π‘₯

𝑙𝑑π‘₯

𝑙

βˆ’π‘™

5. Write the Fourier series for the function f(x) in the interval 𝟎 ≀ 𝒙 ≀ πŸπ….

Solution:

Page 3: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

𝑓 π‘₯ =π‘Ž0

2+ π‘Žπ‘› cos 𝑛π‘₯ + 𝑏𝑛 sin 𝑛π‘₯

∞

𝑛=1

Where

π‘Ž0 =1

πœ‹ 𝑓 π‘₯ 𝑑π‘₯

2πœ‹

0

π‘Žπ‘› =1

πœ‹ 𝑓 π‘₯ π‘π‘œπ‘  𝑛π‘₯𝑑π‘₯

2πœ‹

0

𝑏𝑛 =1

πœ‹ 𝑓 π‘₯ 𝑠𝑖𝑛 𝑛π‘₯𝑑π‘₯

2πœ‹

0

6.Write the Fourier series for the function f(x) in the interval βˆ’π… ≀ 𝒙 ≀ 𝝅.

Solution:

𝑓 π‘₯ =π‘Ž0

2+ π‘Žπ‘› cos 𝑛π‘₯ + 𝑏𝑛 sin 𝑛π‘₯

∞

𝑛=1

Where

π‘Ž0 =1

πœ‹ 𝑓 π‘₯ 𝑑π‘₯

πœ‹

βˆ’πœ‹

π‘Žπ‘› =1

πœ‹ 𝑓 π‘₯ π‘π‘œπ‘  𝑛π‘₯𝑑π‘₯

πœ‹

βˆ’πœ‹

𝑏𝑛 =1

πœ‹ 𝑓 π‘₯ 𝑠𝑖𝑛 𝑛π‘₯𝑑π‘₯

πœ‹

βˆ’πœ‹

7. Write the Fourier series for the even function f(x) in the interval βˆ’π… ≀ 𝒙 ≀ 𝝅.

(or) Explain half range cosine series in the interval 𝟎 ≀ 𝒙 ≀ 𝝅.

Solution:

π‘Ž0 =2

πœ‹ 𝑓 π‘₯ 𝑑π‘₯

πœ‹

0

π‘Žπ‘› =2

πœ‹ 𝑓 π‘₯ π‘π‘œπ‘  𝑛π‘₯𝑑π‘₯

πœ‹

0

Page 4: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

𝑏𝑛 = 0, Then the Fourier series is reduced to

𝑓 π‘₯ =π‘Ž0

2+ π‘Žπ‘› cos 𝑛π‘₯

∞

𝑛=1

8. Write the Fourier series for the odd function f(x) in the intervalβˆ’π… ≀ 𝒙 ≀ 𝝅.

(or) Explain half range sine series in the interval𝟎 ≀ 𝒙 ≀ 𝝅.

Solution:

π‘Ž0 = 0, π‘Žπ‘› = 0, 𝑏𝑛 =2

πœ‹ 𝑓 π‘₯ 𝑠𝑖𝑛 𝑛π‘₯𝑑π‘₯

πœ‹

0

,

Then the Fourier series is reduced to

𝑓 π‘₯ = 𝑏𝑛 sin 𝑛π‘₯

∞

𝑛=1

9. Write the Fourier series for the even function f(x) in the interval βˆ’π’ ≀ 𝒙 ≀ 𝒍.

(or) Explain half range Fourier cosine series in the interval 𝟎 ≀ 𝒙 ≀ 𝒍

Solution:

π‘Ž0 =2

𝑙 𝑓 π‘₯ 𝑑π‘₯

𝑙

0

π‘Žπ‘› =2

𝑙 𝑓 π‘₯ π‘π‘œπ‘ 

π‘›πœ‹π‘₯

𝑙𝑑π‘₯

𝑙

0

𝑏𝑛 = 0, Then the Fourier series is reduced to

𝑓 π‘₯ =π‘Ž0

2+ π‘Žπ‘› cos

π‘›πœ‹π‘₯

𝑙

∞

𝑛=1

10. Write the Fourier series for the odd function f(x) in the interval βˆ’π’ ≀ 𝒙 ≀ 𝒍.

(or) Explain half range Fourier sine series in the interval 𝟎 ≀ 𝒙 ≀ 𝒍

Solution:

Page 5: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

π‘Ž0 = 0, π‘Žπ‘› = 0, 𝑏𝑛 =2

𝑙 𝑓 π‘₯ 𝑠𝑖𝑛

π‘›πœ‹π‘₯

𝑙𝑑π‘₯

𝑙

0

Then the Fourier series is reduced to

𝑓 π‘₯ = 𝑏𝑛 sinπ‘›πœ‹π‘₯

𝑙

∞

𝑛=1

11. Define periodic function and give examples.

Ans:

A function 𝑓 π‘₯ is said to be periodic, if and only if 𝑓 π‘₯ + 𝑇 = 𝑓 π‘₯ where T is called period

for the function 𝑓 π‘₯ .

Eg: sin π‘₯ π‘Žπ‘›π‘‘ cos π‘₯ are periodic functions with period 2πœ‹.

12. Write any two advantages of Fourier series.

Ans:

i) Discontinuous function can be represented by Fourier series. Although derivatives of the

discontinuous functions do not exist.

ii) The Fourier series is useful in expanding the periodic functions. Since outside the closed

interval, there exists a periodic extension of the function

iii) Fourier series of a discontinuous function is not uniformly convergent at all points.

iv) Expansion of an oscillation function by Fourier series gives all modes of oscillation which

is extremely useful in physics.

13. Define Parseval’s identity for the Fourier series in the interval 𝟎, πŸπ…

Solution:

1

πœ‹ 𝑓 π‘₯ 2

2πœ‹

0

𝑑π‘₯ =π‘Ž0

2

2+ π‘Žπ‘›

2 + 𝑏𝑛2

∞

𝑛=1

14. Define Parseval’s identity for the Fourier series in the interval 𝟎, πŸπ’

Solution:

1

𝑙 𝑓 π‘₯ 2

2𝑙

0

𝑑π‘₯ =π‘Ž0

2

2+ π‘Žπ‘›

2 + 𝑏𝑛2

∞

𝑛=1

Page 6: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

15. Define Parseval’s identity for the Fourier series in the interval βˆ’π…, 𝝅

Solution:

1

πœ‹ 𝑓 π‘₯ 2

πœ‹

βˆ’πœ‹

𝑑π‘₯ =π‘Ž0

2

2+ π‘Žπ‘›

2 + 𝑏𝑛2

∞

𝑛=1

16. Define Parseval’s identity for the Fourier series in the interval βˆ’π’, 𝒍

Solution:

1

πœ‹ 𝑓 π‘₯ 2

𝑙

βˆ’π‘™

𝑑π‘₯ =π‘Ž0

2

2+ π‘Žπ‘›

2 + 𝑏𝑛2

∞

𝑛=1

17. Define Parseval’s identity for the half range Fourier cosine series in the interval 𝟎, 𝝅

Solution:

2

πœ‹ 𝑓 π‘₯ 2

πœ‹

0

𝑑π‘₯ =π‘Ž0

2

2+ π‘Žπ‘›

2

∞

𝑛=1

18. Define Parseval’s identity for the half range Fourier sine series in the interval 𝟎, 𝝅

Solution:

2

πœ‹ 𝑓 π‘₯ 2

πœ‹

0

𝑑π‘₯ = 𝑏𝑛2

∞

𝑛=1

19. Define Parseval’s identity for the half range Fourier cosine series in the interval 𝟎, 𝒍

Solution:

2

𝑙 𝑓 π‘₯ 2

𝑙

0

𝑑π‘₯ =π‘Ž0

2

2+ π‘Žπ‘›

2

∞

𝑛=1

20. Define Parseval’s identity for the half range Fourier sine series in the interval 𝟎, πŸπ’

Solution:

2

𝑙 𝑓 π‘₯ 2

𝑙

0

𝑑π‘₯ = 𝑏𝑛2

∞

𝑛=1

Page 7: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

21. Define Root-Mean Square value of a function 𝒇 𝒙

Solution:

RMS value of a function 𝑓 π‘₯ = 𝑓 π‘₯ 2𝑑π‘₯𝑏

π‘Ž

π‘βˆ’π‘Ž

22. Find the value of 𝒂𝒏in the cosine series expansion of 𝒇 𝒙 = π’Œ in the interval 𝟎, 𝟏𝟎 .

Solution:

π‘Žπ‘› =2

𝑙 𝑓 π‘₯ π‘π‘œπ‘ 

π‘›πœ‹π‘₯

𝑙𝑑π‘₯

𝑙

0

=2

10 π‘˜π‘π‘œπ‘ 

π‘›πœ‹π‘₯

10𝑑π‘₯

10

0

=π‘˜

5 π‘π‘œπ‘ 

π‘›πœ‹π‘₯

10𝑑π‘₯

10

0

=π‘˜

5 𝑠𝑖𝑛

π‘›πœ‹π‘₯10

π‘›πœ‹10

0

10

=π‘˜

5Γ—

10

π‘›πœ‹ 𝑠𝑖𝑛

10π‘›πœ‹

10βˆ’ sin 0

π‘Žπ‘› = 0

23. Find the root mean square value of the function 𝒇 𝒙 = 𝒙 in the interval 𝟎, 𝒍

Solution:

RMS value of a function

𝑓 π‘₯ = 𝑓 π‘₯ 2𝑑π‘₯𝑏

π‘Ž

𝑏 βˆ’ π‘Ž

= π‘₯2𝑑π‘₯𝑙

0

𝑙 βˆ’ 0

Page 8: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

=

π‘₯3

3

0

𝑙

𝑙

=

𝑙3

3𝑙

=𝑙

3

24. State the convergence theorem on Fourier series.

Ans:

i) The Fourier series of 𝑓 π‘₯ converges to 𝑓 π‘₯ at all points where 𝑓 π‘₯ is continuous. Thus,

if 𝑓 π‘₯ is continuous at π‘₯ = π‘₯0 , the sum of the Fourier series when π‘₯ = π‘₯0 is 𝑓 π‘₯0 .

ii) At a point π‘₯ = π‘₯0 where 𝑓 π‘₯ has a finite discontinuity, the sum of the Fourier series

=1

2 𝑦1 + 𝑦2 where 𝑦1 and 𝑦2 are the two values of 𝑓 π‘₯ at the point of finite

discontinuity.

25. The function 𝒇 𝒙 =𝟏

π’™βˆ’πŸ 𝟎 ≀ 𝒙 ≀ πŸ‘ cannot be expanded as Fourier series.

Explain why?

Ans:

Given 𝑓 π‘₯ =1

π‘₯βˆ’2 0 ≀ π‘₯ ≀ 3

At π‘₯ = 2, 𝑓 π‘₯ becomes infinity. So it does not satisfy one of the Direchlet’s condition.

Hence it cannot be expanded as a Fourier series.

26. Can you expand 𝒇 𝒙 = πŸβˆ’π’™πŸ

𝟏+π’™πŸ as a Fourier series in any interval.

Solution:

Let 𝑓 π‘₯ = 1 βˆ’ π‘₯2

1 + π‘₯2

This function is well defined in any finite interval in the range βˆ’βˆž, ∞ it has no

discontinuous in the interval

Page 9: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

Differentiate 𝑓 β€² π‘₯ = 1 + π‘₯2 βˆ’2π‘₯ βˆ’ 1 βˆ’ π‘₯2 2π‘₯

1 + π‘₯2 2

𝑓 β€² π‘₯ =βˆ’4π‘₯

1 + π‘₯2 2

𝑓 π‘₯ is maximum or minimum when 𝑓′ (π‘₯) = 0

(i.e.,) when 4π‘₯ = 0 𝑖. 𝑒. , π‘₯ = 0.

So it has only one extreme value

(i.e.,) a finite number of maxima and minima in the interval βˆ’βˆž, ∞

Since it satisfies all the Dirichelt’s conditions, it can be expanded in a Fourier series i

aspecified interval in the range βˆ’βˆž, ∞

27. Find π’‚πŸŽ, 𝒇(𝒙) = π’™π’”π’Šπ’π’™ in (βˆ’π… < π‘₯ < 𝝅). Solution: Since is 𝑓(π‘₯) = π‘₯𝑠𝑖𝑛π‘₯ is an even function

π‘Ž0 =2

πœ‹ 𝑓 π‘₯ 𝑑π‘₯

πœ‹

0

=2

πœ‹ π‘₯ 𝑠𝑖𝑛π‘₯ 𝑑π‘₯

πœ‹

0

=2

πœ‹ π‘₯(βˆ’ cos π‘₯) βˆ’ 1(βˆ’ sin π‘₯) 0

πœ‹

=2

πœ‹ πœ‹(βˆ’ cos πœ‹) βˆ’ 1(βˆ’ sin πœ‹) βˆ’ 0

= 2

29. Find π’‚πŸŽ, 𝒇(𝒙) = πœ‹ βˆ’ π’™πŸ in(𝟎,πœ‹). Solution:

π‘Ž0 =2

πœ‹ 𝑓 π‘₯ 𝑑π‘₯

πœ‹

0

=2

πœ‹ (πœ‹ βˆ’ π‘₯2)𝑑π‘₯

πœ‹

0

=2

πœ‹ πœ‹π‘₯ βˆ’

π‘₯3

3

0

πœ‹

Page 10: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

=2

πœ‹ πœ‹2 βˆ’

