Forward Kinematics - TU Chemnitz

183
Forward Kinematics Dr.-Ing. John Nassour Artificial Intelligence & Neuro Cognitive Systems FakultΓ€t fΓΌr Informatik Serial link manipulators 14.11.2017 J.Nassour 1

Transcript of Forward Kinematics - TU Chemnitz

Page 1: Forward Kinematics - TU Chemnitz

Forward Kinematics

Dr.-Ing. John Nassour

Artificial Intelligence & Neuro Cognitive Systems FakultΓ€t fΓΌr Informatik

Serial link manipulators

14.11.2017 J.Nassour 1

Page 2: Forward Kinematics - TU Chemnitz

Suggested literature

β€’ Robot Modeling and Controlβ€’ Robotics: Modelling, Planning and Control

14.11.2017 J.Nassour 2

Page 3: Forward Kinematics - TU Chemnitz

Reminder: Right Hand Rules

14.11.2017

Cross product

J.Nassour 3

Page 4: Forward Kinematics - TU Chemnitz

Reminder: Right Hand Rules

14.11.2017

A right-handed coordinate frame

𝒙

π’š

𝒙 Γ— π’š

𝒛

π’š

𝒛

𝒙

The first three fingers of your right hand which indicate the relative directions of the x-, y- and z-axes respectively.

J.Nassour 4

Page 5: Forward Kinematics - TU Chemnitz

Reminder: Right Hand Rules

14.11.2017

Rotation about a vector

𝝎Wrap your right hand around the vector withyour thumb (your x-finger) in the direction ofthe arrow. The curl of your fingers indicatesthe direction of increasing angle.

+

J.Nassour 5

Page 6: Forward Kinematics - TU Chemnitz

Kinematics

The problem of kinematics is to describe the motion ofthe manipulator without consideration of the forces andtorques causing that motion.

The kinematic description is therefore a geometric one.

14.11.2017 J.Nassour 6

Page 7: Forward Kinematics - TU Chemnitz

Forward Kinematics

Determine the position and orientation of theend-effector given the values for the jointvariables of the robot.

14.11.2017

End-EffectorLink 1

Base

Link 2

Link n-1

Joint 1

Joint 2

Joint 3

Joint n

Joint n-1

Robot Manipulators are composed oflinks connected by joints to form akinematic chain.

J.Nassour 7

Page 8: Forward Kinematics - TU Chemnitz

Robot Manipulators

14.11.2017

Base

Link i

Prismatic joint

Revolute joint

Revolute joint (R): allows a relative rotation about a single axis. Prismatic joint (P): allows a linear motion along a single axis (extension or retraction).

Spherical wrist: A three degree of freedom rotational joint with all three axes of rotation crossing at a point is typically called a spherical wrist.

J.Nassour 8

Page 9: Forward Kinematics - TU Chemnitz

The Workspace Of A Robot

14.11.2017

Base

Link i

Prismatic joint

Revolute joint

The total volume its end - effector could sweep as the robotexecutes all possible motions. It is constrained by the geometry ofthe manipulator as well as mechanical limits imposed on thejoints.

J.Nassour 9

Page 10: Forward Kinematics - TU Chemnitz

Robot Manipulators

14.11.2017

Symbolic representation of robot joints

e.g. A three-link arm with three revolute joints was denoted by RRR.

Joint variables, denoted by 𝜽 for a revolute joint and 𝒅 for the prismatic joint,represent the relative displacement between adjacent links.

J.Nassour 10

Page 11: Forward Kinematics - TU Chemnitz

Articulated Manipulators (RRR)

14.11.2017 J.Nassour 11

Page 12: Forward Kinematics - TU Chemnitz

14.11.2017

Three joints of the rotational type (RRR). It resembles the human arm. The second joint axis is perpendicular to the first one. The third joint axis is parallel to the second one.The workspace of the anthropomorphic robot arm, encompassing all the points that can be reached by the robot end point.

Also called: Anthropomorphic Manipulators

Articulated Manipulators (RRR)

J.Nassour 12

Page 13: Forward Kinematics - TU Chemnitz

14.11.2017

Elbow Manipulator (RRR)

Workspace

Structure

J.Nassour 13

Page 14: Forward Kinematics - TU Chemnitz

Spherical Manipulator

14.11.2017

The Stanford Arm

J.Nassour 14

Page 15: Forward Kinematics - TU Chemnitz

Spherical Manipulator RRP

14.11.2017

Two rotation and one translation (RRP). The second joint axis is perpendicular to the first one and the third axis is perpendicular to the second one.

Workspace

Structure

J.Nassour 15

Page 16: Forward Kinematics - TU Chemnitz

Spherical Manipulator RRP

14.11.2017

Two rotation and one translation (RRP). The second joint axis is perpendicular to the first one and the third axis is perpendicular to the second one. The workspace of the robot arm has a spherical shape as in the case of the anthropomorphic robot arm.

Workspace

Structure

J.Nassour 16

Page 17: Forward Kinematics - TU Chemnitz

Spherical Manipulator RRR

14.11.2017

Workspace?

Structure

J.Nassour 17

Page 18: Forward Kinematics - TU Chemnitz

SCARA Manipulator

14.11.2017

Two joints are rotational and one is translational (RRP).The axes of all three joints are parallel.

Workspace

J.Nassour 18

Page 19: Forward Kinematics - TU Chemnitz

SCARA Manipulator

14.11.2017

Two joints are rotational and one is translational (RRP).The axes of all three joints are parallel.The workspace of SCARA robot arm is of cylindrical shape.

Workspace

J.Nassour 19

Page 20: Forward Kinematics - TU Chemnitz

Cylindrical Manipulator

14.11.2017

One rotational and two translational (RPP).The axis of the second joint is parallel to the first axis. The third joint axis is perpendicular to the second one.

Workspace

J.Nassour 20

Page 21: Forward Kinematics - TU Chemnitz

Cylindrical Manipulator

14.11.2017

One rotational and two translational (RPP).The axis of the second joint is parallel to the first axis. The third joint axis is perpendicular to the second one.

Workspace

J.Nassour 21

Page 22: Forward Kinematics - TU Chemnitz

The Cartesian Manipulators

14.11.2017

Three joints of the translational type (PPP).The joint axes are perpendicular one to another.

Workspace

J.Nassour 22

Page 23: Forward Kinematics - TU Chemnitz

The Cartesian Manipulators

14.11.2017

Three joints of the translational type (PPP).The joint axes are perpendicular one to another.

Workspace

J.Nassour 23

Page 24: Forward Kinematics - TU Chemnitz

14.11.2017

A set of position parameters that describes the full configuration of the system.

Base

Configuration Parameters

J.Nassour 24

Page 25: Forward Kinematics - TU Chemnitz

14.11.2017

A set of position parameters that describes the full configuration of the system.

Base

9 parameters/link

Configuration Parameters

J.Nassour 25

Page 26: Forward Kinematics - TU Chemnitz

Generalized Coordinates

A set of independent configuration parameters

πŸ” π’‘π’‚π’“π’‚π’Žπ’†π’•π’†π’“π’”/π’π’Šπ’π’Œ πŸ‘ π’‘π’π’”π’Šπ’•π’Šπ’π’π’”πŸ‘ π’π’“π’Šπ’†π’π’•π’‚π’•π’Šπ’π’π’”

14.11.2017 J.Nassour 26

Page 27: Forward Kinematics - TU Chemnitz

Generalized Coordinates

A set of independent configuration parameters

πŸ” π’‘π’‚π’“π’‚π’Žπ’†π’•π’†π’“π’”/π’π’Šπ’π’Œ πŸ‘ π’‘π’π’”π’Šπ’•π’Šπ’π’π’”πŸ‘ π’π’“π’Šπ’†π’π’•π’‚π’•π’Šπ’π’π’”

14.11.2017

πΏπ‘–π‘›π‘˜ 1

Base

πΏπ‘–π‘›π‘˜ 2

πΏπ‘–π‘›π‘˜ 𝑛

6n parameters for n moving links

J.Nassour 27

Page 28: Forward Kinematics - TU Chemnitz

Generalized Coordinates

A set of independent configuration parameters

πŸ” π’‘π’‚π’“π’‚π’Žπ’†π’•π’†π’“π’”/π’π’Šπ’π’Œ πŸ‘ π’‘π’π’”π’Šπ’•π’Šπ’π’π’”πŸ‘ π’π’“π’Šπ’†π’π’•π’‚π’•π’Šπ’π’π’”

14.11.2017

πΏπ‘–π‘›π‘˜ 1

Base

πΏπ‘–π‘›π‘˜ 2

πΏπ‘–π‘›π‘˜ π‘›πŸ“ π‘ͺπ’π’π’”π’•π’“π’‚π’Šπ’π’•

6n parameters for n moving links

J.Nassour 28

Page 29: Forward Kinematics - TU Chemnitz

Generalized Coordinates

A set of independent configuration parameters

πŸ” π’‘π’‚π’“π’‚π’Žπ’†π’•π’†π’“π’”/π’π’Šπ’π’Œ πŸ‘ π’‘π’π’”π’Šπ’•π’Šπ’π’π’”πŸ‘ π’π’“π’Šπ’†π’π’•π’‚π’•π’Šπ’π’π’”

14.11.2017

πΏπ‘–π‘›π‘˜ 1

Base

πΏπ‘–π‘›π‘˜ 2

πΏπ‘–π‘›π‘˜ π‘›πŸ“ π‘ͺπ’π’π’”π’•π’“π’‚π’Šπ’π’•

6n parameters for n moving links5n constraints for n joints

J.Nassour 29

Page 30: Forward Kinematics - TU Chemnitz

Generalized Coordinates

A set of independent configuration parameters

πŸ” π’‘π’‚π’“π’‚π’Žπ’†π’•π’†π’“π’”/π’π’Šπ’π’Œ πŸ‘ π’‘π’π’”π’Šπ’•π’Šπ’π’π’”πŸ‘ π’π’“π’Šπ’†π’π’•π’‚π’•π’Šπ’π’π’”

14.11.2017

πΏπ‘–π‘›π‘˜ 1

Base

πΏπ‘–π‘›π‘˜ 2

πΏπ‘–π‘›π‘˜ π‘›πŸ“ π‘ͺπ’π’π’”π’•π’“π’‚π’Šπ’π’•

6n parameters for n moving links5n constraints for n jointsD.O.F: 6n - 5n = n

J.Nassour 30

Page 31: Forward Kinematics - TU Chemnitz

Generalized Coordinates

14.11.2017

D.O.F: n joints + ?

J.Nassour 31

Page 32: Forward Kinematics - TU Chemnitz

Generalized Coordinates

14.11.2017

The robot is free to move forward/backward, up/down, left/right (translation in three perpendicular axes) combined with rotation about three perpendicular axes, often termed pitch, yaw, and roll.