πœ‹3

3

30. Find 𝒃𝒏, 𝒇(𝒙) = π’™πŸ‘ in (βˆ’πœ‹,πœ‹). Solution: Since 𝑓(π‘₯) = π‘₯3 is an odd function

𝑏𝑛 =2

πœ‹ π‘₯3𝑠𝑖𝑛 𝑛π‘₯𝑑π‘₯

πœ‹

0

𝑏𝑛 =2

πœ‹ π‘₯3

βˆ’π‘π‘œπ‘  𝑛π‘₯

𝑛 βˆ’ 3π‘₯2

βˆ’π‘ π‘–π‘› 𝑛π‘₯

𝑛2 + 6π‘₯

π‘π‘œπ‘  𝑛π‘₯

𝑛3 βˆ’ 1

𝑠𝑖𝑛 𝑛π‘₯

𝑛4

0

πœ‹

𝑏𝑛 =2

πœ‹ πœ‹3

βˆ’π‘π‘œπ‘  π‘›πœ‹

𝑛 βˆ’ 3πœ‹2

βˆ’π‘ π‘–π‘› π‘›πœ‹

𝑛2 + 6πœ‹ π‘π‘œπ‘  π‘›πœ‹

𝑛3 βˆ’ 1 𝑠𝑖𝑛 π‘›πœ‹

𝑛4 βˆ’ 0

=2

πœ‹ πœ‹3

βˆ’1 𝑛

𝑛 + 6πœ‹

βˆ’1 𝑛

𝑛3

31. Find 𝒂𝒏 in 𝒇 𝒙 = π’†βˆ’π’™ in (βˆ’πœ‹,πœ‹). Solution:

π‘Žπ‘› =1

πœ‹ 𝑓 π‘₯ π‘π‘œπ‘  𝑛π‘₯𝑑π‘₯

πœ‹

βˆ’πœ‹

π‘Žπ‘› =1

πœ‹ π‘’βˆ’π‘₯π‘π‘œπ‘  𝑛π‘₯𝑑π‘₯

πœ‹

βˆ’πœ‹

=1

πœ‹

π‘’βˆ’π‘₯

1 + 𝑛2 βˆ’cos 𝑛π‘₯ + 𝑛𝑠𝑖𝑛𝑛π‘₯

βˆ’πœ‹

πœ‹

=1

πœ‹ βˆ’

π‘’βˆ’πœ‹

1 + 𝑛2 cos π‘›πœ‹ + π‘›π‘ π‘–π‘›π‘›πœ‹ +

π‘’πœ‹

1 + 𝑛2 cos(βˆ’π‘›πœ‹) + 𝑛𝑠𝑖𝑛(βˆ’π‘›πœ‹)

=1

πœ‹ βˆ’

π‘’βˆ’πœ‹

1 + 𝑛2 βˆ’1 𝑛 +

π‘’πœ‹

1 + 𝑛2 βˆ’1 𝑛

= βˆ’1 𝑛

πœ‹(1 + 𝑛2) π‘’πœ‹ βˆ’ π‘’βˆ’πœ‹

=2 βˆ’1 𝑛

πœ‹(1 + 𝑛2)𝑠𝑖𝑛𝑕 π‘₯

32. Find 𝒃𝒏 , 𝒇(𝒙) =( πœ‹βˆ’π’™)

𝟐 in(𝟎, πŸπœ‹).

Solution:

Page 11: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

𝑏𝑛 =1

πœ‹ 𝑓 π‘₯ 𝑠𝑖𝑛 𝑛π‘₯𝑑π‘₯

2πœ‹

0

𝑏𝑛 =1

πœ‹

( πœ‹ βˆ’ π‘₯)

2𝑠𝑖𝑛 𝑛π‘₯𝑑π‘₯

2πœ‹

0

=1

πœ‹ ( πœ‹ βˆ’ π‘₯)

2 βˆ’

π‘π‘œπ‘  𝑛π‘₯

𝑛 βˆ’ (βˆ’1) βˆ’

𝑠𝑖𝑛 𝑛π‘₯

𝑛

0

2πœ‹

=1

πœ‹ ( πœ‹ βˆ’ 2πœ‹)

2 βˆ’

π‘π‘œπ‘  2π‘›πœ‹

𝑛 βˆ’ βˆ’1 βˆ’

𝑠𝑖𝑛 2π‘›πœ‹

𝑛 βˆ’

( πœ‹ βˆ’ 0)

2 βˆ’

π‘π‘œπ‘  0

𝑛 + 0

=1

πœ‹ πœ‹

2

1

𝑛 βˆ’ 0 βˆ’

πœ‹

2 βˆ’

1

𝑛 + 0 =

1

𝑛

Page 12: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

Fourier Transform

Part-A

1. State the Fourier integral theorem.

Ans: If is a given function 𝑓(π‘₯) defined in βˆ’π‘™, 𝑙 and satisfies Dirichlet’s conditions, then

𝑓 π‘₯ =1

πœ‹ 𝑓 𝑑 cos πœ† 𝑑 βˆ’ π‘₯ 𝑑π‘₯ π‘‘πœ†

∞

βˆ’βˆž

∞

0

2. State the convolution theorem of the Fourier transform.

Ans: if 𝐹(𝑠) and 𝐺(𝑠) are the functions of 𝑓(π‘₯) and 𝑔(π‘₯) respectively then the Fourier

transform of the convolution of 𝑓(π‘₯) and 𝑔(π‘₯) is the product of their Fourier transform

𝐹 (𝑓 βˆ— 𝑔 π‘₯] = 𝐹 𝑆 . 𝐺(𝑠)

1

2πœ‹ 𝑓 βˆ— 𝑔 π‘₯ 𝑒𝑖𝑠π‘₯

∞

βˆ’βˆž

𝑑π‘₯ = 1

2πœ‹ 𝑓 π‘₯ 𝑒𝑖𝑠π‘₯

∞

βˆ’βˆž

𝑑π‘₯ 1

2πœ‹ 𝑔 π‘₯ 𝑒𝑖𝑠π‘₯

∞

βˆ’βˆž

𝑑π‘₯

3. Write the Fourier transform pairs.

Ans: 𝐹 𝑓 π‘₯ and πΉβˆ’1 𝐹(𝑠) are Fourier transform pairs.

4. Find the Fourier sine transform of 𝒇(𝒙) = π’†βˆ’π’‚π’™(𝒂 > 0).

Ans: The Fourier sine transform of 𝑓(π‘₯) is

𝐹𝑠 𝑓 π‘₯ = 2

πœ‹ 𝑓 π‘₯ sin 𝑠π‘₯ 𝑑π‘₯

∞

0

= 2

πœ‹ π‘’βˆ’π‘Žπ‘₯ sin 𝑠π‘₯ 𝑑π‘₯

∞

0

= 2

πœ‹

𝑠

𝑠2 + π‘Ž2 𝑆𝑖𝑛𝑐𝑒 π‘’βˆ’π‘Žπ‘₯ sin 𝑏π‘₯ 𝑑π‘₯ =

𝑏

𝑏2 + π‘Ž2

∞

0

5. What is the Fourier transform of 𝒇(𝒙 βˆ’ 𝒂) if the Fourier transform of 𝒇(𝒙) is 𝑭(𝒔).

Solution: 𝐹 𝑓 π‘₯ βˆ’ π‘Ž = π‘’π‘–π‘Žπ‘  𝐹(𝑠)

6. State the Fourier transforms of the derivatives of a function.

Solution: 𝐹 𝑑𝑛 𝑓(π‘₯)

𝑑π‘₯ 𝑛 = βˆ’π‘–π‘  𝑛𝐹 𝑠 .

Page 13: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

7. Find the Fourier sine transform of π’†βˆ’π’™.

Solution: The Fourier sine transform of 𝑓(π‘₯) is

𝐹𝑠 𝑓 π‘₯ = 2

πœ‹ 𝑓 π‘₯ sin 𝑠π‘₯ 𝑑π‘₯

∞

0

= 2

πœ‹ π‘’βˆ’π‘₯ sin 𝑠π‘₯ 𝑑π‘₯

∞

0

= 2

πœ‹

𝑠

𝑠2 + 1 𝑆𝑖𝑛𝑐𝑒 π‘’βˆ’π‘Žπ‘₯ sin 𝑏π‘₯ 𝑑π‘₯ =

𝑏

𝑏2 + π‘Ž2

∞

0

8. Prove that 𝑭𝒄 𝒇 𝒂𝒙 =𝟏

𝒂𝑭𝒄

𝒔

𝒂 , 𝒂 > 0.

Solution:

𝐹𝑐 𝑓 π‘Žπ‘₯ = 2

πœ‹ 𝑓 π‘Žπ‘₯ cos 𝑠π‘₯ 𝑑π‘₯

∞

0

Put π‘Žπ‘₯ = 𝑦 when π‘₯ = 0, 𝑦 = 0.

𝑑π‘₯ =𝑑𝑦

π‘Ž When π‘₯ = ∞, 𝑦 = ∞

= 2

πœ‹ 𝑓 𝑦 cos

𝑠𝑦

π‘Ž

𝑑𝑦

π‘Ž

∞

0

=1

π‘Ž

2

πœ‹ 𝑓 𝑦 cos

𝑠

π‘Ž 𝑦 𝑑𝑦

∞

0

=1

π‘ŽπΉπ‘

𝑠

π‘Ž

9. Find Fourier sine transform of 𝒆𝒂𝒙.

Solution: The Fourier sine transform of 𝑓(π‘₯) is

The Fourier sine transform of 𝑓(π‘₯) is

𝐹𝑠 𝑓 π‘₯ = 2

πœ‹ 𝑓 π‘₯ sin 𝑠π‘₯ 𝑑π‘₯

∞

0

Page 14: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

= 2

πœ‹ π‘’π‘Žπ‘₯ sin 𝑠π‘₯ 𝑑π‘₯

∞

0

= 2

πœ‹

𝑠

𝑠2 + π‘Ž2 𝑆𝑖𝑛𝑐𝑒 π‘’π‘Žπ‘₯ sin 𝑏π‘₯ 𝑑π‘₯ =

𝑏

𝑏2 + π‘Ž2

∞

0

10. if 𝑭 𝒔 = 𝑭 𝒇 𝒙 , then prove that 𝑭 𝒙𝒇 𝒙 = βˆ’π’Š 𝒅[𝑭 𝒔 ]

𝒅𝒔

Solution: 𝐹 𝑠 =1

2πœ‹ 𝑓 π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

𝑑[𝐹 𝑠 ]

𝑑𝑠=

𝑑

𝑑𝑠

1

2πœ‹ 𝑓 π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

=1

2πœ‹ 𝑓 π‘₯

πœ•

πœ•π‘ (𝑒𝑖𝑠π‘₯ )𝑑π‘₯

∞

βˆ’βˆž

=1

2πœ‹ 𝑓 π‘₯ 𝑖π‘₯(𝑒𝑖𝑠π‘₯ )𝑑π‘₯

∞

βˆ’βˆž

= 𝑖𝐹 π‘₯𝑓 π‘₯

𝐹 π‘₯𝑓 π‘₯ = βˆ’π‘– 𝑑[𝐹 𝑠 ]

𝑑𝑠

11. Find Fourier sine transform of 𝟏

𝒙

𝐹𝑠 𝑓 π‘₯ = 2

πœ‹ 𝑓 π‘₯ sin 𝑠π‘₯ 𝑑π‘₯

∞

0

= 2

πœ‹

1

π‘₯sin 𝑠π‘₯ 𝑑π‘₯

∞

0

= 2

πœ‹

πœ‹

2=

πœ‹

2

𝑆𝑖𝑛𝑐𝑒 1

π‘₯sin π‘Žπ‘₯ 𝑑π‘₯

∞

0=

πœ‹

2, π‘Ž > 0 .

12. Find the Fourier cosine transform of π’†βˆ’π’™.

Page 15: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

Solution: The Fourier sine transform of 𝑓(π‘₯) is

𝐹𝑐 𝑓 π‘₯ = 2

πœ‹ 𝑓 π‘₯ cos 𝑠π‘₯ 𝑑π‘₯

∞

0

= 2

πœ‹ π‘’βˆ’π‘₯ cos 𝑠π‘₯ 𝑑π‘₯

∞

0

= 2

πœ‹

1

𝑠2 + 1 𝑆𝑖𝑛𝑐𝑒 π‘’βˆ’π‘Žπ‘₯ cos 𝑏π‘₯ 𝑑π‘₯ =

π‘Ž

𝑏2 + π‘Ž2

∞

0

13. If 𝑭𝒔 𝒔 is the Fourier sine transform of 𝒇(𝒙), show that

𝑭𝒔 𝒇 𝒙 𝐜𝐨𝐬 𝒂𝒙 = 𝟏

𝟐 𝑭𝒔 𝒔 + 𝒂 + 𝑭𝒔 𝒔 βˆ’ 𝒂

Solution:

𝐹𝑠 𝑓 π‘₯ π‘π‘œπ‘ π‘Žπ‘₯ = 2

πœ‹ 𝑓 π‘₯ cos π‘Žπ‘₯ sin 𝑠π‘₯ 𝑑π‘₯

∞

0

= 2

πœ‹.1

2 𝑓 π‘₯ sin π‘Ž + 𝑠 π‘₯ βˆ’ sin π‘Ž βˆ’ 𝑠 π‘₯

∞

0

𝑑π‘₯

= 2

πœ‹.

1

2 𝑓 π‘₯ sin π‘Ž + 𝑠 π‘₯

∞

0𝑑π‘₯ βˆ’

2

πœ‹.

1

2 𝑓 π‘₯ sin π‘Ž βˆ’ 𝑠 π‘₯

∞

0𝑑π‘₯

= 1

2 𝐹𝑠 𝑠 + π‘Ž + 𝐹𝑠 𝑠 βˆ’ π‘Ž

14. If 𝑭(𝒔) is the Fourier transform of 𝒇(𝒙), write the formula for the Fourier transform of

𝒇(𝒙)𝒄𝒐𝒔 𝒂𝒙 in terms of 𝑭.

Solution: 𝐹 𝑓 π‘₯ cos π‘Žπ‘₯ =1

2πœ‹ 𝑓 π‘₯ cos π‘Žπ‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

=1

2πœ‹ 𝑓 π‘₯

π‘’π‘–π‘Žπ‘₯ + π‘’βˆ’π‘–π‘Žπ‘₯

2 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

=1

2πœ‹ 𝑓 π‘₯

𝑒𝑖(𝑠+π‘Ž)π‘₯

2𝑑π‘₯

∞

βˆ’βˆž

+1

2πœ‹ 𝑓 π‘₯

𝑒𝑖(π‘ βˆ’π‘Ž)π‘₯

2𝑑π‘₯

∞

βˆ’βˆž

Page 16: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

𝐹 𝑓 π‘₯ cos π‘Žπ‘₯ =1

2 𝐹 𝑠 + π‘Ž + 𝐹(𝑠 βˆ’ π‘Ž)

15. Find the Fourier transform of 𝒇 𝒙 = 𝟏 π’Šπ’ 𝒙 < π‘ŽπŸŽ π’Šπ’ 𝒙 > π‘Ž

Solution: We know that the Fourier transform fo 𝑓(π‘₯) is given by

𝐹 𝑓(π‘₯) =1

2πœ‹ 𝑓 π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

=1

2πœ‹ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

π‘Ž

βˆ’π‘Ž

=1

2πœ‹ 𝑒𝑖𝑠π‘₯

𝑖𝑠

βˆ’π‘Ž

π‘Ž

=1

2πœ‹ π‘’π‘–π‘Žπ‘  βˆ’ π‘’βˆ’π‘–π‘Žπ‘ 

𝑖𝑠

= 2

πœ‹

sin π‘Žπ‘ 

𝑠

16. State any two properties of Fourier transform

Solution: i) Linearity property: If 𝑓(π‘₯) and 𝑔(π‘₯)are any two functions then

𝐹 π‘Žπ‘“(π‘₯) + 𝑏𝑔(π‘₯) = π‘ŽπΉ 𝑓(π‘₯) + 𝑏𝐹 𝑔(π‘₯) , where a and b are constants.

ii)Shifting property: If 𝐹 𝑓(π‘₯) = 𝐹 𝑠 , then 𝐹 𝑓(π‘₯ βˆ’ π‘Ž) = π‘’π‘–π‘Žπ‘ πΉ(𝑠)

17. Define the infinite Fourier cosine transform and its inverse

Solution: The infinite Fourier cosine transform is given by

𝐹𝑐 𝑓 π‘₯ = 𝐹𝑐 𝑠 = 2

πœ‹ 𝑓 π‘₯ cos 𝑠π‘₯ 𝑑π‘₯

∞

0

Then the inverse Fourier cosine transform is given by

πΉπ‘βˆ’1 𝐹𝑐 𝑠 = 𝑓(π‘₯) =

2

πœ‹ 𝐹𝑐 𝑠 cos 𝑠π‘₯ 𝑑𝑠

∞

0

18. State Parseval’s identity for Fourier transform.

Solution: If 𝐹 𝑠 is the Fourier transform of 𝑓(π‘₯), then

|𝑓 π‘₯ |2

∞

βˆ’βˆž

𝑑π‘₯ = |𝐹 𝑠 |2

∞

βˆ’βˆž

𝑑𝑠

Page 17: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

19. Define the Fourier sine transform of 𝑓(π‘₯) in (0, 𝑙). Also give the inversion formula

Solution: The finite Fourier sine transform of a function 𝑓 π‘₯ in 0, 𝑙 is given by

𝑓𝑠 𝑛 = 𝑓 π‘₯ π‘ π‘–π‘›π‘›πœ‹π‘₯

𝑙

𝑙

0

𝑑π‘₯,

Then the inversion formula is given by

𝑓 π‘₯ =2

𝑙 𝑓𝑠 𝑛

∞

𝑛=1

π‘ π‘–π‘›π‘›πœ‹π‘₯

𝑙.

20. Define the Fourier cosine transform of 𝒇(𝒙) in (𝟎, 𝒍). Also give the inversion formula

Solution: The finite Fourier cosine transform of a function 𝑓 π‘₯ in 0, 𝑙 is given by

𝑓𝑐 𝑛 = 𝑓 π‘₯ π‘π‘›πœ‹π‘₯

𝑙

𝑙

0

𝑑π‘₯,

Then the inversion formula is given by

𝑓 π‘₯ =1

𝑙𝑓𝑐(0) +

2

𝑙 𝑓𝑐 𝑛

∞

𝑛=1

π‘π‘œπ‘ π‘›πœ‹π‘₯

𝑙.

21. Define the infinite Fourier sine transform and its inverse

Solution: The infinite Fourier sine transform is given by

𝐹𝑠 𝑓 π‘₯ = 𝐹𝑠 𝑠 = 2

πœ‹ 𝑓 π‘₯ sin 𝑠π‘₯ 𝑑π‘₯

∞

0

Then the inverse Fourier cosine transform is given by

πΉπ‘ βˆ’1 𝐹𝑠 𝑠 = 𝑓(π‘₯) =

2

πœ‹ 𝐹𝑠 𝑠 sin 𝑠π‘₯ 𝑑𝑠

∞

0

22. Prove that if 𝒇(𝒙) is an even function of 𝒙, its Fourier transform 𝑭(𝒔) will also be an

even function of s.

Solution: By definition

𝐹 𝑠 =1

2πœ‹ 𝑓 π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

… 1

Page 18: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

Changing s into –s in both sides of (1),

𝐹 βˆ’π‘  =1

2πœ‹ 𝑓 π‘₯ π‘’βˆ’π‘–π‘ π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

… 2

In the right hand side integral in (2), put π‘₯ = βˆ’π‘’.

then 𝑑π‘₯ = βˆ’π‘‘π‘’; when π‘₯ = ∞, 𝑒 = βˆ’βˆž

and when π‘₯ = βˆ’βˆž, 𝑒 = ∞.

So (2) becomes

𝐹 βˆ’π‘  =1

2πœ‹ 𝑓 βˆ’π‘’ 𝑒𝑖𝑠𝑒 . (βˆ’π‘‘π‘’)

βˆ’βˆž

∞

=1

2πœ‹ 𝑓 βˆ’π‘’ 𝑒𝑖𝑠𝑒 𝑑𝑒

∞

βˆ’βˆž

=1

2πœ‹ 𝑓 βˆ’π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž [Changing the dummy variable u into x]

=1

2πœ‹ 𝑓 π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

= 𝐹 𝑆 𝑏𝑦 1 .

Here 𝐹 𝑆 is an even function of s.

23. Prove that if 𝒇(𝒙) is an odd function of 𝒙, its Fourier transform 𝑭(𝒔) will also be an

odd function of s.

Solution: By definition

𝐹 𝑠 =1

2πœ‹ 𝑓 π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

… 1

Changing s into –s in both sides of (1),

𝐹 βˆ’π‘  =1

2πœ‹ 𝑓 π‘₯ π‘’βˆ’π‘–π‘ π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

… 2

In the right hand side integral in (2), put π‘₯ = βˆ’π‘’.

then 𝑑π‘₯ = βˆ’π‘‘π‘’; when π‘₯ = ∞, 𝑒 = βˆ’βˆž

and when π‘₯ = βˆ’βˆž, 𝑒 = ∞.

Page 19: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

So (2) becomes

𝐹 βˆ’π‘  =1

2πœ‹ 𝑓 βˆ’π‘’ 𝑒𝑖𝑠𝑒 . (βˆ’π‘‘π‘’)

βˆ’βˆž

∞

=1

2πœ‹ 𝑓 βˆ’π‘’ 𝑒𝑖𝑠𝑒 𝑑𝑒

∞

βˆ’βˆž

=1

2πœ‹ 𝑓 βˆ’π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž [Changing the dummy variable u into x]

=1

2πœ‹ βˆ’π‘“ π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

= βˆ’πΉ 𝑆 𝑏𝑦 1 .

Here 𝐹 𝑆 is an odd function of s.

24. Find the Fourier transform of the function defined by

𝒇 𝒙 = 𝟎, 𝒙 < π‘ŽπŸ, 𝒂 < π‘₯ < π‘πŸŽ , 𝒙 > 𝑏

Solution:

𝐹 𝑓(π‘₯) =1

2πœ‹ 𝑓 π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

=1

2πœ‹ 𝑓 π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

π‘Ž

βˆ’βˆž

+ 𝑓 π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯ + 𝑓 π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

𝑏

𝑏

π‘Ž

=1

2πœ‹ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

𝑏

π‘Ž

=1

2πœ‹ 𝑒𝑖𝑠π‘₯

𝑖𝑠 π‘Ž

𝑏

=1

2πœ‹

𝑒𝑖𝑠𝑏 βˆ’ π‘’π‘–π‘ π‘Ž

𝑖𝑠

25. Show that 𝒇(𝒙) = 𝟏, 𝟎 < π‘₯ < ∞ cannot be represented by a Fourier integral.

Solution: 𝑓 π‘₯ 𝑑π‘₯ = 𝑑π‘₯∞

0

∞

0= π‘₯ 0

∞ = ∞ βˆ’ 0 = ∞

Page 20: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

𝑖. 𝑒. , 𝑓 π‘₯ 𝑑π‘₯

∞

0

is not convergent

Hence 𝑓(π‘₯) = 1 cannot be represented by a Fourier integral.

26. Find the Fourier cosine transform of 𝒇 𝒙 = 𝟏, 0 < π‘₯ < π‘ŽπŸŽ, π‘₯ > π‘Ž

Solution:

We know that

𝐹𝑐 𝑓 π‘₯ = 𝐹𝑐 𝑠 = 2

πœ‹ 𝑓 π‘₯ cos 𝑠π‘₯ 𝑑π‘₯

∞

0

= 2

πœ‹ 1 cos 𝑠π‘₯ 𝑑π‘₯

π‘Ž

0

= 2

πœ‹ sin 𝑠π‘₯

𝑠

0

π‘Ž

= 2

πœ‹ sin π‘ π‘Ž

π‘ βˆ’ 0

= 2

πœ‹ sin π‘ π‘Ž

𝑠

27. Find the Fourier transform of 𝒇 𝒙 = 𝟏 π’Šπ’ 𝒙 ≀ 𝟏𝟎 π’Šπ’ 𝒙 > 1

Solution: We know that the Fourier transform fo 𝑓(π‘₯) is given by

𝐹 𝑓(π‘₯) =1

2πœ‹ 𝑓 π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

=1

2πœ‹ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

1

βˆ’1

=1

2πœ‹ 𝑒𝑖𝑠π‘₯

𝑖𝑠

βˆ’1

1

=1

2πœ‹ 𝑒𝑖𝑠 βˆ’ π‘’βˆ’π‘–π‘ 

𝑖𝑠

Page 21: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

= 2

πœ‹

sin 𝑠

𝑠

28. Find the Fourier transform of π’†βˆ’π’‚|𝒙|, 𝒂 > 0.

Solution: We know that the Fourier transform fo 𝑓(π‘₯) is given by

𝐹 𝑓(π‘₯) =1

2πœ‹ 𝑓 π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

=1

2πœ‹ 𝑓 π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

0

βˆ’βˆž

+1

2πœ‹ 𝑓 π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

0

=1

2πœ‹ 𝑒(𝑖𝑠+π‘Ž)π‘₯𝑑π‘₯

0

βˆ’βˆž

+1

2πœ‹ 𝑒(π‘–π‘ βˆ’π‘Ž)π‘₯𝑑π‘₯

∞

0

=1

2πœ‹

𝑒(𝑖𝑠+π‘Ž)π‘₯

𝑖𝑠 + π‘Ž βˆ’βˆž

0

+ π‘’βˆ’(π‘Žβˆ’π‘–π‘ )π‘₯

𝑖𝑠 βˆ’ π‘Ž

0

∞

=1

2πœ‹

1

𝑖𝑠 + π‘Žβˆ’

1

𝑖𝑠 βˆ’ π‘Ž

=1

2πœ‹

𝑖𝑠 βˆ’ π‘Ž βˆ’ 𝑖𝑠 βˆ’ π‘Ž

𝑖𝑠 2 βˆ’ π‘Ž2

= 2

πœ‹

π‘Ž

𝑠2 + π‘Ž2

29. State the Fourier transforms of derivates of a function.

Solution:

𝐹 𝑑𝑓(π‘₯)

𝑑π‘₯ =

1

2πœ‹ 𝑓′ π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

=1

2πœ‹ 𝑒𝑖𝑠π‘₯ 𝑑 𝑓(π‘₯)

∞

βˆ’βˆž

=1

2πœ‹ 𝑒𝑖𝑠π‘₯ 𝑓 π‘₯

βˆ’βˆž

βˆžβˆ’ 𝑓 π‘₯ 𝑖𝑠𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

Page 22: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

= βˆ’π‘–π‘ 

2πœ‹ 𝑓 π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

(assuming 𝑓(π‘₯) β†’ 0 π‘Žπ‘  π‘₯ β†’ ±∞)

= βˆ’π‘–π‘ πΉ 𝑠 .

𝐹 𝑑2𝑓(π‘₯)

𝑑π‘₯2 =

1

2πœ‹ 𝑓′′ π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

=1

2πœ‹ 𝑒𝑖𝑠π‘₯ 𝑑 𝑓′(π‘₯)

∞

βˆ’βˆž

=1

2πœ‹ 𝑒𝑖𝑠π‘₯ 𝑓′ π‘₯

βˆ’βˆž

βˆžβˆ’ 𝑓′ π‘₯ 𝑖𝑠𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

= βˆ’π‘–π‘ 

2πœ‹ 𝑓′ π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

(assuming 𝑓′(π‘₯) β†’ 0 π‘Žπ‘  π‘₯ β†’ ±∞)

= βˆ’π‘–π‘ 

2πœ‹ 𝑒𝑖𝑠π‘₯ 𝑑 𝑓(π‘₯)

∞

βˆ’βˆž

= βˆ’π‘–π‘ 

2πœ‹ 𝑒𝑖𝑠π‘₯ 𝑓 π‘₯

βˆ’βˆž

βˆžβˆ’ 𝑓 π‘₯ 𝑖𝑠𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

= βˆ’π‘–π‘  2

2πœ‹ 𝑓 π‘₯ 𝑒𝑖𝑠π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

(assuming 𝑓′(π‘₯) β†’ 0 π‘Žπ‘  π‘₯ β†’ ±∞)

= βˆ’π‘–π‘  2𝐹 𝑠 .

In general,

𝐹 𝑑𝑛𝑓(π‘₯)

𝑑π‘₯𝑛 = βˆ’π‘–π‘  𝑛𝐹 𝑠 .