J.Nassour 32

Page 33: Forward Kinematics - TU Chemnitz

Generalized Coordinates

14.11.2017

The robot is free to move forward/backward, up/down, left/right (translation in three perpendicular axes) combined with rotation about three perpendicular axes, often termed pitch, yaw, and roll.

D.O.F: n joints + 6

J.Nassour 33

Page 34: Forward Kinematics - TU Chemnitz

Operational Coordinates

14.11.2017

π’πŸŽ π’™πŸŽ π’šπŸŽ π’›πŸŽ

𝒐𝒏+𝟏 𝒙𝒏+𝟏 π’šπ’+𝟏 𝒛𝒏+𝟏

End-effector configuration parameters are a set of π’Ž parameters (π’™πŸ, π’™πŸ, π’™πŸ‘, . . , π’™π’Ž) that completely specify the end-effector position and orientation with respect to the frame π’πŸŽ π’™πŸŽ π’šπŸŽ π’›πŸŽ.

𝒐𝒏+𝟏 is the operational point.

A set (π’™πŸ, π’™πŸ, π’™πŸ‘, . . , π’™π’ŽπŸŽ) of

independent configuration Parameters π’ŽπŸŽ: number of degree of freedom of the end-effector.

J.Nassour 34

Page 35: Forward Kinematics - TU Chemnitz

14.11.2017

Operational Coordinates

Base

π’™π’š

𝒙

𝜢

π’š

𝜢

Is also called Operational Space

J.Nassour 35

Page 36: Forward Kinematics - TU Chemnitz

14.11.2017

Joint Coordinates

Base

𝜽1

𝜽2𝜽3

𝜽1

𝜽2

𝜽3

Is also called Joint Space

J.Nassour 36

Page 37: Forward Kinematics - TU Chemnitz

14.11.2017

Joint Space -> Operational Space

Determine the position and orientation of the end-effector given the values for the joint variables of the robot.

Base

𝜽1

𝜽2

𝜽3

𝒙

𝜢

π’š

J.Nassour 37

Page 38: Forward Kinematics - TU Chemnitz

Redundancy

14.11.2017

A robot is said to be redundant if 𝒏 > π’ŽπŸŽ. Degree of redundancy: 𝒏 βˆ’π’ŽπŸŽ

Base

π’ŽπŸŽ = πŸ‘π’ = πŸ’

how many solutions exist?

J.Nassour 38

Page 39: Forward Kinematics - TU Chemnitz

Redundancy

14.11.2017

A robot is said to be redundant if 𝒏 > π’ŽπŸŽ. Degree of redundancy: 𝒏 βˆ’π’ŽπŸŽ

Base

π’ŽπŸŽ = πŸ‘π’ = πŸ’

how many solutions exist?

J.Nassour 39

Page 40: Forward Kinematics - TU Chemnitz

Redundancy

14.11.2017

A robot is said to be redundant if 𝒏 > π’ŽπŸŽ. Degree of redundancy: 𝒏 βˆ’π’ŽπŸŽ

Base

π’ŽπŸŽ = πŸ‘π’ = πŸ’

how many solutions exist?

J.Nassour 40

Page 41: Forward Kinematics - TU Chemnitz

Redundancy

14.11.2017

A robot is said to be redundant if 𝒏 > π’ŽπŸŽ. Degree of redundancy: 𝒏 βˆ’π’ŽπŸŽ

Base

π’ŽπŸŽ = πŸ‘π’ = πŸ‘

how many solutions exist?

J.Nassour 41

Page 42: Forward Kinematics - TU Chemnitz

Redundancy

14.11.2017

A robot is said to be redundant if 𝒏 > π’ŽπŸŽ. Degree of redundancy: 𝒏 βˆ’π’ŽπŸŽ

Base

π’ŽπŸŽ = πŸ‘π’ = πŸ‘

how many solutions exist?

J.Nassour 42

Page 43: Forward Kinematics - TU Chemnitz

Kinematic Arrangements

14.11.2017

The objective of forward kinematic analysis is to determine the cumulative effect of the entire set of joint variables, that is, to determine the position and orientation of the end effector given the values of these joint variables.

We assume that each joint has one D.O.F

The action of each joint can be described by one real number: the angle of rotation in the case of a revolute joint or the displacement in the case of a prismatic joint.

When joint π’Š is actuated, link π’Š moves.

π’’π’Š is the joint variable

J.Nassour 43

Page 44: Forward Kinematics - TU Chemnitz

Kinematic Arrangements

14.11.2017

Spherical wrist 3 D.O.F

spherical wrist: RRR Links’ lengths = 0

The objective of forward kinematic analysis is to determine the cumulative effect of the entire set of joint variables, that is, to determine the position and orientation of the end effector given the values of these joint variables.

We assume that each joint has one D.O.F

The action of each joint can be described by one real number: the angle of rotation in the case of a revolute joint or the displacement in the case of a prismatic joint.

J.Nassour 44

Page 45: Forward Kinematics - TU Chemnitz

Kinematic Arrangements

14.11.2017

Base

To perform the kinematic analysis, we attach a coordinate frame rigidly to each link. In particular, we attach π’π’Šπ’™π’Š π’šπ’Š π’›π’Š to π’π’Šπ’π’Œ π’Š. This means that, whatever motion the robot executes, the coordinates of any point 𝒑 on

link π’Š are constant when expressed in the π’Šπ’•π’‰ coordinate frame π’‘π’Š = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕.When π’‹π’π’Šπ’π’• π’Š is actuated, π’π’Šπ’π’Œ π’Š and its attached frame, π’π’Šπ’™π’Š π’šπ’Š π’›π’Š, experience a resulting motion.

The frame π’πŸŽπ’™πŸŽ π’šπŸŽ π’›πŸŽ, which is attached to the robot base, is referred to as the reference frame.

π’π’Šπ’™π’Š π’šπ’Š π’›π’Š

π’πŸŽπ’™πŸŽ π’šπŸŽ π’›πŸŽ

π’π’Šπ’π’Œ π’Šπ’‘

J.Nassour 45

Page 46: Forward Kinematics - TU Chemnitz

Kinematic Arrangements

14.11.2017

Base

π’πŸŽπ’™πŸŽ π’šπŸŽ π’›πŸŽ

π’π’Šπ’™π’Š π’šπ’Š π’›π’Š

π’π’Šπ’π’Œ π’Š

The frame π’πŸŽπ’™πŸŽ π’šπŸŽ π’›πŸŽ, which is attached to the robot base, is referred to as the reference frame.

To perform the kinematic analysis, we attach a coordinate frame rigidly to each link. In particular, we attach π’π’Šπ’™π’Š π’šπ’Š π’›π’Š to π’π’Šπ’π’Œ π’Š. This means that, whatever motion the robot executes, the coordinates of any point 𝒑 on

link π’Š are constant when expressed in the π’Šπ’•π’‰ coordinate frame π’‘π’Š = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕.When π’‹π’π’Šπ’π’• π’Š is actuated, π’π’Šπ’π’Œ π’Š and its attached frame, π’π’Šπ’™π’Š π’šπ’Š π’›π’Š, experience a resulting motion.

𝒑

J.Nassour 46

Page 47: Forward Kinematics - TU Chemnitz

Kinematic Arrangements

14.11.2017

Base

π’πŸŽπ’™πŸŽ π’šπŸŽ π’›πŸŽ

π’π’Šπ’™π’Š π’šπ’Š π’›π’Š

π’π’Šπ’π’Œ π’Š

The frame π’πŸŽπ’™πŸŽ π’šπŸŽ π’›πŸŽ, which is attached to the robot base, is referred to as the reference frame.

To perform the kinematic analysis, we attach a coordinate frame rigidly to each link. In particular, we attach π’π’Šπ’™π’Š π’šπ’Š π’›π’Š to π’π’Šπ’π’Œ π’Š. This means that, whatever motion the robot executes, the coordinates of any point 𝒑 on

link π’Š are constant when expressed in the π’Šπ’•π’‰ coordinate frame π’‘π’Š = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕.When π’‹π’π’Šπ’π’• π’Š is actuated, π’π’Šπ’π’Œ π’Š and its attached frame, π’π’Šπ’™π’Š π’šπ’Š π’›π’Š, experience a resulting motion.

𝒑

J.Nassour 47

Page 48: Forward Kinematics - TU Chemnitz

Joint And Link Labelling

14.11.2017 J.Nassour 48

Page 49: Forward Kinematics - TU Chemnitz

Joint And Link Labelling

14.11.2017

π’πŸŽπ’™πŸŽ π’šπŸŽ π’›πŸŽLink 0 (fixed)Base frame

J.Nassour 49

Page 50: Forward Kinematics - TU Chemnitz

Joint And Link Labelling

14.11.2017

π’πŸŽπ’™πŸŽ π’šπŸŽ π’›πŸŽLink 0 (fixed)

Joint 1

Link 1

Joint variable 𝜽1

Base frame

J.Nassour 50

Page 51: Forward Kinematics - TU Chemnitz

Joint And Link Labelling

14.11.2017

π’πŸŽπ’™πŸŽ π’šπŸŽ π’›πŸŽLink 0 (fixed)

Joint 1

Link 1

Joint variable 𝜽1

π’πŸπ’™πŸ π’šπŸ π’›πŸ

Joint 2 Link 2

Joint variable 𝜽2

Base frame

J.Nassour 51

Page 52: Forward Kinematics - TU Chemnitz

Joint And Link Labelling

14.11.2017

π’πŸŽπ’™πŸŽ π’šπŸŽ π’›πŸŽLink 0 (fixed)

Joint 1

Link 1

Joint variable 𝜽1

π’πŸπ’™πŸ π’šπŸ π’›πŸ

Joint 2 Link 2

Joint variable 𝜽2

Link 3

π’πŸπ’™πŸ π’šπŸ π’›πŸ

Joint 3

Joint variable 𝜽3

Base frame

J.Nassour 52

Page 53: Forward Kinematics - TU Chemnitz

Joint And Link Labelling

14.11.2017

π’πŸŽπ’™πŸŽ π’šπŸŽ π’›πŸŽLink 0 (fixed)

Joint 1

Link 1

Joint variable 𝜽1

π’πŸπ’™πŸ π’šπŸ π’›πŸ

Joint 2 Link 2

Joint variable 𝜽2

Link 3

π’πŸπ’™πŸ π’šπŸ π’›πŸ

Joint 3

Joint variable 𝜽3

π’πŸ‘π’™πŸ‘ π’šπŸ‘ π’›πŸ‘

Base frame

Do we need a specific way to orientate the axes?