30. Find the finite Fourier cosine transform of 𝒇 𝒙 = π’†βˆ’π’‚π’™in (𝟎, 𝒍).

Solution: 𝑓𝑐 𝑛 = 𝑓 π‘₯ π‘π‘œπ‘ π‘›πœ‹π‘₯

𝑙

𝑙

0𝑑π‘₯, n being a positive integer

Page 23: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

= π‘’βˆ’π‘Žπ‘₯ π‘π‘œπ‘ π‘›πœ‹π‘₯

𝑙

𝑙

0

𝑑π‘₯

= π‘’βˆ’π‘Žπ‘₯

π‘Ž2 + π‘›πœ‹π‘₯𝑙

2 βˆ’π‘Žπ‘π‘œπ‘ π‘›πœ‹π‘₯

𝑙+

π‘›πœ‹π‘₯

𝑙𝑠𝑖𝑛

π‘›πœ‹π‘₯

𝑙

0

𝑙

=𝑙2π‘’βˆ’π‘Žπ‘™

π‘™π‘Ž 2 + π‘›πœ‹ 2 βˆ’π‘Ž cos π‘›πœ‹ βˆ’

𝑙2

π‘™π‘Ž 2 + π‘›πœ‹ 2(βˆ’π‘Ž)

=π‘Žπ‘™2

π‘™π‘Ž 2 + π‘›πœ‹ 2 1 + π‘’βˆ’π‘Žπ‘™ (βˆ’1)𝑛+1

Partial Differential Equations

Part-A

1. Form a partial differential equation by eliminating arbitrary constants a and b from

𝒛 = 𝒙 + 𝒂 𝟐 + (π’š + 𝒃)𝟐

Solution: Given

𝑧 = π‘₯ + π‘Ž 2 + (𝑦 + 𝑏)2 … (1)

𝑝 =πœ•π‘§

πœ•π‘₯= 2 π‘₯ + π‘Ž … (2)

π‘ž =πœ•π‘§

πœ•π‘¦= 2 𝑦 + 𝑏 … (3)

Substituting (2)& (3) in (1), we get 𝑧 =𝑝2

4+

π‘ž2

4

2. Solve (π‘«πŸ βˆ’ πŸπ‘«π‘«β€™ + π‘«β€™πŸ)𝒛 = 𝟎

Solution: A.E is π‘š2 βˆ’ 2π‘š + 1 = 0

π‘š βˆ’ 1 2 = 0

π‘š = 1, 1

𝑦 = 𝑓1 𝑦 + π‘₯ + π‘₯𝑓2(𝑦 + π‘₯)

3. Form a partial differential equation by eliminating arbitrary constants a and b from

𝒙 βˆ’ 𝒂 𝟐 + (π’š βˆ’ 𝒃)𝟐 = π’›πŸπ’„π’π’•πŸ 𝜢

Solution: Given

π‘₯ βˆ’ π‘Ž 2 + 𝑦 βˆ’ 𝑏 2 = 𝑧2π‘π‘œπ‘‘2 𝛼 … 1

Page 24: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

Partially differentiating w.r.t β€˜π‘₯’ and β€˜π‘¦β€™ we get

2 π‘₯ βˆ’ π‘Ž = 2π‘§π‘π‘π‘œπ‘‘2 𝛼 … 2

2 𝑦 βˆ’ 𝑏 = 2π‘§π‘žπ‘π‘œπ‘‘2 𝛼 … 3

π‘₯ βˆ’ π‘Ž = π‘§π‘π‘π‘œπ‘‘2 𝛼 … 4

𝑦 βˆ’ 𝑏 = π‘§π‘žπ‘π‘œπ‘‘2 𝛼 … 5

Substituting (4)& (5) in (1), we get 𝑧2𝑝2π‘π‘œπ‘‘4 𝛼 + 𝑧2π‘ž2π‘π‘œπ‘‘4 𝛼 = 𝑧2π‘π‘œπ‘‘2 𝛼

𝑝2 + π‘ž2 = π‘‘π‘Žπ‘›2𝛼

4. Find the complete solution of the differential equation

π’‘πŸ + π’’πŸ βˆ’ πŸ’π’‘π’’ = 𝟎

Solution: Given

𝑝2 + π‘ž2 βˆ’ 4π‘π‘ž = 0 … (1)

Let us assume that 𝑧 = π‘Žπ‘₯ + 𝑏𝑦 + 𝑐 … (2) be the solution of (1).

Partially differentiating (2) w.r.t β€˜π‘₯’ and β€˜π‘¦β€™ we get

𝑝 =

πœ•π‘§

πœ•π‘₯= π‘Ž

π‘ž =πœ•π‘§

πœ•π‘¦= 𝑏

… 3

Substituting (3) in (1) we get

π‘Ž2 + 𝑏2 βˆ’ 4π‘Žπ‘ = 0 … (4)

From (4) we get π‘Ž =4𝑏± 16𝑏2βˆ’4π‘Ž2𝑏2

2=

4𝑏±2𝑏 4βˆ’π‘Ž2

2= 𝑏 Β± 𝑏 4 βˆ’ π‘Ž2 … 5

Substituting (5) in (2) we get

𝑧 = 𝑏 Β± 𝑏 4 βˆ’ π‘Ž2π‘₯ + 𝑏𝑦 + 𝑐

5.Find the solution of π’‘π’™πŸ + π’’π’šπŸ = π’›πŸ

Solution: The S.E is

𝑑π‘₯

π‘₯2=

𝑑𝑦

𝑦2=

𝑑𝑧

𝑧2

Taking 1st two members, we get

Page 25: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

𝑑π‘₯

π‘₯2=

𝑑𝑦

𝑦2

Integrating we get

βˆ’1

π‘₯= βˆ’

1

𝑦+ 𝑐1

i.e., 1

π‘¦βˆ’

1

π‘₯ = 𝑐1

taking last two members, we get

𝑑𝑦

𝑦2=

𝑑𝑧

𝑧2

βˆ’1

𝑦= βˆ’

1

𝑧+ 𝑐2

i.e., 1

π‘§βˆ’

1

𝑦 = 𝑐2

The complete solution is 𝛷 1

π‘¦βˆ’

1

π‘₯,

1

π‘§βˆ’

1

𝑦 = 0

6. Find the partial differential equation of all planes having equal intercepts on the 𝒙 and

π’š axis.

Solution:

The equation of the plane is

π‘₯

π‘Ž+

𝑦

π‘Ž+

𝑧

𝑏= 1 … (1)

Partially differentiating (1) w.r.t β€˜π‘₯’ and β€˜π‘¦β€™ we get

1

π‘Ž+

𝑝

𝑏= 0

𝑝 = βˆ’π‘

π‘Žβ€¦ (2)

1

π‘Ž+

π‘ž

𝑏= 0

π‘ž = βˆ’π‘

π‘Žβ€¦ (3)

From (2) and (3) we get 𝑝 = π‘ž

Page 26: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

7. Form the partial differential equation by eliminating the arbitrary function from

𝜱 π’›πŸ βˆ’ π’™π’š,𝒙

𝒛 = 𝟎

Solution: Given

𝛷 𝑧2 βˆ’ π‘₯𝑦,π‘₯

𝑧 = 0 … 1

Let 𝑒 = 𝑧2 βˆ’ π‘₯𝑦

𝑣 =π‘₯

𝑧

Then the given equation is of the form

𝛷 𝑒, 𝑣 = 0 … (2)

The elimination of 𝛷 from the equation (2), we get,

πœ•π‘’

πœ•π‘₯

πœ•π‘£

πœ•π‘₯

πœ•π‘’

πœ•π‘¦

πœ•π‘£

πœ•π‘¦

= 0

i.e.,

2𝑧𝑝 βˆ’ π‘¦π‘§βˆ’π‘π‘₯

𝑧2

2π‘§π‘ž βˆ’ π‘₯βˆ’π‘₯π‘ž

𝑧2

= 0

i.e., 2𝑧𝑝 βˆ’ 𝑦 βˆ’π‘₯π‘ž

𝑧2 βˆ’ 2π‘§π‘ž βˆ’ π‘₯ π‘§βˆ’π‘π‘₯

𝑧2 = 0

i.e.,𝑝π‘₯2 βˆ’ π‘ž π‘₯𝑦 βˆ’ 2𝑧2 = 𝑧π‘₯

8. Find the singular integral of the partial differential equation 𝒛 = 𝒑𝒙 + π’’π’š + π’‘πŸ βˆ’ π’’πŸ

Solution: The complete integral is 𝑧 = π‘Žπ‘₯ + 𝑏𝑦 + π‘Ž2 βˆ’ 𝑏2 … (1)

Now,

πœ•π‘§

πœ•π‘Ž= π‘₯ + 2π‘Ž = 0 π‘Ž =

βˆ’π‘₯

2

πœ•π‘§

πœ•π‘= 𝑦 βˆ’ 2𝑏 = 0 𝑏 =

𝑦

2

… 2

Substituting (2) in (1), we get

𝑧 = βˆ’π‘₯2

2+

𝑦2

2+

π‘₯2

4βˆ’

𝑦2

4= βˆ’

π‘₯2

4+

𝑦2

4

i.e., 𝑦2 βˆ’ π‘₯2 = 4𝑧 which is the singular integral.

Page 27: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

9. Find the complete solution of π’™πŸπ’‘πŸ + π’šπŸπ’’πŸ = π’›πŸ

Solution: Given π‘₯2𝑝2 + 𝑦2π‘ž2 = 𝑧2 … 1

Equation (1) can be written as π‘₯𝑝 2 + π‘¦π‘ž 2 = 𝑧2 … 2

Put log π‘₯ = 𝑋 and log 𝑦 = π‘Œ

π‘₯𝑝 = 𝑃, π‘€π‘•π‘’π‘Ÿπ‘’ 𝑃 =πœ•π‘§

πœ•π‘‹

π‘¦π‘ž = 𝑄, π‘€π‘•π‘’π‘Ÿπ‘’ 𝑄 =πœ•π‘§

πœ•π‘Œ

… (3)

𝑃2 + 𝑄2 = 𝑧2 … 4

This is of the form 𝐹 𝑧, 𝑃, 𝑄 = 0

Let 𝑧 = 𝑓 𝑋 + π‘Žπ‘Œ be the solution of (4).

Put 𝑒 = 𝑋 + π‘Žπ‘Œ.Then 𝑧 = 𝑓 𝑒

𝑃 =𝑑𝑧

𝑑𝑒, 𝑄 = π‘Ž

𝑑𝑧

𝑑𝑒… 5

Substituting (5) in (4), we get

𝑑𝑧

𝑑𝑒

2

1 + π‘Ž2 = 𝑧2

𝑑𝑧

𝑑𝑒=

𝑧

1 + π‘Ž2

Separating the variables we get

𝑑𝑧

𝑧=

𝑑𝑒

1 + π‘Ž2

Integrating we get

log 𝑧 =𝑒

1 + π‘Ž2+ 𝑏

log 𝑧 =𝑋 + π‘Žπ‘Œ

1 + π‘Ž2+ 𝑏

Replacing 𝑋 𝑏𝑦 log π‘₯ π‘Žπ‘›π‘‘ π‘Œ 𝑏𝑦 log 𝑦, we get

Page 28: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

log 𝑧 =π‘™π‘œπ‘” π‘₯ + π‘Žπ‘™π‘œπ‘” 𝑦

1 + π‘Ž2+ 𝑏

Which gives the complete solution of (1).

10.Solve π’‘πŸ + π’’πŸ = π’ŽπŸ

Solution: 𝑝2 + π‘ž2 = π‘š2 … 1

Let us assume that 𝑧 = π‘Žπ‘₯ + 𝑏𝑦 + 𝑐 be a solution of (1). ... (2)

Partially differentiating (2) w.r.t β€²π‘₯ β€²and ′𝑦 β€² , we get

πœ•π‘§

πœ•π‘₯= 𝑝 = π‘Ž,

πœ•π‘§

πœ•π‘¦= π‘ž = 𝑏 … (3)

Substituting (3) in (1) we get

π‘Ž2 + 𝑏2 = π‘š2 … 4

Hence 𝑧 = π‘Žπ‘₯ + 𝑏𝑦 + 𝑐 is the solution of (1).

11. Form a partial differential equation by eliminating arbitrary constants a and b from

𝒛 = 𝒂𝒙𝒏 + π’ƒπ’šπ’

Solution: Given

𝑧 = π‘Žπ‘₯𝑛 + 𝑏𝑦𝑛 … 1

𝑝 =πœ•π‘§

πœ•π‘₯= π‘Ž. 𝑛π‘₯π‘›βˆ’1 π‘Ž =

𝑝

𝑛π‘₯π‘›βˆ’1… (2)

π‘ž =πœ•π‘§

πœ•π‘¦= π‘Ž. π‘›π‘¦π‘›βˆ’1 𝑏 =

π‘ž

π‘›π‘¦π‘›βˆ’1… (3)

Substituting (2) and (3) in (1), we get

𝑧 =𝑝

𝑛π‘₯π‘›βˆ’1π‘₯𝑛 +

π‘ž

π‘›π‘¦π‘›βˆ’1𝑦𝑛

𝑧 =1

𝑛 𝑝π‘₯ + π‘žπ‘¦

12. Solve π‘«πŸ‘ + πŸ‘π‘«πŸπ‘«β€² + πŸ‘π‘«π‘«β€² 𝟐 + 𝑫′ πŸ‘ 𝒛 = 𝟎.

Solution:

A.E is π‘š3 + 3π‘š2 + 3π‘š + 1 = 0

π‘š + 1 3 = 0

Page 29: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

i.e., π‘š = βˆ’1, βˆ’1, βˆ’1.

𝑧 = 𝑓1 𝑦 βˆ’ π‘₯ + π‘₯𝑓2 𝑦 βˆ’ π‘₯ + π‘₯2𝑓3(𝑦 βˆ’ π‘₯)

13. Form a partial differential equation by eliminating arbitrary constants a and b from

𝒛 = π’™πŸ + π’‚πŸ π’šπŸ + π’ƒπŸ

Solution:

Given

𝑧 = π‘₯2 + π‘Ž2 𝑦2 + 𝑏2 … 1

𝑝 =πœ•π‘§

πœ•π‘₯= 2π‘₯ 𝑦2 + 𝑏2

𝑝

2π‘₯= 𝑦2 + 𝑏2 … (2)

π‘ž =πœ•π‘§

πœ•π‘¦= 2𝑦 π‘₯2 + π‘Ž2

π‘ž

2𝑦= π‘₯2 + π‘Ž2 … (3)

Substituting (2) and (3) in (1) we get

𝑧 =𝑝

2π‘₯

π‘ž

2𝑦

π‘π‘ž = 4π‘₯𝑦𝑧

14. Solve π‘«πŸ βˆ’ 𝑫𝑫′ + 𝑫′ βˆ’ 𝟏 𝒛 = 𝟎.

Solution: The given equation can be written as

𝐷 βˆ’ 1 𝐷 βˆ’ 𝐷′ + 1 𝑧 = 0.

We know that the complementary function corresponding to the factors

𝐷 βˆ’ π‘š1𝐷′ βˆ’ 𝛼1 𝐷 βˆ’ π‘š2𝐷

β€² βˆ’ 𝛼2 𝑧 = 0 𝑖𝑠

𝑧 = 𝑒𝛼1π‘₯𝑓1 𝑦 + π‘š1π‘₯ + 𝑒𝛼2π‘₯𝑓2(𝑦 + π‘š2π‘₯)

Here 𝛼1 = 1, 𝛼2 = βˆ’1, π‘š1 = 0, π‘š2 = 1.

𝑧 = 𝑒π‘₯𝑓1 𝑦 + π‘’βˆ’π‘₯𝑓2(𝑦 + π‘₯)

15. Form the partial differential equation by eliminating the arbitrary function from

𝒛 = 𝒇 π’™π’š

𝒛

Solution:

𝑧 = 𝑓 π‘₯𝑦

𝑧

Page 30: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

𝑝 = 𝑓′ π‘₯𝑦

𝑧 𝑧𝑦 βˆ’ π‘₯𝑦𝑝

𝑧2… (1)

π‘ž = 𝑓′ π‘₯𝑦

𝑧 𝑧π‘₯ βˆ’ π‘₯π‘¦π‘ž

𝑧2… (2)

From (1) we get

𝑓′ π‘₯𝑦

𝑧 =

𝑝𝑧2

𝑧𝑦 βˆ’ π‘₯𝑦𝑝… (3)

Substituting (3) in (2), we get

π‘ž =𝑝𝑧2

𝑧𝑦 βˆ’ π‘₯𝑦𝑝

𝑧π‘₯ βˆ’ π‘₯π‘¦π‘ž

𝑧2

16. Form a partial differential equation by eliminating arbitrary constants a and b from

𝒙 βˆ’ 𝒂 𝟐 + π’š βˆ’ 𝒃 𝟐 + π’›πŸ = 𝟏

Solution: Given

π‘₯ βˆ’ π‘Ž 2 + 𝑦 βˆ’ 𝑏 2 + 𝑧2 = 1 … 1

Partially differentiating (1) w.r.t. β€²π‘₯ β€²and ′𝑦 β€² , we get

2 π‘₯ βˆ’ π‘Ž + 2𝑧𝑝 = 0

i.e., π‘₯ βˆ’ π‘Ž = βˆ’π‘§π‘ … (2)

2 𝑦 βˆ’ 𝑏 + 2π‘§π‘ž = 0

𝑦 βˆ’ 𝑏 = βˆ’π‘§π‘ž … (3)

Substituting (2) and (3) in (1), we get

𝑧2𝑝2 + 𝑧2π‘ž2 + 𝑧2 = 1

𝑝2 + π‘ž2 + 1 =1

𝑧2

17. Find the complete integral of 𝒑 + 𝒒 = 𝒑𝒒

Solution: Given 𝑝 + π‘ž = π‘π‘ž … (1)

Let us assume that 𝑧 = π‘Žπ‘₯ + 𝑏𝑦 + 𝑐 be a solution of (1). ... (2)

Partially differentiating (2) w.r.t β€²π‘₯ β€²and ′𝑦 β€² , we get

πœ•π‘§

πœ•π‘₯= 𝑝 = π‘Ž,

πœ•π‘§

πœ•π‘¦= π‘ž = 𝑏 … (3)

Page 31: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

Substituting (3) in (1) we get

π‘Ž + 𝑏 = π‘Žπ‘ … 3

𝑏 =π‘Ž

π‘Ž βˆ’ 1… (4)

Substituting (4) in (2) we get

𝑧 = π‘Žπ‘₯ + π‘Ž

π‘Ž βˆ’ 1 𝑦 + 𝑐

which is the complete integral.

18. Solve π‘«πŸ‘ βˆ’ πŸ‘π‘«π‘«β€² 𝟐 + πŸπ‘«β€² πŸ‘ 𝒛 = 𝟎.

Solution:

A.E. is π‘š3 βˆ’ 3π‘š + 2 = 0

π‘š = 1, 1 π‘Žπ‘›π‘‘ βˆ’ 2.

The solution is 𝑧 = 𝑓1 𝑦 + π‘₯ + π‘₯𝑓2 𝑦 + π‘₯ + 𝑓3(𝑦 βˆ’ 2π‘₯).

19. Find the general solution of πŸ’ππŸπ’›

ππ’™πŸ βˆ’ πŸπŸππŸπ’›

ππ’™ππ’š+ πŸ—

ππŸπ’›

ππ’šπŸ = 𝟎.

Solution:

A.E. is 4π‘š2 βˆ’ 12π‘š + 9 = 0

π‘š =12 Β± 144 βˆ’ 144

8

π‘š =3

2,3

2

The general solution is 𝑧 = 𝑓1 𝑦 +3

2π‘₯ + π‘₯𝑓2 𝑦 +

3

2π‘₯

20. Form the partial differential equation by eliminating the arbitrary function from

𝒛 = 𝒇 π’š

𝒙

Solution:

𝑧 = 𝑓 𝑦

π‘₯ … (1)

Partially differentiating (1) w.r.t β€²π‘₯ β€²and ′𝑦 β€² , we get

Page 32: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

𝑝 = 𝑓′ 𝑦

π‘₯ βˆ’π‘¦

π‘₯2… (2)

π‘ž = 𝑓′ 𝑦

π‘₯

1

π‘₯… (3)

From (1) we get

𝑓′ 𝑦

π‘₯ = βˆ’

𝑝π‘₯2

𝑦… (4)

Substituting (4) in (3), we get

π‘ž = βˆ’π‘π‘₯2

𝑦

1

π‘₯

𝑝π‘₯ + π‘žπ‘¦ = 0 is the required partial differential equation.

21. Form the partial differential equation by eliminating the arbitrary function from

𝑧 = π‘₯ + 𝑦 + 𝑓 π‘₯𝑦 .

Solution: Given 𝑧 = π‘₯ + 𝑦 + 𝑓 π‘₯𝑦 … 1

Partially differentiating (1) w.r.t β€²π‘₯ β€²and ′𝑦 β€² , we get

𝑝 = 1 + 𝑓′ π‘₯𝑦 𝑦 𝑝 βˆ’ 1 = 𝑓′ π‘₯𝑦 𝑦… 2

π‘ž = 1 + 𝑓′ π‘₯𝑦 π‘₯ π‘ž βˆ’ 1 = 𝑓′ π‘₯𝑦 π‘₯ … 3

(2) Γ· 3 gives π‘βˆ’1

π‘žβˆ’1=

𝑦

π‘₯

𝑝π‘₯ βˆ’ π‘₯ = π‘žπ‘¦ βˆ’ 𝑦 π‘œπ‘Ÿ 𝑝π‘₯ βˆ’ π‘žπ‘¦ = π‘₯ βˆ’ 𝑦 is the required partial differential equation.

22. Form the partial differential equation by eliminating the arbitrary function from

𝑧 = 𝑓 π‘₯𝑦 .

Solution: Given 𝑧 = 𝑓 π‘₯𝑦 … 1

Partially differentiating (1) w.r.t β€²π‘₯ β€²and ′𝑦 β€² , we get

𝑝 = 𝑓′ π‘₯𝑦 𝑦… 2

π‘ž = 𝑓′ π‘₯𝑦 π‘₯ … 3

(2) Γ· 3 gives 𝑝

π‘ž=

𝑦

π‘₯

𝑝π‘₯ = π‘žπ‘¦ π‘œπ‘Ÿ 𝑝π‘₯ βˆ’ π‘žπ‘¦ = 0 is the required partial differential equation.

Page 33: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

23. Find the partial differential equation of all planes through the origin.

Solution:

The general equation of the plane is

π‘Žπ‘₯ + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 … (1)

If (1) passes through the origin, then d=0.

So (1) becomes

π‘Žπ‘₯ + 𝑏𝑦 + 𝑐𝑧 = 0 … (2)

Partially differentiating (2) w.r.t β€˜π‘₯’ and β€˜π‘¦β€™ we get

π‘Ž + 𝑐𝑝 = 0 π‘Ž = βˆ’π‘π‘ … 3

𝑏 + π‘π‘ž = 0 𝑏 = βˆ’π‘π‘ž … (4)

Substituting (3) and (4) in (1), we get

βˆ’π‘π‘π‘₯ βˆ’ π‘π‘žπ‘¦ + 𝑐𝑧 = 0 𝑝π‘₯ + π‘žπ‘¦ = 𝑧 is the required partial differential equation.

24. Write down the complete solution of 𝒛 = 𝒑𝒙 + π’’π’š + 𝒄 𝟏 + π’‘πŸ + π’’πŸ.

Solution: The given equation is Clairaut’s type.

So replacing p by a and q by b, the complete solution is

𝑧 = π‘Žπ‘₯ + 𝑏𝑦 + 𝑐 1 + π‘Ž2 + 𝑏2

25. Find the differential equations of all spheres of radius c having their centers in the π’™π’π’š

plane.

Solution: Let the center of the sphere be (π‘Ž, 𝑏, 0), a point in the π‘₯π‘œπ‘¦ plane. c is the given

radius.

The equation of the sphere is π‘₯ βˆ’ π‘Ž 2 + 𝑦 βˆ’ 𝑏 2 + 𝑧2 = 𝑐2 … (1)

Partially differentiating (1) w.r.t β€˜π‘₯’ and β€˜π‘¦β€™ we get

2 π‘₯ βˆ’ π‘Ž + 2𝑧𝑝 = 0 π‘₯ βˆ’ π‘Ž = βˆ’π‘§π‘ … (2)

2 𝑦 βˆ’ 𝑏 + 2π‘§π‘ž = 0 𝑦 βˆ’ 𝑏 = βˆ’π‘§π‘ž … (3)

Substituting (2) and (3) in (1), we get

Page 34: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

𝑧2𝑝2 + 𝑧2π‘ž2 + 𝑧2 = 𝑐2

𝑧2 𝑝2 + π‘ž2 + 1 = 𝑐2 which is the required partial differential equation.

26. Eliminate 𝒇 from π’™π’šπ’› = 𝒇(𝒙 + π’š + 𝒛)

Solution: Given π‘₯𝑦𝑧 = 𝑓 π‘₯ + 𝑦 + 𝑧 … 1 .

Partially differentiating (1) w.r.t β€˜π‘₯’ and β€˜π‘¦β€™ we get

𝑦 𝑧 + π‘₯𝑝 = 𝑓′ π‘₯ + 𝑦 + 𝑧 1 + 𝑝 … (2)

π‘₯ 𝑧 + π‘¦π‘ž = 𝑓′ π‘₯ + 𝑦 + 𝑧 1 + π‘ž … (3)

(2) Γ· 3 gives 1+𝑝

1+π‘ž =

𝑦 𝑧+π‘₯𝑝

π‘₯ 𝑧+π‘¦π‘ž

1 + 𝑝 π‘₯ 𝑧 + π‘¦π‘ž = 1 + π‘ž 𝑦 𝑧 + π‘₯𝑝

𝑝 π‘₯𝑦 βˆ’ π‘₯𝑧 + π‘ž 𝑦𝑧 βˆ’ π‘₯𝑦 = π‘₯𝑧 βˆ’ 𝑦𝑧

𝑝π‘₯ 𝑦 βˆ’ 𝑧 + π‘žπ‘¦ 𝑧 βˆ’ π‘₯ = 𝑧(π‘₯ βˆ’ 𝑦) is the required partial differential equation.

27. Mention three types of partial differential equation.

Solution: i) A solution of a partial differential equation which contains the maximum

possible number of arbitrary constants is called complete integral.

ii) A solution obtained by giving particular values to the arbitrary constants in a complete

integral is called a particular integral.

iii) A solution of a partial differential equation which contains the maximum possible

number of arbitrary functions is called general integral.

28. Define singular integral.

Solution:

Let 𝐹 π‘₯, 𝑦, 𝑧, 𝑝, π‘ž = 0 … 1 be a partial differential equation and its complete integral be

𝛷 π‘₯, 𝑦, 𝑧, π‘Ž, 𝑏 = 0 … 2

Differentiating (2) partially w.r.t. a and b in turn, we get

πœ•π›·

πœ•π‘Ž= 0 … (3)

πœ•π›·

πœ•π‘= 0 … (4)

The eliminant of a and b from (2), (3) and (4), if it exits, is called singular integral.

Page 35: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

29. Solve 𝒑 + 𝒒 = 𝟏

Solution: Given 𝑝 + π‘ž = 1 … 1

Let us assume that 𝑧 = π‘Žπ‘₯ + 𝑏𝑦 + 𝑐 be a solution of (1). ... (2)

Partially differentiating (2) w.r.t β€²π‘₯ β€²and ′𝑦 β€² , we get

πœ•π‘§

πœ•π‘₯= 𝑝 = π‘Ž,

πœ•π‘§

πœ•π‘¦= π‘ž = 𝑏 … (3)

Substituting (3) in (1), we get

π‘Ž + 𝑏 = 1 𝑏 = 1 βˆ’ π‘Ž 2… (4)

Substituting (4) in (2), we get

𝑧 = π‘Žπ‘₯ + 1 βˆ’ π‘Ž 2𝑦 + 𝑐 is the complete integral of (1).

30. Find the particular integral of π‘«πŸ‘ βˆ’ πŸ‘π‘«πŸπ‘«β€² βˆ’ πŸ’π‘«π‘«β€² 𝟐 + πŸπŸπ‘«β€²πŸ‘ 𝒛 = 𝐬𝐒𝐧(𝒙 + πŸπ’š)

Solution:

Particular integral =sin (π‘₯+2𝑦 )

𝐷3βˆ’3𝐷2𝐷′ βˆ’4𝐷𝐷′ 2+12𝐷′3

… (1)

Replacing 𝐷2 𝑏𝑦 βˆ’ 12 π‘Žπ‘›π‘‘π·β€² 2𝑏𝑦 βˆ’ 22 in(1)

=sin(π‘₯ + 2𝑦)

βˆ’π· + 3𝐷′ + 16𝐷 βˆ’ 48𝐷′

=sin(π‘₯ + 2𝑦)

15𝐷 βˆ’ 45𝐷′

=sin(π‘₯ + 2𝑦)

15 𝐷 βˆ’ 3𝐷′

= 𝐷 + 3𝐷′ sin(π‘₯ + 2𝑦)

15 𝐷2 βˆ’ 9𝐷′2

=cos π‘₯ + 2𝑦 + 6 cos(π‘₯ + 2𝑦)

15 𝐷2 βˆ’ 9𝐷′2

=7cos π‘₯ + 2𝑦

15 βˆ’1 βˆ’ 9(βˆ’4)

=cos π‘₯ + 2𝑦

75

Page 36: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

Z –Transform

Part-A

1. Find 𝒁 𝒏 .

Solution:

𝑍 𝑛 = π‘›π‘§βˆ’π‘› =

∞

𝑛=0

𝑛

𝑧𝑛=

1

𝑧

∞

𝑛=0

+2

𝑧2+

3

𝑧3+ β‹―

=1

𝑧 1 +

2

𝑧+

3

𝑧2+

4

𝑧3+ β‹― =

1

𝑧 1 βˆ’

1

𝑧

βˆ’2

=1

𝑧

𝑧2

𝑧 βˆ’ 1 2

𝑍 𝑛 =𝑧

π‘§βˆ’1 2 [The region of convergence is 1

𝑧 < 1 π‘œπ‘Ÿ 𝑧 > 1]

2. Form the difference equation from π’šπ’ = 𝒂 + π’ƒπŸ‘π’

Solution: 𝑦𝑛 = π‘Ž + 𝑏3𝑛 , 𝑦𝑛+1 = π‘Ž + 𝑏3𝑛+1` , 𝑦𝑛+2 = π‘Ž + 𝑏3𝑛+2

𝑦𝑛+2 βˆ’ 4𝑦𝑛+1 + 3𝑦𝑛 = 0

3. Find the value of 𝒁 𝒇(𝒏) π’˜π’‰π’†π’ 𝒇 𝒏 = 𝒏𝒂𝒏

Solution: 𝑍 π‘›π‘Žπ‘› = 𝑍(𝑛) 𝑧→𝑧

π‘Ž 𝑆𝑖𝑛𝑐𝑒 𝑍 π‘Žπ‘›π‘“(𝑑) = 𝐹

𝑧

π‘Ž

= 𝑧

𝑧 βˆ’ 1 2 𝑧→

π‘§π‘Ž

=

π‘§π‘Ž

π‘§π‘Ž βˆ’ 1

2 =π‘Žπ‘§

𝑧 βˆ’ π‘Ž 2. 𝑆𝑖𝑛𝑐𝑒 𝑍 𝑛 =

𝑧

𝑧 βˆ’ 1 2

4. Find 𝒁 𝒂𝒏

𝒏! in Z-transform.