J.Nassour 53

Page 54: Forward Kinematics - TU Chemnitz

14.11.2017

Transformation Matrix

π’πŸŽπ’™πŸŽ π’šπŸŽ π’›πŸŽLink 0 (fixed)

Joint 1

Link 1

Joint variable 𝜽1

π’πŸπ’™πŸ π’šπŸ π’›πŸ

Joint 2 Link 2

Joint variable 𝜽2

Link 3

π’πŸπ’™πŸ π’šπŸ π’›πŸ

Joint 3

Joint variable 𝜽3

π’πŸ‘π’™πŸ‘ π’šπŸ‘ π’›πŸ‘

Base frame

Suppose π‘¨π’Š is the homogeneous transformation matrix that describe the position and the orientation of π’π’Šπ’™π’Š π’šπ’Š π’›π’Š with respect to π’π’Šβˆ’πŸπ’™π’Šβˆ’πŸ π’šπ’Šβˆ’πŸ π’›π’Šβˆ’πŸ.π‘¨π’Š is derived from joint and link 𝑖. π‘¨π’Š is a function of only a single joint variable.

π‘¨π’Š = π‘¨π’Š(π’’π’Š)

π‘¨π’Š(π’’π’Š) =𝑹 π’Š

π’Šβˆ’πŸ 𝒐 π’Šπ’Šβˆ’πŸ

𝟎 𝟏

J.Nassour 54

Page 55: Forward Kinematics - TU Chemnitz

14.11.2017

Transformation Matrix

The position and the orientation of the end effector (reference frame 𝒐𝒏𝒙𝒏 π’šπ’ 𝒛𝒏) with respect to the base (reference frame π’πŸŽπ’™πŸŽ π’šπŸŽ π’›πŸŽ) can be expressed by the transformation matrix:

𝐇 = π‘»π’πŸŽ = π‘¨πŸ π’’πŸ …𝑨𝒏(𝒒𝒏) =

π‘Ήπ’πŸŽ 𝒐𝒏

𝟎

𝟎 𝟏

The position and the orientation of a reference frame 𝒐𝒋𝒙𝒋 π’šπ’‹ 𝒛𝒋) with

respect to a reference frame π’π’Šπ’™π’Š π’šπ’Š π’›π’Š can be expressed by the transformation matrix:

π‘»π’‹π’Š =

π‘¨π’Š+πŸπ‘¨π’Š+πŸβ€¦π‘¨π’‹βˆ’πŸ 𝑨𝒋

𝑰

(π‘»π’Šπ’‹)βˆ’πŸ

𝑖𝑓 π’Š < 𝒋𝑖𝑓 π’Š = 𝒋𝑖𝑓 π’Š > 𝒋

J.Nassour 55

Page 56: Forward Kinematics - TU Chemnitz

14.11.2017

Transformation Matrix

π‘»π’‹π’Š =

π‘¨π’Š+πŸπ‘¨π’Š+πŸβ€¦π‘¨π’‹βˆ’πŸ 𝑨𝒋

𝑰

(π‘»π’Šπ’‹)βˆ’πŸ

𝑖𝑓 π’Š < 𝒋𝑖𝑓 π’Š = 𝒋𝑖𝑓 π’Š > 𝒋

if π’Š < 𝒋 then

π‘»π’‹π’Š = π‘¨π’Š+πŸπ‘¨π’Š+πŸβ€¦π‘¨π’‹βˆ’πŸ 𝑨𝒋 =

π‘Ήπ’‹π’Š 𝒐𝒋

π’Š

𝟎 𝟏

The orientation part: π‘Ήπ’‹π’Š = π‘Ήπ’Š+𝟏

π’Š …𝑹 π’‹π’‹βˆ’πŸ

The translation part: π’π’‹π’Š = π’π’‹βˆ’πŸ

π’Š+π‘Ήπ’‹βˆ’πŸπ’Š 𝒐 𝒋

π’‹βˆ’πŸ

J.Nassour 56

Page 57: Forward Kinematics - TU Chemnitz

14.11.2017

Link Description

Axis(i-1) Axis(i)Link(i-1)

A link is considered as a rigid body whichdefines the relationship between twoneighboring joint axes of a manipulator.

J.Nassour 57

Page 58: Forward Kinematics - TU Chemnitz

14.11.2017

Link Description

Axis(i-1) Axis(i)Link(i-1)

The kinematics function of a link is tomaintain a fixed relationship betweenthe two joint axes it supports.

This relationship can be describedwith two parameters:β€’ the link length aβ€’ the link twist a

J.Nassour 58

Page 59: Forward Kinematics - TU Chemnitz

14.11.2017

Link Description

Axis(i-1) Axis(i)Link(i-1)

π’‚π’Šβˆ’πŸ Link Lengthmutual perpendicular

Is measured along a line which ismutually perpendicular to bothaxes.The mutually perpendicular alwaysexists and is unique except whenboth axes are parallel.

π’‚π’Šβˆ’πŸ

J.Nassour 59

Page 60: Forward Kinematics - TU Chemnitz

14.11.2017

Link Description

Axis(i-1) Axis(i)Link(i-1)

πœΆπ’Šβˆ’πŸ Link Twist

Project both axes 𝑖 βˆ’ 1 and 𝑖onto the plane whose normal isthe mutually perpendicular line.

Measured in the right-handsense about π’‚π’Šβˆ’πŸ.

π’‚π’Šβˆ’πŸ

πœΆπ’Šβˆ’πŸ

J.Nassour 60

Page 61: Forward Kinematics - TU Chemnitz

14.11.2017

Link Description

Intersecting joint axis !

π’‚π’Šβˆ’πŸ Link length ?

πœΆπ’Šβˆ’πŸ Link Twist ?The sense of π›Όπ‘–βˆ’1 is free.

Axis(i-1)Axis(i)

πœΆπ’Šβˆ’πŸ

J.Nassour 61

Page 62: Forward Kinematics - TU Chemnitz

14.11.2017

Joint Parameters

Axis(i-1) Axis(i)Link(i-1)

π’‚π’Šβˆ’πŸ

πœΆπ’Šβˆ’πŸ

A joint axis is established atthe connection of two links.

This joint will have twonormals connected to itone for each of the links.

π’‚π’Š

J.Nassour 62

Page 63: Forward Kinematics - TU Chemnitz

14.11.2017

Joint Parameters

Axis(i-1) Axis(i)Link(i-1)

π’‚π’Šβˆ’πŸ

πœΆπ’Šβˆ’πŸ

π’‚π’Š

π’…π’Š Link OffsetVariable if joint is prismatic.

The relative position of two links is called link offset whish is the distance between the links (the displacement, along the joint axes between the links).

π’…π’Š

J.Nassour 63

Page 64: Forward Kinematics - TU Chemnitz

14.11.2017

Joint Parameters

Axis(i-1) Axis(i)Link(i-1)

π’‚π’Šβˆ’πŸ

πœΆπ’Šβˆ’πŸ

π’‚π’Š

π’…π’Š Link OffsetVariable if joint is prismatic.

The relative position of two links is called link offset whish is the distance between the links (the displacement, along the joint axes between the links).

πœ½π’Š Joint AngleVariable if joint is revolute.

The joint angle between the normals is measured in a plane normal to the joint axis.

π’…π’Š

πœ½π’Š

J.Nassour 64

Page 65: Forward Kinematics - TU Chemnitz

14.11.2017

Link Description

Axis(i-1) Axis(i)Link(i-1)

π’‚π’Šβˆ’πŸ Link Length

and

πœΆπ’Šβˆ’πŸ Link Twist

depend on joint axes𝑖 βˆ’ 1 and 𝑖.

π’‚π’Šβˆ’πŸ

πœΆπ’Šβˆ’πŸ

J.Nassour 65

Page 66: Forward Kinematics - TU Chemnitz

14.11.2017

Joint Parameters

Axis(i-1) Axis(i)Link(i-1)

π’‚π’Šβˆ’πŸ

πœΆπ’Šβˆ’πŸ

π’‚π’Š

π’…π’Š Link Offsetand

πœ½π’Š Joint Angle

depend on links 𝑖 βˆ’ 1and 𝑖.

π’…π’Š

πœ½π’Š

J.Nassour 66

Page 67: Forward Kinematics - TU Chemnitz

14.11.2017

Denavit-Hartenberg Convention

Each 𝐴 matrix has 6 variables- 3 in the rotation matrix and 3 in the position vector.

DH parameters collapse 6 variables to 4 link and joint parameters if we follow a certain procedure for setting coordinate frames.

J.Nassour 67

Page 68: Forward Kinematics - TU Chemnitz

14.11.2017

Denavit-Hartenberg Convention

Each 𝐴 matrix has 6 variables- 3 in the rotation matrix and 3 in the position vector.

DH parameters collapse 6 variables to 4 link and joint parameters if we follow a certain procedure for setting coordinate frames.

π’‚π’Š is link length of like i (constant unless you reconfigure the robot)

J.Nassour 68

Page 69: Forward Kinematics - TU Chemnitz

14.11.2017

Denavit-Hartenberg Convention

Each 𝐴 matrix has 6 variables- 3 in the rotation matrix and 3 in the position vector.

DH parameters collapse 6 variables to 4 link and joint parameters if we follow a certain procedure for setting coordinate frames.

π’‚π’Š is link length of like i (constant unless you reconfigure the robot)πœΆπ’Š is link twist of link i (constant unless you reconfigure the robot)

J.Nassour 69

Page 70: Forward Kinematics - TU Chemnitz

14.11.2017

Denavit-Hartenberg Convention

Each 𝐴 matrix has 6 variables- 3 in the rotation matrix and 3 in the position vector.

DH parameters collapse 6 variables to 4 link and joint parameters if we follow a certain procedure for setting coordinate frames.

π’‚π’Š is link length of like i (constant unless you reconfigure the robot)πœΆπ’Š is link twist of link i (constant unless you reconfigure the robot)π’…π’Š is link offset of link i (prismatic variable)

J.Nassour 70

Page 71: Forward Kinematics - TU Chemnitz

14.11.2017

Denavit-Hartenberg Convention

Each 𝐴 matrix has 6 variables- 3 in the rotation matrix and 3 in the position vector.

DH parameters collapse 6 variables to 4 link and joint parameters if we follow a certain procedure for setting coordinate frames.

π’‚π’Š is link length of like i (constant unless you reconfigure the robot)πœΆπ’Š is link twist of link i (constant unless you reconfigure the robot)π’…π’Š is link offset of link i (prismatic variable)πœ½π’Š is joint angle of link i (revolute variable)

J.Nassour 71

Page 72: Forward Kinematics - TU Chemnitz

14.11.2017

Denavit-Hartenberg Matrix

Each homogeneous transformation 𝐴𝑖 is represented as a product of four basic transformations:

where the four quantities are parameters associated with π‘™π‘–π‘›π‘˜ 𝑖 and π‘—π‘œπ‘–π‘›π‘‘ 𝑖.