Solution: 𝑍 π‘Žπ‘›

𝑛 ! = 𝑍

1

𝑛!

𝑧→𝑧

π‘Ž

𝑆𝑖𝑛𝑐𝑒 𝑍 π‘Žπ‘›π‘“(𝑑) = 𝐹 𝑧

π‘Ž

= 𝑒1 𝑧 𝑧→

π‘§π‘Ž

= π‘’π‘Ž 𝑧

5.Find 𝒁 π’†βˆ’π’Šπ’‚π’• using Z-transform.

Solution: 𝑍 π‘’βˆ’π‘–π‘Žπ‘‘ = 𝑍 π‘’βˆ’π‘–π‘Žπ‘‘ . 1

= 𝑍 1 𝑧→𝑧𝑒 π‘–π‘Žπ‘‡ 𝑆𝑖𝑛𝑐𝑒 𝑍 π‘’βˆ’π‘–π‘Žπ‘‘ . 𝑓(𝑑) = 𝐹(π‘§π‘’π‘–π‘Žπ‘‡ )

= 𝑧

𝑧 βˆ’ 1 𝑧→𝑧𝑒 π‘–π‘Žπ‘‡

=π‘§π‘’π‘–π‘Žπ‘‡

π‘§π‘’π‘–π‘Žπ‘‡ βˆ’ 1

6. Express 𝒁 𝒇 𝒏 + 𝟏 in terms of 𝑭 𝒛 .

Solution: 𝑍 𝑓 𝑛 + 1 = 𝑧𝐹 𝑧 βˆ’ 𝑧𝑓 0 .

7. State and prove initial value theorem in Z-transform.

Page 37: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

Solution: If 𝑍 𝑓 𝑛 = 𝐹 𝑧 then lim

z β†’ ∞𝐹 𝑧 = 𝑓 0 =

limt β†’ 0

𝑓(𝑑)

We know that

𝑍 𝑓 𝑛 = 𝑓 𝑛 π‘§βˆ’π‘›

∞

𝑛=0

= 𝑓 0 + 𝑓 1 π‘§βˆ’1 + 𝑓 2 π‘§βˆ’2 + β‹―

𝐹 𝑧 = 𝑓 0 +𝑓 1

𝑧+

𝑓 2

𝑧2+ β‹―

limz β†’ ∞

𝐹 𝑧 = 𝑓 0 𝑆𝑖𝑛𝑐𝑒 lim

z β†’ ∞

1

z= 0

limz β†’ ∞

𝐹 𝑧 = 𝑓 0 = lim

t β†’ 0𝑓(𝑑)

8. Find the Z-transform of (𝒏 + 𝟏)(𝒏 + 𝟐)

Solution: 𝑍 (𝑛 + 1)(𝑛 + 2) = 𝑍 𝑛2 + 3𝑛 + 2

= 𝑍 𝑛2 + 3𝑍 𝑛 + 𝑍 2

=𝑧(𝑧 + 1)

𝑧 βˆ’ 1 3+ 3

𝑧

𝑧 βˆ’ 1 2+ 2

𝑧

𝑧 βˆ’ 1

9. Find the Z-transform of 𝒄𝒐𝒔 𝒏𝒙

Solution: 𝑍 𝑒𝑖𝑛π‘₯ = 𝑍 𝑒𝑖π‘₯ 𝑛

=𝑧

𝑧 βˆ’ 𝑒𝑖π‘₯ 𝑆𝑖𝑛𝑐𝑒 𝑍 π‘Žπ‘› =

𝑧

𝑧 βˆ’ π‘Ž

=𝑧

𝑧 βˆ’ cos π‘₯ + 𝑖 sin π‘₯ =

𝑧

𝑧 βˆ’ cos π‘₯ + 𝑖 sin π‘₯

𝑍[cos 𝑛π‘₯ + 𝑖𝑠𝑖𝑛 𝑛π‘₯] =𝑧 𝑧 βˆ’ cos π‘₯ βˆ’ 𝑖 sin π‘₯

𝑧 βˆ’ cos π‘₯ 2 + sin2 π‘₯

𝑍[cos 𝑛π‘₯] + 𝑖𝑍[𝑠𝑖𝑛 𝑛π‘₯] =𝑧 𝑧 βˆ’ cos π‘₯

𝑧2 βˆ’ 2π‘§π‘π‘œπ‘  π‘₯ + 1βˆ’

𝑖𝑠𝑖𝑛 π‘₯

𝑧2 βˆ’ 2π‘§π‘π‘œπ‘  π‘₯ + 1

Equating real and imaginary parts we get

𝑍(cos 𝑛π‘₯) =𝑧 𝑧 βˆ’ cos π‘₯

𝑧2 βˆ’ 2π‘§π‘π‘œπ‘  π‘₯ + 1

10. Find the Z-transform of 𝒂𝒏

Solution:

𝑍 π‘Žπ‘› = π‘Žπ‘›π‘§βˆ’π‘›

∞

𝑛=0

Page 38: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

= 1 + π‘Žπ‘§βˆ’1 + π‘Ž2π‘§βˆ’2 + π‘Ž3π‘§βˆ’3 + β‹―

= 1 + π‘Žπ‘§βˆ’1 + π‘Žπ‘§βˆ’1 2 + π‘Žπ‘§βˆ’1 3 + β‹― 𝑆𝑖𝑛𝑐𝑒 1 + π‘₯ + π‘₯2 + π‘₯3 + β‹― = (1 βˆ’ π‘₯)βˆ’1

=1

1 βˆ’ π‘Žπ‘§βˆ’1=

𝑧

𝑧 βˆ’ π‘Ž

11. Let 𝒁 𝒇 𝒏 = 𝑭 𝒛 𝒂𝒏𝒅 π’Œ > 0then, Prove that

𝒁 𝒇 𝒏 βˆ’ π’Œ = π’›βˆ’π’Œπ‘­ 𝒛

Solution:

𝑍 𝑓 𝑛 βˆ’ π‘˜ = 𝑓 𝑛 βˆ’ π‘˜ π‘§βˆ’π‘›

∞

𝑛=0

= 𝑓 𝑛 βˆ’ π‘˜ π‘§βˆ’π‘›

∞

𝑛=π‘˜

𝑆𝑖𝑛𝑐𝑒 𝑓 βˆ’1 , 𝑓 βˆ’2 , β€¦π‘Žπ‘Ÿπ‘’ π‘›π‘œπ‘‘ 𝑑𝑒𝑓𝑖𝑛𝑒𝑑

= 𝑓0π‘§βˆ’π‘˜ + 𝑓1𝑧

βˆ’ π‘˜+1 + 𝑓2π‘§βˆ’ π‘˜+2 + β‹―

= π‘§βˆ’π‘˜ 𝑓0 + 𝑓1π‘§βˆ’1 + 𝑓2π‘§βˆ’2 + β‹―

= π‘§βˆ’π‘˜ 𝑓 𝑛 π‘§βˆ’π‘›

∞

𝑛=0

= π‘§βˆ’π‘˜πΉ 𝑧

12. Let 𝒁 𝒇 𝒏 = 𝑭 𝒛 𝒂𝒏𝒅 π’Œ > 0then, Prove that

𝒁 𝒇 𝒏 + π’Œ = π’›π’Œ 𝑭 𝒛 βˆ’ 𝒇 𝒐 βˆ’ 𝒇 𝟏 π’›βˆ’πŸ βˆ’ β‹― 𝒇(π’Œ βˆ’ 𝟏)π’›βˆ’(π’Œβˆ’πŸ)

Solution:

𝑍 𝑓 𝑛 + π‘˜ = 𝑓 𝑛 + π‘˜ π‘§βˆ’π‘›

∞

𝑛=0

Multiply and divide by π‘§π‘˜ in RHS, we get

= 𝑓 𝑛 + π‘˜ π‘§βˆ’π‘›

∞

𝑛=0

π‘§π‘˜

π‘§π‘˜

= π‘§π‘˜ 𝑓 𝑛 + π‘˜ π‘§βˆ’(𝑛+π‘˜)

∞

𝑛=0

= π‘§π‘˜ 𝑓 π‘˜ π‘§βˆ’π‘˜ + 𝑓 π‘˜ + 1 π‘§βˆ’(π‘˜+1) + 𝑓 π‘˜ + 2 π‘§βˆ’(π‘˜+2) + β‹―

= π‘§π‘˜ 𝑓 𝑛 π‘§βˆ’π‘›

∞

𝑛=0

βˆ’ 𝑓 𝑛 βˆ’ π‘˜ π‘§βˆ’π‘›

π‘˜βˆ’1

𝑛=0

= π‘§π‘˜ 𝐹 𝑧 βˆ’ 𝑓 π‘œ βˆ’ 𝑓 1 π‘§βˆ’1 βˆ’ β‹― 𝑓(π‘˜ βˆ’ 1)π‘§βˆ’(π‘˜βˆ’1)

13. Find the Z-transform of βˆ’πŸ 𝒏

Solution:

Page 39: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

𝑍 βˆ’1 𝑛 = βˆ’1 π‘›π‘§βˆ’π‘›

∞

𝑛=0

= 1 βˆ’ π‘§βˆ’1 + π‘§βˆ’2 βˆ’ π‘§βˆ’3 + β‹―

= 1 + π‘§βˆ’1 βˆ’1

=𝑧

𝑧 + 1

14. Find the Z-transform of π’πŸ

Solution:

𝑍 𝑛2 = 𝑍 𝑛. 𝑛

= βˆ’π‘§π‘‘π‘ 𝑛

𝑑𝑧 𝑆𝑖𝑛𝑐𝑒 𝑍 𝑛𝑓 𝑑 = βˆ’π‘§

𝑑𝐹(𝑧)

𝑑𝑧

= βˆ’π‘§π‘‘

𝑑𝑧

𝑧

𝑧 βˆ’ 1 2

= βˆ’π‘§ 𝑧 βˆ’ 1 2 βˆ’ 2 𝑧 βˆ’ 1 𝑧

𝑧 βˆ’ 1 4

= βˆ’π‘§ 𝑧 βˆ’ 1 βˆ’ 2𝑧

𝑧 βˆ’ 1 3

=𝑧 𝑧 + 1

𝑧 βˆ’ 1 3

15. State convolution theorem for Z-transform

Solution: If 𝑓 𝑛 π‘Žπ‘›π‘‘ 𝑔(𝑛) are two casual sequences,

𝑍 𝑓(𝑛) βˆ— 𝑔(𝑛) = 𝑍 𝑓(𝑛) . 𝑍 𝑔(𝑛) = 𝐹 𝑧 . 𝐺(𝑧)

16. If 𝑭 𝒛 =𝒛

π’›βˆ’π’†βˆ’π‘», find π₯𝐒𝐦

𝐭 β†’ ∞ 𝒇(𝒕)

Solution: We know that lim

t β†’ ∞ 𝑓 𝑑 =

limz β†’ 1

(𝑧 βˆ’ 1)𝐹 𝑧

=lim

z β†’ 1 𝑧 βˆ’ 1

𝑧

𝑧 βˆ’ π‘’βˆ’π‘‡= 0

17. Find the Z-transform of 𝒏𝒇 𝒕 π’Šπ’‡ 𝒁 𝒇 𝒕 = 𝑭(𝒛)

Solution:

𝐹 𝑧 = 𝑍 𝑓 𝑑 = 𝑓 𝑛𝑇 π‘§βˆ’π‘›

∞

𝑛=0

Differentiate both sides w.r.t. π‘§βˆ’1.