π’‚π’Š is link length πœΆπ’Š is link twistπ’…π’Š is link offsetπœ½π’Š is joint angle

Reminder:

J.Nassour 72

Page 73: Forward Kinematics - TU Chemnitz

14.11.2017

Denavit-Hartenberg Matrix

Axis(i-1) Axis(i)Link(i-1)

π’‚π’Šβˆ’πŸ

πœΆπ’Šβˆ’πŸ

π’‚π’Š

π’‚π’Š is link length πœΆπ’Š is link twistπ’…π’Š is link offsetπœ½π’Š is joint angle

π’…π’Š

πœ½π’Š

J.Nassour 73

Page 74: Forward Kinematics - TU Chemnitz

14.11.2017

Denavit-Hartenberg Matrix

J.Nassour 74

Page 75: Forward Kinematics - TU Chemnitz

14.11.2017

it is not necessary that the origin of π‘“π‘Ÿπ‘Žπ‘šπ‘’ 𝑖 be placed at the physical end of π‘™π‘–π‘›π‘˜ 𝑖.

it is not necessary that frame 𝑖 be placed within the physical link; π‘“π‘Ÿπ‘Žπ‘šπ‘’ 𝑖 could lie in free space β€” so long as π‘“π‘Ÿπ‘Žπ‘šπ‘’ 𝑖 is rigidly attached to π‘™π‘–π‘›π‘˜ 𝑖.

By a clever choice of the origin and the coordinate axes, it is possible to cut down the number of parameters needed from six to four (or even fewer in some cases).

Denavit-Hartenberg Convention

J.Nassour 75

Page 76: Forward Kinematics - TU Chemnitz

14.11.2017

Denavit-Hartenberg Convention

DH Coordinate Frame Assumptions

(DH1) The axis π‘₯1is perpendicular to the axis 𝑧0. (DH2) The axis π‘₯1 intersects the axis 𝑧0.

Under these conditions, there existunique numbers a, d, 𝜽, 𝜢 such that:

J.Nassour 76

Page 77: Forward Kinematics - TU Chemnitz

14.11.2017

Denavit-Hartenberg Convention

Positive sense for πœƒ and 𝛼

J.Nassour 77

Page 78: Forward Kinematics - TU Chemnitz

14.11.2017

Rules For Assigning Frames

Rule 1: π‘§π‘–βˆ’1 is axis of actuation of joint 𝑖.Axis of revolution of revolute jointAxis of translation of prismatic joint

Rule 2: Axis π‘₯𝑖 is set so it is perpendicular to and intersects π‘§π‘–βˆ’1.

Rule 3: Derive 𝑦𝑖 from π‘₯𝑖 and 𝑧𝑖.

J.Nassour 78

Page 79: Forward Kinematics - TU Chemnitz

Rules For Assigning Frames

14.11.2017 J.Nassour 79

Page 80: Forward Kinematics - TU Chemnitz

Rules For Assigning Frames

14.11.2017

π’šπŸŽLink 0 (fixed)Base frame

π’›πŸŽ

π’™πŸŽ

Rule 1: π’›π’Šβˆ’πŸ is axis of actuation of joint π’Š

Base frame

π’›πŸŽ is axis of actuation of joint 𝟏.

π’™πŸŽ and π’šπŸŽ are set according tothe right hand rule.

J.Nassour 80

Page 81: Forward Kinematics - TU Chemnitz

Rules For Assigning Frames

14.11.2017

Rule 1: π’›π’Šβˆ’πŸ is axis of actuation of joint π’Š

Tool frame

𝑧𝑛 is the approach direction of the tool.𝑦𝑛 is the slide direction of the gripper.π‘₯𝑛 is the normal direction to other axes.

π’šπ’

𝒙𝒏

𝒛𝒏

J.Nassour 81

Page 82: Forward Kinematics - TU Chemnitz

Rules For Assigning Frames

14.11.2017

Rule 2: Axis π’™π’Š is set so it is perpendicular to and intersects π’›π’Šβˆ’πŸ

Case 1: π’›π’Šβˆ’πŸ and π’›π’Š are not coplanar.

β€’ There is only one line possible for π‘₯𝑖 , which is the shortest line from π‘§π‘–βˆ’1 to 𝑧𝑖 . β€’ π‘œπ‘– is at intersection of π‘₯𝑖 and 𝑧𝑖 .

π’šπ’Šβˆ’πŸ

π’›π’Šβˆ’πŸ

π’™π’Šβˆ’πŸ

π’›π’Š

π’™π’Š

J.Nassour 82

Page 83: Forward Kinematics - TU Chemnitz

Rules For Assigning Frames

14.11.2017

Rule 2: Axis π’™π’Š is set so it is perpendicular to and intersects π’›π’Šβˆ’πŸ

Case 2: π’›π’Šβˆ’πŸ and π’›π’Š are parallel.

β€’ There are an infinite number of possibilities for π‘₯𝑖 from π‘§π‘–βˆ’1 to 𝑧𝑖 . β€’ Usually easiest to choose an π‘₯𝑖 that passes through π‘œπ‘–βˆ’1(so that 𝑑𝑖 = 0). β€’ π‘œπ‘– is at intersection of π‘₯𝑖 and 𝑧𝑖 . β€’ 𝛼𝑖 = 0 always for this case.

π’šπ’Šβˆ’πŸ

π’›π’Šβˆ’πŸ

π’™π’Šβˆ’πŸ

π’›π’Š

π’™π’Š

J.Nassour 83

Page 84: Forward Kinematics - TU Chemnitz

Rules For Assigning Frames

14.11.2017

Rule 2: Axis π’™π’Š is set so it is perpendicular to and intersects π’›π’Šβˆ’πŸ

Case 3: π’›π’Šβˆ’πŸ intersects π’›π’Š.

β€’ π‘₯𝑖 is normal to the plane of π‘§π‘–βˆ’1 and 𝑧𝑖 . β€’ Positive direction of π‘₯𝑖 is arbitrary. β€’ π‘œπ‘– naturally sits at intersection of π‘§π‘–βˆ’1 and 𝑧𝑖 but can be anywhere on 𝑧𝑖 . β€’ π‘Žπ‘– = 0 always for this case.

π’šπ’Šβˆ’πŸ

π’›π’Šβˆ’πŸ

π’™π’Šβˆ’πŸ

π’›π’Š

π’™π’Š

J.Nassour 84

Page 85: Forward Kinematics - TU Chemnitz

Rules For Assigning Frames

14.11.2017

Rule 2: Axis π’™π’Š is set so it is perpendicular to and intersects π’›π’Šβˆ’πŸ

Case 3: π’›π’Šβˆ’πŸ intersects π’›π’Š.

β€’ π‘₯𝑖 is normal to the plane of π‘§π‘–βˆ’1 and 𝑧𝑖 . β€’ Positive direction of π‘₯𝑖 is arbitrary. β€’ π‘œπ‘– naturally sits at intersection of π‘§π‘–βˆ’1 and 𝑧𝑖 but can be anywhere on 𝑧𝑖 . β€’ π‘Žπ‘– = 0 always for this case.

π’šπ’Šβˆ’πŸ

π’›π’Šβˆ’πŸ

π’™π’Šβˆ’πŸ

π’›π’Š

π’™π’Š

J.Nassour 85

Page 86: Forward Kinematics - TU Chemnitz

Rules For Assigning Frames

14.11.2017

Rule 2: Axis π’™π’Š is set so it is perpendicular to and intersects π’›π’Šβˆ’πŸ

Case 3: π’›π’Šβˆ’πŸ intersects π’›π’Š.

β€’ π‘₯𝑖 is normal to the plane of π‘§π‘–βˆ’1 and 𝑧𝑖 . β€’ Positive direction of π‘₯𝑖 is arbitrary. β€’ π‘œπ‘– naturally sits at intersection of π‘§π‘–βˆ’1 and 𝑧𝑖 but can be anywhere on 𝑧𝑖 . β€’ π‘Žπ‘– = 0 always for this case.

π’šπ’Šβˆ’πŸ

π’›π’Šβˆ’πŸ

π’™π’Šβˆ’πŸ

π’›π’Š

π’™π’Š

J.Nassour 86

Page 87: Forward Kinematics - TU Chemnitz

D-H Parameters

14.11.2017

π’‚π’Š is distance from π’›π’Šβˆ’πŸ to π’›π’Š measured along π’™π’Š.πœΆπ’Š is angle from π’›π’Šβˆ’πŸ to π’›π’Š measured about π’™π’Š. π’…π’Š is distance from π’™π’Šβˆ’πŸ to π’™π’Š measured along π’›π’Šβˆ’πŸ.

πœ½π’Š is angle from π’™π’Šβˆ’πŸ to π’™π’Š measured about π’›π’Šβˆ’πŸ.

π’›π’Šβˆ’πŸ

π’™π’Šβˆ’πŸ

π’›π’Š

π’™π’Š

π’›π’Šβˆ’πŸ

π’‚π’Š

π’…π’Š

πœ½π’Š

πœΆπ’Š

J.Nassour 87

Page 88: Forward Kinematics - TU Chemnitz

D-H Parameters

14.11.2017

π’‚π’Š is distance from π’›π’Šβˆ’πŸ to π’›π’Š measured along π’™π’Š.πœΆπ’Š is angle from π’›π’Šβˆ’πŸ to π’›π’Š measured about π’™π’Š. π’…π’Š is distance from π’™π’Šβˆ’πŸ to π’™π’Š measured along π’›π’Šβˆ’πŸ.

πœ½π’Š is angle from π’™π’Šβˆ’πŸ to π’™π’Š measured about π’›π’Šβˆ’πŸ.

π’›π’Šβˆ’πŸ

π’™π’Šβˆ’πŸ

π’›π’Š

π’™π’Š

π’›π’Šβˆ’πŸ

π’‚π’Š

π’…π’Š

πœ½π’Š

πœΆπ’Š

J.Nassour 88

Page 89: Forward Kinematics - TU Chemnitz

D-H Parameters

14.11.2017

π’‚π’Š is distance from π’›π’Šβˆ’πŸ to π’›π’Š measured along π’™π’Š.πœΆπ’Š is angle from π’›π’Šβˆ’πŸ to π’›π’Š measured about π’™π’Š. π’…π’Š is distance from π’™π’Šβˆ’πŸ to π’™π’Š measured along π’›π’Šβˆ’πŸ.

πœ½π’Š is angle from π’™π’Šβˆ’πŸ to π’™π’Š measured about π’›π’Šβˆ’πŸ.