𝑑𝐹(𝑧)

𝑑𝑧= βˆ’π‘›π‘“ 𝑛𝑇 π‘§βˆ’π‘›βˆ’1

∞

𝑛=0

Page 40: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

𝑧𝑑𝐹(𝑧)

𝑑𝑧= βˆ’ 𝑛𝑓 𝑛𝑇 π‘§βˆ’π‘›

∞

𝑛=0

= βˆ’π‘ 𝑛𝑓 𝑑

𝑍 𝑛𝑓 𝑑 = βˆ’π‘§π‘‘πΉ(𝑧)

𝑑𝑧

18. If 𝒁 𝒇 𝒕 = 𝑭(𝒛) then prove that 𝒁 π’†βˆ’π’‚π’•π’‡ 𝒕 = 𝑭(𝒛𝒆𝒂𝑻)

Solution:

𝑍 π‘’βˆ’π‘Žπ‘‘π‘“ 𝑑 = π‘’βˆ’π‘Žπ‘›π‘‡ 𝑓 𝑛𝑇 π‘§βˆ’π‘›

∞

𝑛=0

= 𝑓 𝑛𝑇 π‘§π‘’π‘Žπ‘‡ βˆ’π‘›

∞

𝑛=0

= 𝐹 π‘§π‘’π‘Žπ‘‡ 𝑆𝑖𝑛𝑐𝑒 𝐹 𝑧 = 𝑓 𝑛𝑇 π‘§βˆ’π‘›

∞

𝑛=0

19. Find the Z-transform of π’†βˆ’π’‚π’• 𝒄𝒐𝒔 𝒃𝒕

Solution:

𝑍 π‘’βˆ’π‘Žπ‘‘ cos 𝑏𝑑 = 𝑍[cos 𝑏𝑑] π‘§β†’π‘§π‘’π‘Žπ‘‡ 𝑆𝑖𝑛𝑐𝑒 𝑍 π‘’βˆ’π‘Žπ‘‘π‘“ 𝑑 = 𝐹(π‘§π‘’π‘Žπ‘‡ )

= 𝑧 𝑧 βˆ’ cos 𝑏𝑇

𝑧2 βˆ’ 2π‘§π‘π‘œπ‘  𝑏𝑇 + 1

π‘§β†’π‘§π‘’π‘Žπ‘‡

=π‘§π‘’π‘Žπ‘‡ π‘§π‘’π‘Žπ‘‡ βˆ’ cos 𝑏𝑇

𝑧2𝑒2π‘Žπ‘‡ βˆ’ 2π‘§π‘’π‘Žπ‘‡π‘π‘œπ‘  𝑏𝑇 + 1

20. If 𝑭 𝒛 =πŸπŸŽπ’›

π’›βˆ’πŸ (π’›βˆ’πŸ) π’‡π’Šπ’π’… 𝒇 𝟎 .

Solution:

𝑓 0 =lim

z β†’ ∞𝐹 𝑧 =

limz β†’ ∞

10𝑧

𝑧 βˆ’ 1 𝑧 βˆ’ 2

=lim

z β†’ ∞

10𝑧

𝑧 1 βˆ’1𝑧 𝑧 βˆ’ 2

=lim

z β†’ ∞

10

1 βˆ’1𝑧 𝑧 βˆ’ 2

= 0

21. Find Z-transform of 𝟏

𝒏, 𝒏 β‰₯ 𝟏.

Solution:

𝑍 1

𝑛 =

1

π‘›π‘§βˆ’π‘›

∞

𝑛=1

Page 41: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

= 1

𝑧+

1

2𝑧2+

1

3𝑧3+ β‹―

= βˆ’ log 1 βˆ’1

𝑧 𝑖𝑓

1

𝑧 < 1

= log 𝑧

𝑧 βˆ’ 1 𝑖𝑓 𝑧 > 1

22. Find Z-transform of 𝟏

𝒏!

Solution:

𝑍 1

𝑛! =

1

𝑛!π‘§βˆ’π‘› =

∞

𝑛=0

1

𝑛! π‘§βˆ’1 𝑛

∞

𝑛=0

= 1 +π‘§βˆ’1

1!+

π‘§βˆ’1 2

2!+

π‘§βˆ’1 3

3!+ β‹― = π‘’π‘§βˆ’1

𝑍 1

𝑛! = 𝑒1 𝑧

23. Find the Z-transform of 𝒂𝒃𝒏

Solution:

𝑍 π‘Žπ‘π‘› = π‘Žπ‘π‘›π‘§βˆ’π‘›

∞

𝑛=0

= π‘Ž 𝑏

𝑧

π‘›βˆž

𝑛=0

= π‘Ž 1 +𝑏

𝑧+

𝑏

𝑧

2

+ β‹―

= π‘Ž1

1 βˆ’π‘π‘§

𝑖𝑓 𝑏

𝑧 < 1

=π‘Žπ‘§

𝑧 βˆ’ 𝑏 𝑖𝑓 𝑧 > |𝑏|

24. Find the inverse Z-transform by using convolution theorem

π’›πŸ

𝒛 βˆ’ 𝒂 𝟐

Solution:

π‘βˆ’1 𝑧2

𝑧 βˆ’ π‘Ž 2 = π‘βˆ’1

𝑧

𝑧 βˆ’ π‘Ž.

𝑧

𝑧 βˆ’ π‘Ž

Page 42: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

= π‘βˆ’1 𝑧

𝑧 βˆ’ π‘Ž βˆ— π‘βˆ’1

𝑧

𝑧 βˆ’ π‘Ž = π‘Žπ‘› βˆ— π‘Žπ‘›

= π‘Žπ‘›βˆ’π‘˜ . π‘Žπ‘˜ =

𝑛

π‘˜=0

π‘Žπ‘›

𝑛

π‘˜=0

= 𝑛 + 1 π‘Žπ‘›π‘’(𝑛)

25. Define Z-transform

Solution:

The two sided Z-transform 𝐹(𝑧) for a sequence 𝑓(π‘₯) is defined as

𝐹 𝑧 = 𝑓 π‘₯ π‘§βˆ’π‘›

∞

𝑛=βˆ’βˆž

The one sided Z-transform 𝐹(𝑧) for a sequence 𝑓(π‘₯) is defined as

𝐹 𝑧 = 𝑓 π‘₯ π‘§βˆ’π‘›

∞

𝑛=0

26. Find the value of 𝒁 𝒂𝒏𝒇 𝒙

Solution:

𝑍 π‘Žπ‘›π‘“ π‘₯ = π‘Žπ‘›π‘“ π‘₯ π‘§βˆ’π‘›

∞

𝑛=0

= 𝑓 π‘₯ 𝑧

π‘Ž

βˆ’π‘›βˆž

𝑛=0

= 𝐹 𝑧

π‘Ž 𝑆𝑖𝑛𝑐𝑒 𝐹 𝑧 = 𝑓 π‘₯ π‘§βˆ’π‘›

∞

𝑛=0

27. Find the value of 𝒁 𝟏 .

Solution:

𝑍 1 = 1. π‘§βˆ’π‘›

∞

𝑛=0

= 1 +1

𝑧+

1

𝑧2+

1

𝑧3+ β‹―

= 1 βˆ’1

𝑧

βˆ’1

𝑖𝑓 1

𝑧 < 1

=𝑧

𝑧 βˆ’ 1 𝑖𝑓 𝑧 > 1.

28. Find the Z-transform of 𝜹(𝒏 βˆ’ π’Œ)

Page 43: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

Solution:

𝑍 𝛿(𝑛 βˆ’ π‘˜) = 𝛿(𝑛 βˆ’ π‘˜)π‘§βˆ’π‘›

∞

𝑛=0

=1

π‘§π‘˜, if k is positive integer

29. Find the Z-transform of 𝒖(𝒏 βˆ’ 𝟏)

Solution:

𝑍 𝑒(𝑛 βˆ’ 1) = 1. π‘§βˆ’π‘›

∞

𝑛=1

=1

𝑧+

1

𝑧2+

1

𝑧3+ β‹―

=1

𝑧 1 βˆ’

1

𝑧

βˆ’1

𝑖𝑓 1

𝑧 < 1

=1

𝑧 βˆ’ 1 𝑖𝑓 𝑧 > 1

30. Find the Z-transform of πŸ‘π’πœΉ(𝒏 βˆ’ 𝟏)

Solution:

𝑍 3𝑛𝛿(𝑛 βˆ’ 1) = 𝑍 𝛿(𝑛 βˆ’ π‘˜) 𝑧→

𝑧3

= 1

𝑧 𝑧→

𝑧3

=3

𝑧

Page 44: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

Applications of partial differential equations

Part-A

1. Classify the partial differential equation πŸ‘π’–π’™π’™ + πŸ’π’–π’™π’š + πŸ‘π’–π’š βˆ’ πŸπ’–π’™ = 𝟎.

Solution: Given 3𝑒π‘₯π‘₯ + 4𝑒π‘₯𝑦 + 3𝑒𝑦 βˆ’ 2𝑒π‘₯ = 0.

𝐴 = 3, 𝐡 = 4, 𝐢 = 0

𝐡2 βˆ’ 4𝐴𝐢 = 16 > 0, Hyperbolic

2. The ends A and B of a rod of length 𝟏𝟎 π’„π’Ž long have their temperature kept at πŸπŸŽπ’ π‘ͺ

and πŸ•πŸŽπ’ π‘ͺ. Find the steady state temperature distribution on the rod.

Solution: When the steady state condition exists the heat flow equation is

πœ•2𝑒

πœ•π‘₯2= 0

i.e., 𝑒(π‘₯) = 𝑐1π‘₯ + 𝑐2 . . . (1)

The boundary conditions are (π‘Ž) 𝑒(0) = 20, (𝑏) 𝑒(10) = 70

Applying (a) in (1), we get 𝑒 0 = 𝑐2 = 20

Substituting 𝑐2 = 20 in (1), we get

𝑒 π‘₯ = 𝑐1π‘₯ + 20 … (2)

Applying (b) in (2), we get 𝑒 10 = 𝑐110 + 20 = 70 𝑐1 = 5

Substituting 𝑐1 = 5 in (2), we get

𝑒 π‘₯ = 5π‘₯ + 20

3.Write the one dimensional wave equation with initial and boundary conditions in which

the initial position of the string is 𝒇(𝒙) and the initial velocity imparted at each point 𝒙 is

π’ˆ(𝒙).

Solution: the one dimensional wave equation is

πœ•2𝑦

πœ•π‘‘2= 𝛼2

πœ•2𝑦

πœ•π‘₯2

The boundary conditions are

𝑖 𝑦 0, 𝑑 = 0 𝑖𝑖 𝑦 𝑙, 𝑑 = 0, 𝑖𝑖𝑖 𝑦 π‘₯, 0 = 𝑓 π‘₯ 𝑖𝑣 πœ•π‘¦ (π‘₯, 0)

πœ•π‘‘= 𝑔(π‘₯)

Page 45: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

4.In steady state conditions derive the solution of one dimensional heat flow equation.

Solution: when steady state conditions exist the heat flow equation is independent of time

t.

πœ•π‘’

πœ•π‘‘= 0

The heat flow equation becomes

πœ•2𝑒

πœ•π‘₯2= 0

The solution of heat flow equation is 𝑒 π‘₯ = 𝑐1π‘₯ + 𝑐2

5. What is the basic difference between the solutions of one dimensional wave equation

and one dimensional heat equation.

Solution: Solution of the one dimensional wave equation is of periodic in nature. But

solution of one dimensional heat equation is not of periodic in nature.

6. What are the possible solutions of one dimensional wave equation?

Solution:

𝑦 π‘₯, 𝑑 = 𝑐1𝑒𝑝π‘₯ + 𝑐2𝑒

βˆ’π‘π‘₯ 𝑐3π‘’π‘π‘Žπ‘‘ + 𝑐4𝑒

βˆ’π‘π‘Žπ‘‘ … (1)

𝑦 π‘₯, 𝑑 = 𝑐5 cos 𝑝π‘₯ + 𝑐6 sin 𝑝π‘₯ 𝑐7 cos π‘π‘Žπ‘‘ + 𝑐8 sin π‘π‘Žπ‘‘ … (2)

𝑦 π‘₯, 𝑑 = 𝑐9π‘₯ + 𝑐10 𝑐11𝑑 + 𝑐12 … (3)

7. Write down possible solutions of the Laplace equation.

Solution:

𝑒 π‘₯, 𝑦 = 𝑐1𝑒𝑝π‘₯ + 𝑐2𝑒

βˆ’π‘π‘₯ 𝑐3 cos 𝑝𝑦 + 𝑐4 sin 𝑝𝑦 … (1)

𝑒 π‘₯, 𝑦 = 𝑐5 cos 𝑝π‘₯ + 𝑐6 sin 𝑝π‘₯ 𝑐7𝑒𝑝𝑦 + 𝑐8𝑒

βˆ’π‘π‘¦ … (2)

𝑒 π‘₯, 𝑦 = 𝑐9π‘₯ + 𝑐10 𝑐11𝑦 + 𝑐12 … (3)

8. State Fourier law of conduction.

Solution:

Fourier law of heat conduction:

The rate at which heat flows across an area A at a distance x from one end of a bar is given

by

Page 46: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

𝑄 = βˆ’πΎπ΄ πœ•π‘’

πœ•π‘₯

π‘₯

where 𝐾 is the thermal conductivity and πœ•π‘’

πœ•π‘₯

π‘₯means the temperature gradient at x.

9. In the wave equation ππŸπ’š

ππ’•πŸ= 𝜢𝟐 ππŸπ’š

ππ’™πŸ what does 𝜢𝟐 stands for?

Solution:

𝛼2 = 𝑇 =π‘‡π‘’π‘›π‘ π‘–π‘œπ‘›

π‘šπ‘Žπ‘ π‘ 

10. State any two laws which are assumed to derive one dimensional heat equation.

Solution:

(i) The sides of the bar are insulated so that the loss or gain of heat from the sides by

conduction or radiation is negligible.

(ii) The same amount of heat is applied at all points of the face.

11. Classify the partial differential equation 𝒖𝒙𝒙 + π’™π’–π’™π’š = 𝟎.

Solution:

Here 𝐴 = 1, 𝐡 = π‘₯, 𝐢 = 0

𝐡2 βˆ’ 4𝐴𝐢 = π‘₯2

𝑖 π‘ƒπ‘Žπ‘Ÿπ‘Žπ‘π‘œπ‘™π‘–π‘ 𝑖𝑓 π‘₯ = 0.

𝑖𝑖 π»π‘¦π‘π‘’π‘Ÿπ‘π‘œπ‘™π‘–π‘ 𝑖𝑓 π‘₯ > 0 π‘Žπ‘›π‘‘ π‘₯ < 0.

12. A rod 30 cm long has its ends A and B kept at πŸπŸŽπ’ π‘ͺ and πŸ–πŸŽπ’ π‘ͺ respectively until

steady state conditions prevail. Find the steady state temperature in the rod.

Solution: Let 𝑙 = 30 π‘π‘š

When the steady state condition prevail the heat flow equation is

πœ•2𝑒

πœ•π‘₯2= 0

i.e., 𝑒 π‘₯ = π‘Žπ‘₯ + 𝑏 … (1)

When the steady state condition exists the boundary conditions are

𝑒(0) = 20 , 𝑒(𝑙) = 80 . . . (2)

Applying (2) in (1) we get

Page 47: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

𝑒(0) = 𝑏 = 20. . . (3)

and 𝑒(𝑙) = π‘Žπ‘™ + 20 = 80

π‘Ž =60

𝑙=

60

30= 2 … (4)

Substituting (3) and (4) in (1) we get

𝑒 π‘₯ = 2π‘₯ + 20

13. Classify the partial differential equation

𝒂 π’šπŸ 𝒖𝒙𝒙 βˆ’ πŸπ’™π’šπ’–π’™π’š + π’™πŸ π’–π’šπ’š + πŸπ’–π’™ βˆ’ πŸ‘π’– = 𝟎

𝒃 π’šπŸ 𝒖𝒙𝒙 + π’–π’šπ’š + π’–π’™πŸ + π’–π’š

𝟐 + πŸ• = 𝟎

Solution:

a) 𝐴 = 𝑦2, 𝐡 = βˆ’2π‘₯𝑦, 𝐢 = π‘₯2

𝐡2 βˆ’ 4𝐴𝐢 = 4π‘₯2𝑦2 βˆ’ 4π‘₯2𝑦2 = 0

Parabolic

b) 𝐴 = 𝑦2, 𝐡 = 0, 𝐢 = 1

𝐡2 βˆ’ 4𝐴𝐢 = βˆ’4𝑦2 < 0

Elliptic.