π’›π’Šβˆ’πŸ

π’™π’Šβˆ’πŸ

π’›π’Š

π’™π’Š

π’›π’Šβˆ’πŸ

π’‚π’Š

π’…π’Š

πœ½π’Š

πœΆπ’Š

J.Nassour 89

Page 90: Forward Kinematics - TU Chemnitz

D-H Parameters

14.11.2017

π’‚π’Š is distance from π’›π’Šβˆ’πŸ to π’›π’Š measured along π’™π’Š.πœΆπ’Š is angle from π’›π’Šβˆ’πŸ to π’›π’Š measured about π’™π’Š. π’…π’Š is distance from π’™π’Šβˆ’πŸ to π’™π’Š measured along π’›π’Šβˆ’πŸ.

πœ½π’Š is angle from π’™π’Šβˆ’πŸ to π’™π’Š measured about π’›π’Šβˆ’πŸ.

π’›π’Šβˆ’πŸ

π’™π’Šβˆ’πŸ

π’›π’Š

π’™π’Š

π’›π’Šβˆ’πŸ

π’‚π’Š

π’…π’Š

πœ½π’Š

πœΆπ’Š

J.Nassour 90

Page 91: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Assign coordinate frames so that wecan find DH parameters for this robot.

Joint 3

Joint 1

Joint 2

Tool

𝜽1

𝜽2

𝒅3

J.Nassour 91

Page 92: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

3π‘š

Assign coordinate frames so that wecan find DH parameters for this robot.

J.Nassour 92

Page 93: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

3π‘š

Assign coordinate frames so that wecan find DH parameters for this robot.

J.Nassour 93

Page 94: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

3π‘š

Assign coordinate frames so that wecan find DH parameters for this robot.

J.Nassour 94

Page 95: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

Assign coordinate frames so that wecan find DH parameters for this robot.

J.Nassour 95

Page 96: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Find DH parameters for thisrobot. Identify the jointvariables.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 96

Page 97: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Find DH parameters for thisrobot. Identify the jointvariables.

π’‚π’Š is distance from π’›π’Šβˆ’πŸ to π’›π’Š measured along π’™π’Š.πœΆπ’Š is angle from π’›π’Šβˆ’πŸ to π’›π’Š measured about π’™π’Š. π’…π’Š is distance from π’™π’Šβˆ’πŸ to π’™π’Š measured along π’›π’Šβˆ’πŸ.

πœ½π’Š is angle from π’™π’Šβˆ’πŸ to π’™π’Š measured about π’›π’Šβˆ’πŸ.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1

2

3

J.Nassour 97

Page 98: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Find DH parameters for thisrobot. Identify the jointvariables.

π’‚π’Š is distance from π’›π’Šβˆ’πŸ to π’›π’Š measured along π’™π’Š.πœΆπ’Š is angle from π’›π’Šβˆ’πŸ to π’›π’Š measured about π’™π’Š. π’…π’Š is distance from π’™π’Šβˆ’πŸ to π’™π’Š measured along π’›π’Šβˆ’πŸ.

πœ½π’Š is angle from π’™π’Šβˆ’πŸ to π’™π’Š measured about π’›π’Šβˆ’πŸ.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 3m 𝜽𝟏 = 0 Β°

2

3

J.Nassour 98

Page 99: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Find DH parameters for thisrobot. Identify the jointvariables.

π’‚π’Š is distance from π’›π’Šβˆ’πŸ to π’›π’Š measured along π’™π’Š.πœΆπ’Š is angle from π’›π’Šβˆ’πŸ to π’›π’Š measured about π’™π’Š. π’…π’Š is distance from π’™π’Šβˆ’πŸ to π’™π’Š measured along π’›π’Šβˆ’πŸ.

πœ½π’Š is angle from π’™π’Šβˆ’πŸ to π’™π’Š measured about π’›π’Šβˆ’πŸ.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 3m 𝜽𝟏 = 0 Β°

2 0 βˆ’90 Β° 0 𝜽𝟐 = βˆ’90 Β°

3

J.Nassour 99

Page 100: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Find DH parameters for thisrobot. Identify the jointvariables.

π’‚π’Š is distance from π’›π’Šβˆ’πŸ to π’›π’Š measured along π’™π’Š.πœΆπ’Š is angle from π’›π’Šβˆ’πŸ to π’›π’Š measured about π’™π’Š. π’…π’Š is distance from π’™π’Šβˆ’πŸ to π’™π’Š measured along π’›π’Šβˆ’πŸ.

πœ½π’Š is angle from π’™π’Šβˆ’πŸ to π’™π’Š measured about π’›π’Šβˆ’πŸ.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 3m 𝜽𝟏 = 0 Β°

2 0 βˆ’90 Β° 0 𝜽𝟐 = βˆ’90 Β°

3 0 0 Β° π’…πŸ‘ = π‘³πŸ‘ 0 Β°

J.Nassour 100

Page 101: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Find DH parameters for thisrobot. Identify the jointvariables.

π’‚π’Š is distance from π’›π’Šβˆ’πŸ to π’›π’Š measured along π’™π’Š.πœΆπ’Š is angle from π’›π’Šβˆ’πŸ to π’›π’Š measured about π’™π’Š. π’…π’Š is distance from π’™π’Šβˆ’πŸ to π’™π’Š measured along π’›π’Šβˆ’πŸ.

πœ½π’Š is angle from π’™π’Šβˆ’πŸ to π’™π’Š measured about π’›π’Šβˆ’πŸ.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 3m 𝜽𝟏 = 0 Β°

2 0 βˆ’90 Β° 0 𝜽𝟐 = βˆ’90 Β°

3 0 0 Β° π’…πŸ‘ = π‘³πŸ‘ 0 Β°

Find the A matrices

J.Nassour 101

Page 102: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Find the A matrices Reminder: π‘¨π’Š

𝐴 1 =

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

𝐴 2 =

𝑐2 0𝑠2 0

βˆ’π‘ 2 0𝑐2 0

0 βˆ’10 0

0 00 1

𝐴 3 =

1 00 1

0 00 0

0 00 0

1 π‘³πŸ‘0 1

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 3m 𝜽𝟏 = 0 Β°

2 0 βˆ’90 Β° 0 𝜽𝟐 = βˆ’90 Β°

3 0 0 Β° π’…πŸ‘ = π‘³πŸ‘ 0 Β°

J.Nassour 102

Page 103: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Find the A matrices Reminder: π‘¨π’Š

𝐴 1 =

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

𝐴 2 =

𝑐2 0𝑠2 0

βˆ’π‘ 2 0𝑐2 0

0 βˆ’10 0

0 00 1

𝐴 3 =

1 00 1

0 00 0

0 00 0

1 π‘³πŸ‘0 1

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 3m 𝜽𝟏 = 0 Β°

2 0 βˆ’90 Β° 0 𝜽𝟐 = βˆ’90 Β°

3 0 0 Β° π’…πŸ‘ = π‘³πŸ‘ 0 Β°

J.Nassour 103

Page 104: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Find the A matrices Reminder: π‘¨π’Š

𝐴 1 =

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

𝐴 2 =

𝑐2 0𝑠2 0

βˆ’π‘ 2 0𝑐2 0

0 βˆ’10 0

0 00 1

𝐴 3 =

1 00 1

0 00 0

0 00 0

1 π‘³πŸ‘0 1

𝑇 10= 𝐴 1 𝑇 2

0= 𝐴 1 𝐴 2 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 3m 𝜽𝟏 = 0 Β°

2 0 βˆ’90 Β° 0 𝜽𝟐 = βˆ’90 Β°

3 0 0 Β° π’…πŸ‘ = π‘³πŸ‘ 0 Β°

J.Nassour 104

Page 105: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Find the A matrices

𝑇 10= 𝐴 1 𝑇 2

0= 𝐴 1 𝐴 2 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

=

? ?? ?

? 0? 0

? 00 0

? 30 1

In the current configuration

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 3m 𝜽𝟏 = 0 Β°

2 0 βˆ’90 Β° 0 𝜽𝟐 = βˆ’90 Β°

3 0 0 Β° π’…πŸ‘ = π‘³πŸ‘ 0 Β°

J.Nassour 105

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

Page 106: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Find the A matrices

𝑇 10= 𝐴 1

In the current configuration

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 3m 𝜽𝟏 = 0 Β°

2 0 βˆ’90 Β° 0 𝜽𝟐 = βˆ’90 Β°

3 0 0 Β° π’…πŸ‘ = π‘³πŸ‘ 0 Β°

J.Nassour 106

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

𝑇 20= 𝐴 1 𝐴 2 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

=

0 00 βˆ’1

1 00 0

1 00 0

0 30 1

Page 107: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Find the A matrices Reminder: π‘¨π’Š

𝐴 1 =

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

𝐴 2 =

𝑐2 0𝑠2 0

βˆ’π‘ 2 0𝑐2 0

0 βˆ’10 0

0 00 1

𝐴 3 =

1 00 1

0 00 0

0 00 0

1 π‘³πŸ‘0 1

𝑇 30= 𝑇2

0 𝐴 3 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

1 00 1

0 00 0

0 00 0

1 𝐿30 1

=

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 βˆ’πΏπŸ‘π‘1𝑠2βˆ’π‘ 1𝑠2 βˆ’πΏπŸ‘π‘ 1𝑠2

βˆ’π‘ 2 00 0

βˆ’π‘2 3 βˆ’πΏπŸ‘π‘20 1

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 3m 𝜽𝟏 = 0 Β°

2 0 βˆ’90 Β° 0 𝜽𝟐 = βˆ’90 Β°

3 0 0 Β° π’…πŸ‘ = π‘³πŸ‘ 0 Β°

J.Nassour 107

Page 108: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Find the A matrices

𝑇30 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 βˆ’πΏπŸ‘π‘1𝑠2βˆ’π‘ 1𝑠2 βˆ’πΏπŸ‘π‘ 1𝑠2

βˆ’π‘ 2 00 0

βˆ’π‘2 3 βˆ’πΏπŸ‘π‘20 1

=

? ?? ?

? ?? ?

? 00 0

? ?0 1

In the current configuration

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 3m 𝜽𝟏 = 0 Β°

2 0 βˆ’90 Β° 0 𝜽𝟐 = βˆ’90 Β°

3 0 0 Β° π’…πŸ‘ = π‘³πŸ‘ 0 Β°

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 108

Page 109: Forward Kinematics - TU Chemnitz

Example: RRP Robot

14.11.2017

Find the A matrices

𝑇30 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 βˆ’πΏπŸ‘π‘1𝑠2βˆ’π‘ 1𝑠2 βˆ’πΏπŸ‘π‘ 1𝑠2

βˆ’π‘ 2 00 0

βˆ’π‘2 3 βˆ’πΏπŸ‘π‘20 1

=

0 00 βˆ’1

1 𝐿30 0

1 00 0

0 30 1

In the current configuration

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 3m 𝜽𝟏 = 0 Β°

2 0 βˆ’90 Β° 0 𝜽𝟐 = βˆ’90 Β°

3 0 0 Β° π’…πŸ‘ = π‘³πŸ‘ 0 Β°

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 109

Page 110: Forward Kinematics - TU Chemnitz

Example: Two-Link Planar Robot

14.11.2017

Assign coordinate frames so that wecan find DH parameters for this robot.

J.Nassour 110

Page 111: Forward Kinematics - TU Chemnitz

Example: Two-Link Planar Robot

14.11.2017

Find DH parameters for this robot. Identify the joint variables.

π’‚π’Š is distance from π’›π’Šβˆ’πŸ to π’›π’Š measured along π’™π’Š.πœΆπ’Š is angle from π’›π’Šβˆ’πŸ to π’›π’Š measured about π’™π’Š. π’…π’Š is distance from π’™π’Šβˆ’πŸ to π’™π’Š measured along π’›π’Šβˆ’πŸ.

πœ½π’Š is angle from π’™π’Šβˆ’πŸ to π’™π’Š measured about π’›π’Šβˆ’πŸ.

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 π‘Ž1 0 Β° 0 𝜽𝟏

2 π‘Ž2 0 Β° 0 𝜽𝟐

J.Nassour 111

Page 112: Forward Kinematics - TU Chemnitz

Example: Two-Link Planar Robot

14.11.2017

Find DH parameters for this robot. Identify the joint variables.

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 π‘Ž1 0 Β° 0 𝜽𝟏

2 π‘Ž2 0 Β° 0 𝜽𝟐

J.Nassour 112

Page 113: Forward Kinematics - TU Chemnitz

F.K. For Cylindrical Manipulator

14.11.2017

One rotational and two translational (RPP).The axis of the second joint is parallel to the first axis. The third joint axis is perpendicular to the second one.

β€’ Assign coordinate frames so that we can find DH parameters for this robot.β€’ Find DH parameters for this robot. Identify the joint variables.

J.Nassour 113

Page 114: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 114

𝜽𝟏

Page 115: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 115

𝜽𝟏

𝜽𝟐

Page 116: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 116

π’…πŸ‘

𝜽𝟏

𝜽𝟐

Page 117: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 117

π’…πŸ‘

𝜽𝟏

𝜽𝟐

πœ½πŸ’

Page 118: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 118

π’…πŸ‘

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

Page 119: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 119

π’…πŸ‘

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

Page 120: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 120

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

𝑑2

Page 121: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 121

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

𝑑2

Page 122: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 122

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

𝑑2

Page 123: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 123

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

𝑑2

π’™πŸ

Page 124: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 124

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

𝑑2

π’™πŸ

π’›πŸ

Page 125: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 125

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

𝑑2

π’™πŸ

π’›πŸ

π’™πŸ

Page 126: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 126

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

𝑑2

π’™πŸ

π’›πŸ

π’™πŸ

π’›πŸ‘

Page 127: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 127

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

𝑑2

π’™πŸ

π’›πŸ

π’™πŸ

π’›πŸ‘

𝒙

Page 128: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 128

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

𝑑2

π’™πŸ

π’›πŸ

π’™πŸ

π’›πŸ‘

π’›πŸ’π’™

Page 129: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 129

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

𝑑2

π’™πŸ

π’›πŸ

π’™πŸ

π’›πŸ’π’™

π’›πŸ‘ π’›πŸ“

Page 130: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 130

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

𝑑2

π’™πŸ

π’›πŸ

π’™πŸ

π’›πŸ’π’™

π’›πŸ‘ π’›πŸ“

π’›πŸ”

Page 131: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 131

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

π’›πŸ

π’›πŸ’

π’›πŸ‘ π’›πŸ“

𝑑2

π’›πŸ”

π’™πŸ π’™πŸ

𝒙

π’šπŸ”

Page 132: Forward Kinematics - TU Chemnitz

Stanford Arm

14.11.2017 J.Nassour 132

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

π’›πŸ

π’›πŸ’

π’›πŸ‘ π’›πŸ“

𝑑2

π’›πŸ”

π’™πŸ π’™πŸ

𝒙

π’šπŸ”

π’™πŸ”

Page 133: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 133

Stanford Arm

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 0 πœ½πŸβˆ—

2 0 +90 Β° 𝑑2 πœ½πŸβˆ—

3 0 0 Β°π’…πŸ‘

βˆ— 0

4 0 βˆ’90 Β° 0 πœ½πŸ’βˆ—

5 0 +90 Β° 0 πœ½πŸ“βˆ—

6 0 0 Β° 𝑑6 πœ½πŸ”βˆ—

π’‚π’Š is distance from π’›π’Šβˆ’πŸ to π’›π’Š measured along π’™π’Š.πœΆπ’Š is angle from π’›π’Šβˆ’πŸ to π’›π’Š measured about π’™π’Š. π’…π’Š is distance from π’™π’Šβˆ’πŸ to π’™π’Š measured along π’›π’Šβˆ’πŸ.

πœ½π’Š is angle from π’™π’Šβˆ’πŸ to π’™π’Š measured about π’›π’Šβˆ’πŸ.

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

π’›πŸ

π’›πŸ’

π’›πŸ‘ π’›πŸ“

𝑑2

π’›πŸ”

π’™πŸ π’™πŸ

𝒙

π’šπŸ”

π’™πŸ”

Page 134: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 134

Stanford Arm

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 0 πœ½πŸβˆ—

2 0 +90 Β° 𝑑2 πœ½πŸβˆ—

3 0 0 Β°π’…πŸ‘

βˆ— 0

4 0 βˆ’90 Β° 0 πœ½πŸ’βˆ—

5 0 +90 Β° 0 πœ½πŸ“βˆ—

6 0 0 Β° 𝑑6 πœ½πŸ”βˆ—

𝑇60 = 𝐴1𝐴2𝐴3𝐴4𝐴5𝐴6 =

π‘Ÿ11 π‘Ÿ12π‘Ÿ21 π‘Ÿ22

π‘Ÿ13 𝑑π‘₯π‘Ÿ23 𝑑𝑦

π‘Ÿ31 π‘Ÿ320 0

π‘Ÿ33 𝑑𝑧0 1

π’‚π’Š is distance from π’›π’Šβˆ’πŸ to π’›π’Š measured along π’™π’Š.πœΆπ’Š is angle from π’›π’Šβˆ’πŸ to π’›π’Š measured about π’™π’Š. π’…π’Š is distance from π’™π’Šβˆ’πŸ to π’™π’Š measured along π’›π’Šβˆ’πŸ.

πœ½π’Š is angle from π’™π’Šβˆ’πŸ to π’™π’Š measured about π’›π’Šβˆ’πŸ.

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

π’›πŸ

π’›πŸ’

π’›πŸ‘ π’›πŸ“

𝑑2

π’›πŸ”

π’™πŸ π’™πŸ

𝒙

π’šπŸ”

π’™πŸ”

Page 135: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 135

Stanford Arm

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 0 πœ½πŸβˆ—

2 0 +90 Β° 𝑑2 πœ½πŸβˆ—

3 0 0 Β°π’…πŸ‘

βˆ— 0

4 0 βˆ’90 Β° 0 πœ½πŸ’βˆ—

5 0 +90 Β° 0 πœ½πŸ“βˆ—

6 0 0 Β° 𝑑6 πœ½πŸ”βˆ—

𝑇60 = 𝐴1𝐴2𝐴3𝐴4𝐴5𝐴6 =

π‘Ÿ11 π‘Ÿ12π‘Ÿ21 π‘Ÿ22

π‘Ÿ13 𝑑π‘₯π‘Ÿ23 𝑑𝑦

π‘Ÿ31 π‘Ÿ320 0

π‘Ÿ33 𝑑𝑧0 1

π’‚π’Š is distance from π’›π’Šβˆ’πŸ to π’›π’Š measured along π’™π’Š.πœΆπ’Š is angle from π’›π’Šβˆ’πŸ to π’›π’Š measured about π’™π’Š. π’…π’Š is distance from π’™π’Šβˆ’πŸ to π’™π’Š measured along π’›π’Šβˆ’πŸ.

πœ½π’Š is angle from π’™π’Šβˆ’πŸ to π’™π’Š measured about π’›π’Šβˆ’πŸ.

π‘·πŸŽ = π‘»πŸ”πŸŽ π‘·πŸ”

π’‘πŸŽ =?

π’‘πŸ”

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

π’›πŸ

π’›πŸ’

π’›πŸ‘ π’›πŸ“

𝑑2

π’›πŸ”

π’™πŸ π’™πŸ

𝒙

π’šπŸ”

π’™πŸ”

Page 136: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 136

Stanford Arm

𝐴1 =

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 00 1

Reminder: π‘¨π’Š

𝐴2 =

𝑐2 0𝑠2 0

𝑠2 0βˆ’π‘2 0

0 10 0

0 𝑑20 1

𝐴3 =

1 00 1

0 00 0

0 00 0

1 𝑑30 1

𝐴4 =

𝑐4 0𝑠4 0

βˆ’π‘ 4 0𝑐4 0

0 βˆ’10 0

0 00 1

𝐴5 =

𝑐5 0𝑠5 0

𝑠5 0βˆ’π‘5 0

0 βˆ’10 0

0 00 1

𝐴6 =

𝑐6 βˆ’π‘ 6𝑠6 𝑐6

0 00 0

0 00 0

1 𝑑60 1

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 0 πœ½πŸβˆ—

2 0 +90 Β° 𝑑2 πœ½πŸβˆ—

3 0 0 Β°π’…πŸ‘

βˆ— 0

4 0 βˆ’90 Β° 0 πœ½πŸ’βˆ—

5 0 +90 Β° 0 πœ½πŸ“βˆ—

6 0 0 Β° 𝑑6 πœ½πŸ”βˆ—

Page 137: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 137

Stanford Arm

Page 138: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 138

Stanford Arm[ s6*(c4*s1 + c1*c2*s4) – c6*(c5*(s1*s4 – c1*c2*c4) + c1*s2*s5), s6*(c5*(s1*s4 – c1*c2*c4) + c1*s2*s5) + c5*(c4*s1 + c1*c2*s4), c1*c5*s2 – s5*(s1*s4 – c1*c2*c4), d3*c1*s2 - d6*(s5*(s1*s4 – c1*c2*c4) – c1*c5*s2) - d2*s1 ][ c6*(c5*(c1*s4 + c2*c4*s1) – s1*s2*s5) – s6*(c1*c4 – c2*s1*s4), - s6*(c5*(c1*s4 + c2*c4*s1) – s1*s2*s5) – c5*(c1*c4 – c2*s1*s4), s5*(c1*s4 + c2*c4*s1) + c5*s1*s2, d2*c1 + d6*(s5*(c1*s4 + c2*c4*s1) + c5*s1*s2) + d3*s1*s2][ -c6*(c2*s5 + c4*c5*s2) – s2*s4*s6, s6*(c2*s5 + c4*c5*s2) – c5*s2*s4, c2*c5 – c4*s2*s5, d6*(c2*c5 – c4*s2*s5) + d3*c2][ 0, 0, 0, 1]