14. A rod 60 cm long has its ends A and B kept at πŸ‘πŸŽπ’ π‘ͺ and πŸ’πŸŽπ’ π‘ͺ respectively until

steady state conditions prevail. Find the steady state temperature in the rod.

Solution: Let 𝑙 = 60 π‘π‘š

When the steady state condition prevail the heat flow equation is

πœ•2𝑒

πœ•π‘₯2= 0

i.e., 𝑒 π‘₯ = π‘Žπ‘₯ + 𝑏 … (1)

When the steady state condition exists the boundary conditions are

𝑒(0) = 30 , 𝑒(𝑙) = 40 . . . (2)

Applying (2) in (1) we get

𝑒(0) = 𝑏 = 30. . . (3)

Page 48: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

and 𝑒(𝑙) = π‘Žπ‘™ + 30 = 40

π‘Ž =10

𝑙=

10

60=

1

6… (4)

Substituting (3) and (4) in (1) we get

𝑒 π‘₯ =1

6π‘₯ + 20

15. Classify the partial differential equation

𝒂) πŸ’ππŸπ’–

ππ’™πŸ+ πŸ’

ππŸπ’–

ππ’™ππ’š+

ππŸπ’–

ππ’šπŸβˆ’ πŸ”

𝝏𝒖

ππ’™βˆ’ πŸ–

𝝏𝒖

ππ’šβˆ’ πŸπŸ”π’– = 𝟎

𝒃) ππŸπ’–

ππ’™πŸ+

ππŸπ’–

ππ’šπŸ=

𝝏𝒖

𝝏𝒙

𝟐

+ 𝝏𝒖

ππ’š

𝟐

Solution:

a) 𝐴 = 4, 𝐡 = 4, 𝐢 = 1

𝐡2 βˆ’ 4𝐴𝐢 = 16 βˆ’ 16 = 0

Parabolic.

b) 𝐴 = 1, 𝐡 = 0, 𝐢 = 1

𝐡2 βˆ’ 4𝐴𝐢 = βˆ’4 < 0

Elliptic.

16. Classify the partial differential equation

𝒂) ππŸπ’–

ππ’™πŸ=

ππŸπ’–

ππ’šπŸ 𝒃)

ππŸπ’–

ππ’™ππ’š=

𝝏𝒖

𝝏𝒙

𝝏𝒖

ππ’š + π’™π’š

Solution:

a) Here 𝐴 = 1, 𝐡 = 0, 𝐢 = βˆ’1

𝐡2 βˆ’ 4𝐴𝐢 = 4 > 0

Hyperbolic.

b) Here 𝐴 = 0, 𝐡 = 1, 𝐢 = 0

𝐡2 βˆ’ 4𝐴𝐢 = 1 > 0

Hyperbolic.

Page 49: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

17. State one dimensional heat equation with the initial and boundary conditions.

Solution: The one dimensional heat equation is

𝛼2πœ•2𝑒

πœ•π‘₯2=

πœ•π‘’

πœ•π‘‘

Initial condition means condition at 𝑑 = 0

Boundary condition means condition at π‘₯ = 0 π‘Žπ‘›π‘‘ π‘₯ = 𝑙

18. Write the boundary conditions and initial conditions for solving the vibration of string

equation, if the string is subjected to initial displacement 𝒇(𝒙) and initial velocity π’ˆ(𝒙).

Solution:

Initial displacement 𝑓(π‘₯)

𝑖 𝑦 = 0 𝑀𝑕𝑒𝑛 π‘₯ = 0

𝑖𝑖 𝑦 = 0 𝑀𝑕𝑒𝑛 π‘₯ = 𝑙

𝑖𝑖𝑖 πœ•π‘¦

πœ•π‘‘= 0 𝑀𝑕𝑒𝑛 𝑑 = 0

𝑖𝑣 𝑦 = 𝑓(π‘₯) 𝑀𝑕𝑒𝑛 𝑑 = 0

Initial velocity 𝑔(π‘₯)

𝑖 𝑦 = 0 𝑀𝑕𝑒𝑛 π‘₯ = 0

𝑖𝑖 𝑦 = 0 𝑀𝑕𝑒𝑛 π‘₯ = 𝑙

𝑖𝑖𝑖 πœ•π‘¦

πœ•π‘‘= 𝑔(π‘₯) 𝑀𝑕𝑒𝑛 𝑑 = 0

𝑖𝑣 𝑦 = 0 𝑀𝑕𝑒𝑛 𝑑 = 0

19. Write down the differential equation for two dimensional heat flow equation for the

unsteady state.

Solution: The two dimensional heat flow equation for the unsteady state is given by

𝛼2 πœ•2𝑒

πœ•π‘₯2+

πœ•2𝑒

πœ•π‘¦2 =

πœ•π‘’

πœ•π‘‘

20. What is the steady state heat flow equation in two dimensions in Cartesian form?

Solution: The two dimensional heat flow equation for the steady state is given by

Page 50: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

πœ•2𝑒

πœ•π‘₯2+

πœ•2𝑒

πœ•π‘¦2= 0. πΏπ‘Žπ‘π‘™π‘Žπ‘π‘’ π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘›

21. Write down the polar form of two dimensional heat flow equation in steady state.

Solution:

π‘Ÿ2πœ•2𝑒

πœ•π‘Ÿ2+ π‘Ÿ

πœ•π‘’

πœ•π‘Ÿ+

πœ•2𝑒

πœ•πœƒ2= 0. πΏπ‘Žπ‘π‘™π‘Žπ‘π‘’ π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘›

22. Write all the solutions of Laplace equation in polar coordinates.

Solution:

𝑒 π‘Ÿ, πœƒ = 𝑐1π‘Ÿπ‘ + 𝑐2π‘Ÿ

βˆ’π‘ 𝑐3 cos π‘πœƒ + 𝑐4 sin π‘πœƒ … (1)

𝑒 π‘Ÿ, πœƒ = 𝑐5 cos π‘π‘™π‘œπ‘” π‘Ÿ + 𝑐6 π‘π‘™π‘œπ‘” π‘Ÿ 𝑐7π‘’π‘πœƒ + 𝑐8𝑒

βˆ’π‘πœƒ … (2)

𝑒 π‘Ÿ, πœƒ = 𝑐9 log π‘Ÿ + 𝑐10 𝑐11πœƒ + 𝑐12 … (3)

23. Explain the initial and boundary value problems.

Solution: The values of a required solution, on the boundary of some domain will be given.

These are called boundary conditions. In other cases, when time t is one of the variables,

the values of the solution at t=0 may be presented. These are called initial conditions.

The partial differential equation together with these conditions constitutes a boundary

value problem or an initial value problem, according to the nature of the condition.

24. What is meant by steady state condition in heat flow?

Solution:

Steady state condition in heat flow means that the temperature at any point in the body

does not vary with time. i.e., it is independent of time t.

25. Distinguish between steady and unsteady states in heat conduction problems.

Solution:

In unsteady state, the temperature at any point of the body depends on the position of the

point and also the time t. In steady state, the temperature at any point depends only on the

position of the point and is independent of the time t.

26. Solve using separation of variables method π’šπ’–π’™ + π’™π’–π’š = 𝟎.

Solution:

Given 𝑦𝑒π‘₯ + π‘₯𝑒𝑦 = 0 … (1)

Page 51: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

Let 𝑒 = 𝑋 π‘₯ . π‘Œ 𝑦 … 2

be the solution of (1). From (2) we get

𝑒π‘₯ = π‘‹β€²π‘Œ … 3

𝑒𝑦 = π‘‹π‘Œβ€² … 4

Substituting (3) and (4) in (1), we get

𝑦. π‘‹β€²π‘Œ + π‘₯. π‘‹π‘Œβ€² = 0

𝑦. π‘‹β€²π‘Œ = βˆ’π‘₯. π‘‹π‘Œβ€²

𝑋′

π‘₯𝑋= βˆ’

π‘Œβ€²

π‘¦π‘Œ= π‘˜

𝑋′ = π‘˜π‘₯𝑋 π‘œπ‘Ÿ π‘Œβ€² = βˆ’π‘˜π‘¦π‘Œ

𝑑𝑋

𝑑π‘₯= π‘˜π‘₯𝑋 π‘œπ‘Ÿ

π‘‘π‘Œ

𝑑𝑦 = βˆ’π‘˜π‘Œπ‘¦

𝑑𝑋

𝑋= π‘˜π‘₯ 𝑑π‘₯ π‘œπ‘Ÿ

π‘‘π‘Œ

π‘Œ = βˆ’π‘˜π‘¦ 𝑑𝑦

log 𝑋 = π‘˜π‘₯2

2+ π‘˜1 π‘œπ‘Ÿ log π‘Œ = βˆ’π‘˜

𝑦2

2+ π‘˜2

𝑋 = 𝑐1π‘’π‘˜π‘₯2

2 π‘œπ‘Ÿ π‘Œ = 𝑐2π‘’βˆ’π‘˜

𝑦2

2 … 5

Substituting (5) in (2) we get

𝑒 π‘₯, 𝑦 = 𝑐1𝑐2π‘’π‘˜(π‘₯2βˆ’π‘¦2)

2

27. By the method of separation of variables solve π’™πŸπ’’ + π’šπŸ‘π’‘ = 𝟎

Solution: Given

π‘₯2πœ•π‘§

πœ•π‘¦+ 𝑦3

πœ•π‘§

πœ•π‘₯= 0 … 1

Let 𝑧 = 𝑋 π‘₯ π‘Œ 𝑦 … (2) be the solution of (1).

Then

𝑧π‘₯ = π‘‹β€²π‘Œ … 3

𝑧𝑦 = π‘‹π‘Œβ€²β€¦ 4

Substituting (3) and (4) in (1), we get

Page 52: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

𝑦3. π‘‹β€²π‘Œ + π‘₯2. π‘‹π‘Œβ€² = 0

βˆ’π‘¦3. π‘‹β€²π‘Œ = π‘₯2. π‘‹π‘Œβ€²

𝑋′

π‘₯2𝑋= βˆ’

π‘Œβ€²

𝑦3π‘Œ= π‘˜

𝑋′ = π‘˜π‘₯2𝑋 π‘œπ‘Ÿ π‘Œβ€² = βˆ’π‘˜π‘¦3π‘Œ

𝑑𝑋

𝑑π‘₯= π‘˜π‘₯2𝑋 π‘œπ‘Ÿ

π‘‘π‘Œ

𝑑𝑦 = βˆ’π‘˜π‘Œπ‘¦3

𝑑𝑋

𝑋= π‘˜π‘₯2 𝑑π‘₯ π‘œπ‘Ÿ

π‘‘π‘Œ

π‘Œ = βˆ’π‘˜π‘¦3 𝑑𝑦

log 𝑋 = π‘˜π‘₯3

3+ π‘˜1 π‘œπ‘Ÿ log π‘Œ = βˆ’π‘˜

𝑦4

4+ π‘˜2

𝑋 = 𝑐1π‘’π‘˜π‘₯3

3 π‘œπ‘Ÿ π‘Œ = 𝑐2π‘’βˆ’π‘˜

𝑦4

4 … 5

Substituting (5) in (2) we get

𝑒 π‘₯, 𝑦 = 𝑐1𝑐2π‘’π‘˜π‘₯3

3 π‘’βˆ’π‘˜π‘¦4

4

28. State the assumptions made in the derivation of one dimensional wave equation.

Solution:

(i) The mass of the string per unit length is constant

(ii) The string is perfectly elastic and does not offer any resistance to bending

(iii) The tension caused by stretching the string before fixing it at the end points is so large

that the action of the gravitational force on the string can be neglected.

(iv) The string performs a small transverse motion in a vertical plane, that is every particle of

the string moves strictly vertically so that the deflection and the slope at every point of the

string remain small in absolute value.

29. Write down the boundary condition for the following boundary value problem β€œ If a

string of length β€˜l’ initially at rest in its equilibrium position and each of its point is given

the velocity ππ’š

𝝏𝒕

𝒕=𝟎= π’—πŸŽπ’”π’Šπ’

πŸ‘ 𝝅𝒙

𝒍 𝟎 < π‘₯ < 𝑙, determine the displacement function

π’š(𝒙, 𝒕)”?

Solution: The boundary conditions are

𝑖) 𝑦 0, 𝑑 = 0, 𝑑 > 0 𝑖𝑖) 𝑦 𝑙, 𝑑 = 0, 𝑑 > 0

Page 53: Fourier series Part - A...(or) Explain half range sine series in the interval ≀ ≀𝝅. Solution: 0 = 0, = 0, = 2 πœ‹ πœ‹ 0, Then the Fourier series is reduced to = sin ∞ =1

𝑖𝑖𝑖) 𝑦 π‘₯, 0 = 0, 0 < π‘₯ < 𝑙 𝑖𝑣) πœ•π‘¦(π‘₯, 0)

πœ•π‘‘= 𝑣0𝑠𝑖𝑛

3πœ‹π‘₯

𝑙, 0 < π‘₯ < 𝑙

30. If the ends of a string of length β€˜l’ are fixed and the midpoint of the string is drawn

aside through a height β€˜h’ and the string is released from rest, write the initial conditions.

Solutions:

𝑖 𝑦 0, 𝑑 = 0

𝑖𝑖 𝑦 𝑙, 𝑑 = 0

𝑖𝑖𝑖 πœ•π‘¦(π‘₯, 0)

πœ•π‘‘= 0

𝑖𝑣 𝑦 π‘₯, 0 =

2𝑕π‘₯

𝑙, 0 < π‘₯ <

𝑙

22𝑕

𝑙 𝑙 βˆ’ π‘₯ ,

𝑙

2< π‘₯ < 𝑙