π‘Ÿ11 = 𝑠6. (𝑐4. 𝑠1 + 𝑐1. 𝑐2. 𝑠4)– 𝑐6. (𝑐5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) + 𝑐1. 𝑠2. 𝑠5)π‘Ÿ21 = 𝑐6. (𝑐5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1)– 𝑠1. 𝑠2. 𝑠5)– 𝑠6. (𝑐1. 𝑐4 – 𝑐2. 𝑠1. 𝑠4)π‘Ÿ31 = βˆ’π‘6. (𝑐2. 𝑠5 + 𝑐4. 𝑐5. 𝑠2)– 𝑠2. 𝑠4. 𝑠6

π‘Ÿ12 = 𝑠6. (𝑐5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) + 𝑐1. 𝑠2. 𝑠5) + 𝑐5. (𝑐4. 𝑠1 + 𝑐1. 𝑐2. 𝑠4)π‘Ÿ22 = βˆ’ 𝑠6. (𝑐5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) – 𝑠1. 𝑠2. 𝑠5) – 𝑐5. (𝑐1. 𝑐4 – 𝑐2. 𝑠1. 𝑠4)π‘Ÿ32 = 𝑠6. (𝑐2. 𝑠5 + 𝑐4. 𝑐5. 𝑠2) – 𝑐5. 𝑠2. 𝑠4

π‘Ÿ31 = 𝑐1. 𝑐5. 𝑠2 – 𝑠5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4)π‘Ÿ32 = 𝑠5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) + 𝑐5. 𝑠1. 𝑠2π‘Ÿ33 = 𝑐2. 𝑐5 – 𝑐4. 𝑠2. 𝑠5

𝑑π‘₯ = 𝑑3. 𝑐1. 𝑠2 βˆ’ 𝑑6. (𝑠5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) – 𝑐1. 𝑐5. 𝑠2) βˆ’ 𝑑2. 𝑠1𝑑𝑦 = 𝑑2. 𝑐1 + 𝑑6. (𝑠5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) + 𝑐5. 𝑠1. 𝑠2) + 𝑑3. 𝑠1. 𝑠2𝑑𝑧 = 𝑑6. (𝑐2. 𝑐5 – 𝑐4. 𝑠2. 𝑠5) + 𝑑3. 𝑐2

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

π’›πŸ

π’›πŸ’

π’›πŸ‘ π’›πŸ“

𝑑2

π’›πŸ”

π’™πŸ π’™πŸ

𝒙

π’šπŸ”

π’™πŸ”

Page 139: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 139

Stanford Arm

π‘Ÿ11 = 𝑠6. (𝑐4. 𝑠1 + 𝑐1. 𝑐2. 𝑠4)– 𝑐6. (𝑐5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) + 𝑐1. 𝑠2. 𝑠5)π‘Ÿ21 = 𝑐6. (𝑐5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1)– 𝑠1. 𝑠2. 𝑠5)– 𝑠6. (𝑐1. 𝑐4 – 𝑐2. 𝑠1. 𝑠4)π‘Ÿ31 = βˆ’π‘6. (𝑐2. 𝑠5 + 𝑐4. 𝑐5. 𝑠2)– 𝑠2. 𝑠4. 𝑠6

π‘Ÿ12 = 𝑠6. (𝑐5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) + 𝑐1. 𝑠2. 𝑠5) + 𝑐5. (𝑐4. 𝑠1 + 𝑐1. 𝑐2. 𝑠4)π‘Ÿ22 = βˆ’ 𝑠6. (𝑐5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) – 𝑠1. 𝑠2. 𝑠5) – 𝑐5. (𝑐1. 𝑐4 – 𝑐2. 𝑠1. 𝑠4)π‘Ÿ32 = 𝑠6. (𝑐2. 𝑠5 + 𝑐4. 𝑐5. 𝑠2) – 𝑐5. 𝑠2. 𝑠4

π‘Ÿ31 = 𝑐1. 𝑐5. 𝑠2 – 𝑠5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4)π‘Ÿ32 = 𝑠5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) + 𝑐5. 𝑠1. 𝑠2π‘Ÿ33 = 𝑐2. 𝑐5 – 𝑐4. 𝑠2. 𝑠5

𝑑π‘₯ = 𝑑3. 𝑐1. 𝑠2 βˆ’ 𝑑6. (𝑠5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) – 𝑐1. 𝑐5. 𝑠2) βˆ’ 𝑑2. 𝑠1𝑑𝑦 = 𝑑2. 𝑐1 + 𝑑6. (𝑠5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) + 𝑐5. 𝑠1. 𝑠2) + 𝑑3. 𝑠1. 𝑠2𝑑𝑧 = 𝑑6. (𝑐2. 𝑐5 – 𝑐4. 𝑠2. 𝑠5) + 𝑑3. 𝑐2

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

π’›πŸ

π’›πŸ’

π’›πŸ‘ π’›πŸ“

𝑑2

π’›πŸ”

π’™πŸ π’™πŸ

𝒙

π’šπŸ”

π’™πŸ”

𝑇60 = 𝐴1𝐴2𝐴3𝐴4𝐴5𝐴6 =

π‘Ÿ11 π‘Ÿ12π‘Ÿ21 π‘Ÿ22

π‘Ÿ13 𝑑π‘₯π‘Ÿ23 𝑑𝑦

π‘Ÿ31 π‘Ÿ320 0

π‘Ÿ33 𝑑𝑧0 1

Page 140: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 140

Stanford Arm

π‘Ÿ11 = 𝑠6. (𝑐4. 𝑠1 + 𝑐1. 𝑐2. 𝑠4)– 𝑐6. (𝑐5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) + 𝑐1. 𝑠2. 𝑠5)π‘Ÿ21 = 𝑐6. (𝑐5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1)– 𝑠1. 𝑠2. 𝑠5)– 𝑠6. (𝑐1. 𝑐4 – 𝑐2. 𝑠1. 𝑠4)π‘Ÿ31 = βˆ’π‘6. (𝑐2. 𝑠5 + 𝑐4. 𝑐5. 𝑠2)– 𝑠2. 𝑠4. 𝑠6

π‘Ÿ12 = 𝑠6. (𝑐5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) + 𝑐1. 𝑠2. 𝑠5) + 𝑐5. (𝑐4. 𝑠1 + 𝑐1. 𝑐2. 𝑠4)π‘Ÿ22 = βˆ’ 𝑠6. (𝑐5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) – 𝑠1. 𝑠2. 𝑠5) – 𝑐5. (𝑐1. 𝑐4 – 𝑐2. 𝑠1. 𝑠4)π‘Ÿ32 = 𝑠6. (𝑐2. 𝑠5 + 𝑐4. 𝑐5. 𝑠2) – 𝑐5. 𝑠2. 𝑠4

π‘Ÿ31 = 𝑐1. 𝑐5. 𝑠2 – 𝑠5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4)π‘Ÿ32 = 𝑠5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) + 𝑐5. 𝑠1. 𝑠2π‘Ÿ33 = 𝑐2. 𝑐5 – 𝑐4. 𝑠2. 𝑠5

𝑑π‘₯ = 𝑑3. 𝑐1. 𝑠2 βˆ’ 𝑑6. (𝑠5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) – 𝑐1. 𝑐5. 𝑠2) βˆ’ 𝑑2. 𝑠1𝑑𝑦 = 𝑑2. 𝑐1 + 𝑑6. (𝑠5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) + 𝑐5. 𝑠1. 𝑠2) + 𝑑3. 𝑠1. 𝑠2𝑑𝑧 = 𝑑6. (𝑐2. 𝑐5 – 𝑐4. 𝑠2. 𝑠5) + 𝑑3. 𝑐2

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

π’›πŸ

π’›πŸ’

π’›πŸ‘ π’›πŸ“

𝑑2

π’›πŸ”

π’™πŸ π’™πŸ

𝒙

π’šπŸ”

π’™πŸ”

𝑇60 =

π‘Ÿ11 π‘Ÿ12π‘Ÿ21 π‘Ÿ22

π‘Ÿ13 𝑑π‘₯π‘Ÿ23 𝑑𝑦

π‘Ÿ31 π‘Ÿ320 0

π‘Ÿ33 𝑑𝑧0 1

In the configuration shown, find:

Page 141: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 141

Stanford Arm

π‘Ÿ11 = 𝑠6. (𝑐4. 𝑠1 + 𝑐1. 𝑐2. 𝑠4)– 𝑐6. (𝑐5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) + 𝑐1. 𝑠2. 𝑠5)π‘Ÿ21 = 𝑐6. (𝑐5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1)– 𝑠1. 𝑠2. 𝑠5)– 𝑠6. (𝑐1. 𝑐4 – 𝑐2. 𝑠1. 𝑠4)π‘Ÿ31 = βˆ’π‘6. (𝑐2. 𝑠5 + 𝑐4. 𝑐5. 𝑠2)– 𝑠2. 𝑠4. 𝑠6

π‘Ÿ12 = 𝑠6. (𝑐5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) + 𝑐1. 𝑠2. 𝑠5) + 𝑐5. (𝑐4. 𝑠1 + 𝑐1. 𝑐2. 𝑠4)π‘Ÿ22 = βˆ’ 𝑠6. (𝑐5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) – 𝑠1. 𝑠2. 𝑠5) – 𝑐5. (𝑐1. 𝑐4 – 𝑐2. 𝑠1. 𝑠4)π‘Ÿ32 = 𝑠6. (𝑐2. 𝑠5 + 𝑐4. 𝑐5. 𝑠2) – 𝑐5. 𝑠2. 𝑠4

π‘Ÿ31 = 𝑐1. 𝑐5. 𝑠2 – 𝑠5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4)π‘Ÿ32 = 𝑠5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) + 𝑐5. 𝑠1. 𝑠2π‘Ÿ33 = 𝑐2. 𝑐5 – 𝑐4. 𝑠2. 𝑠5

𝑑π‘₯ = 𝑑3. 𝑐1. 𝑠2 βˆ’ 𝑑6. (𝑠5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) – 𝑐1. 𝑐5. 𝑠2) βˆ’ 𝑑2. 𝑠1𝑑𝑦 = 𝑑2. 𝑐1 + 𝑑6. (𝑠5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) + 𝑐5. 𝑠1. 𝑠2) + 𝑑3. 𝑠1. 𝑠2𝑑𝑧 = 𝑑6. (𝑐2. 𝑐5 – 𝑐4. 𝑠2. 𝑠5) + 𝑑3. 𝑐2

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

π’›πŸ

π’›πŸ’

π’›πŸ‘ π’›πŸ“

𝑑2

π’›πŸ”

π’™πŸ π’™πŸ

𝒙

π’šπŸ”

π’™πŸ”

𝑇60 =

π‘Ÿ11 π‘Ÿ12π‘Ÿ21 π‘Ÿ22

π‘Ÿ13 𝑑π‘₯π‘Ÿ23 𝑑𝑦

π‘Ÿ31 π‘Ÿ320 0

π‘Ÿ33 𝑑𝑧0 1

In the configuration shown, find:

Page 142: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 142

Stanford Arm

π‘Ÿ11 = 𝑠6. (𝑐4. 𝑠1 + 𝑐1. 𝑐2. 𝑠4)– 𝑐6. (𝑐5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) + 𝑐1. 𝑠2. 𝑠5)π‘Ÿ21 = 𝑐6. (𝑐5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1)– 𝑠1. 𝑠2. 𝑠5)– 𝑠6. (𝑐1. 𝑐4 – 𝑐2. 𝑠1. 𝑠4)π‘Ÿ31 = βˆ’π‘6. (𝑐2. 𝑠5 + 𝑐4. 𝑐5. 𝑠2)– 𝑠2. 𝑠4. 𝑠6

π‘Ÿ12 = 𝑠6. (𝑐5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) + 𝑐1. 𝑠2. 𝑠5) + 𝑐5. (𝑐4. 𝑠1 + 𝑐1. 𝑐2. 𝑠4)π‘Ÿ22 = βˆ’ 𝑠6. (𝑐5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) – 𝑠1. 𝑠2. 𝑠5) – 𝑐5. (𝑐1. 𝑐4 – 𝑐2. 𝑠1. 𝑠4)π‘Ÿ32 = 𝑠6. (𝑐2. 𝑠5 + 𝑐4. 𝑐5. 𝑠2) – 𝑐5. 𝑠2. 𝑠4

π‘Ÿ31 = 𝑐1. 𝑐5. 𝑠2 – 𝑠5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4)π‘Ÿ32 = 𝑠5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) + 𝑐5. 𝑠1. 𝑠2π‘Ÿ33 = 𝑐2. 𝑐5 – 𝑐4. 𝑠2. 𝑠5

𝑑π‘₯ = 𝑑3. 𝑐1. 𝑠2 βˆ’ 𝑑6. (𝑠5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) – 𝑐1. 𝑐5. 𝑠2) βˆ’ 𝑑2. 𝑠1𝑑𝑦 = 𝑑2. 𝑐1 + 𝑑6. (𝑠5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) + 𝑐5. 𝑠1. 𝑠2) + 𝑑3. 𝑠1. 𝑠2𝑑𝑧 = 𝑑6. (𝑐2. 𝑐5 – 𝑐4. 𝑠2. 𝑠5) + 𝑑3. 𝑐2

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

π’›πŸ

π’›πŸ’

π’›πŸ‘ π’›πŸ“

𝑑2

π’›πŸ”

π’™πŸ π’™πŸ

𝒙

π’šπŸ”

π’™πŸ”

𝑇60 =

π‘Ÿ11 π‘Ÿ12π‘Ÿ21 π‘Ÿ22

π‘Ÿ13 𝑑π‘₯π‘Ÿ23 𝑑𝑦

π‘Ÿ31 π‘Ÿ320 0

π‘Ÿ33 𝑑𝑧0 1

In the configuration shown, find:

Page 143: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 143

Stanford Arm

π‘Ÿ11 = 𝑠6. (𝑐4. 𝑠1 + 𝑐1. 𝑐2. 𝑠4)– 𝑐6. (𝑐5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) + 𝑐1. 𝑠2. 𝑠5)π‘Ÿ21 = 𝑐6. (𝑐5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1)– 𝑠1. 𝑠2. 𝑠5)– 𝑠6. (𝑐1. 𝑐4 – 𝑐2. 𝑠1. 𝑠4)π‘Ÿ31 = βˆ’π‘6. (𝑐2. 𝑠5 + 𝑐4. 𝑐5. 𝑠2)– 𝑠2. 𝑠4. 𝑠6

π‘Ÿ12 = 𝑠6. (𝑐5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) + 𝑐1. 𝑠2. 𝑠5) + 𝑐5. (𝑐4. 𝑠1 + 𝑐1. 𝑐2. 𝑠4)π‘Ÿ22 = βˆ’ 𝑠6. (𝑐5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) – 𝑠1. 𝑠2. 𝑠5) – 𝑐5. (𝑐1. 𝑐4 – 𝑐2. 𝑠1. 𝑠4)π‘Ÿ32 = 𝑠6. (𝑐2. 𝑠5 + 𝑐4. 𝑐5. 𝑠2) – 𝑐5. 𝑠2. 𝑠4

π‘Ÿ31 = 𝑐1. 𝑐5. 𝑠2 – 𝑠5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4)π‘Ÿ32 = 𝑠5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) + 𝑐5. 𝑠1. 𝑠2π‘Ÿ33 = 𝑐2. 𝑐5 – 𝑐4. 𝑠2. 𝑠5

𝑑π‘₯ = 𝑑3. 𝑐1. 𝑠2 βˆ’ 𝑑6. (𝑠5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) – 𝑐1. 𝑐5. 𝑠2) βˆ’ 𝑑2. 𝑠1𝑑𝑦 = 𝑑2. 𝑐1 + 𝑑6. (𝑠5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) + 𝑐5. 𝑠1. 𝑠2) + 𝑑3. 𝑠1. 𝑠2𝑑𝑧 = 𝑑6. (𝑐2. 𝑐5 – 𝑐4. 𝑠2. 𝑠5) + 𝑑3. 𝑐2

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

π’›πŸ

π’›πŸ’

π’›πŸ‘ π’›πŸ“

𝑑2

π’›πŸ”

π’™πŸ π’™πŸ

𝒙

π’šπŸ”

π’™πŸ”

𝑇60 =

π‘Ÿ11 π‘Ÿ12π‘Ÿ21 π‘Ÿ22

π‘Ÿ13 𝑑π‘₯π‘Ÿ23 𝑑𝑦

π‘Ÿ31 π‘Ÿ320 0

π‘Ÿ33 𝑑𝑧0 1

In the configuration shown, find:

Page 144: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 144

Stanford Arm

π‘Ÿ11 = 𝑠6. (𝑐4. 𝑠1 + 𝑐1. 𝑐2. 𝑠4)– 𝑐6. (𝑐5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) + 𝑐1. 𝑠2. 𝑠5)π‘Ÿ21 = 𝑐6. (𝑐5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1)– 𝑠1. 𝑠2. 𝑠5)– 𝑠6. (𝑐1. 𝑐4 – 𝑐2. 𝑠1. 𝑠4)π‘Ÿ31 = βˆ’π‘6. (𝑐2. 𝑠5 + 𝑐4. 𝑐5. 𝑠2)– 𝑠2. 𝑠4. 𝑠6

π‘Ÿ12 = 𝑠6. (𝑐5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) + 𝑐1. 𝑠2. 𝑠5) + 𝑐5. (𝑐4. 𝑠1 + 𝑐1. 𝑐2. 𝑠4)π‘Ÿ22 = βˆ’ 𝑠6. (𝑐5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) – 𝑠1. 𝑠2. 𝑠5) – 𝑐5. (𝑐1. 𝑐4 – 𝑐2. 𝑠1. 𝑠4)π‘Ÿ32 = 𝑠6. (𝑐2. 𝑠5 + 𝑐4. 𝑐5. 𝑠2) – 𝑐5. 𝑠2. 𝑠4

π‘Ÿ31 = 𝑐1. 𝑐5. 𝑠2 – 𝑠5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4)π‘Ÿ32 = 𝑠5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) + 𝑐5. 𝑠1. 𝑠2π‘Ÿ33 = 𝑐2. 𝑐5 – 𝑐4. 𝑠2. 𝑠5

𝑑π‘₯ = 𝑑3. 𝑐1. 𝑠2 βˆ’ 𝑑6. (𝑠5. (𝑠1. 𝑠4 – 𝑐1. 𝑐2. 𝑐4) – 𝑐1. 𝑐5. 𝑠2) βˆ’ 𝑑2. 𝑠1𝑑𝑦 = 𝑑2. 𝑐1 + 𝑑6. (𝑠5. (𝑐1. 𝑠4 + 𝑐2. 𝑐4. 𝑠1) + 𝑐5. 𝑠1. 𝑠2) + 𝑑3. 𝑠1. 𝑠2𝑑𝑧 = 𝑑6. (𝑐2. 𝑐5 – 𝑐4. 𝑠2. 𝑠5) + 𝑑3. 𝑐2

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

π’›πŸ

π’›πŸ’

π’›πŸ‘ π’›πŸ“

𝑑2

π’›πŸ”

π’™πŸ π’™πŸ

𝒙

π’šπŸ”

π’™πŸ”

𝑇60 =

π‘Ÿ11 π‘Ÿ12π‘Ÿ21 π‘Ÿ22

π‘Ÿ13 𝑑π‘₯π‘Ÿ23 𝑑𝑦

π‘Ÿ31 π‘Ÿ320 0

π‘Ÿ33 𝑑𝑧0 1

In the configuration shown, find:

Page 145: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 145

Stanford Arm

𝐴1 =

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 00 1

Reminder: π‘¨π’Š

𝐴2 =

𝑐2 0𝑠2 0

𝑠2 0βˆ’π‘2 0

0 10 0

0 𝑑20 1

𝐴3 =

1 00 1

0 00 0

0 00 0

1 𝑑30 1

𝐴4 =

𝑐4 0𝑠4 0

βˆ’π‘ 4 0𝑐4 0

0 βˆ’10 0

0 00 1

𝐴5 =

𝑐5 0𝑠5 0

𝑠5 0βˆ’π‘5 0

0 βˆ’10 0

0 00 1

𝐴6 =

𝑐6 βˆ’π‘ 6𝑠6 𝑐6

0 00 0

0 00 0

1 𝑑60 1

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 0 πœ½πŸβˆ—

2 0 +90 Β° 𝑑2 πœ½πŸβˆ—

3 0 0 Β°π’…πŸ‘

βˆ— 0

4 0 βˆ’90 Β° 0 πœ½πŸ’βˆ—

5 0 +90 Β° 0 πœ½πŸ“βˆ—

6 0 0 Β° 𝑑6 πœ½πŸ”βˆ—

Page 146: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 146

Stanford Arm

Page 147: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 147

Stanford Arm

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

π’›πŸ

π’›πŸ’

π’›πŸ‘ π’›πŸ“

𝑑2

π’›πŸ”

π’™πŸ π’™πŸ

𝒙

π’šπŸ”

π’™πŸ”

π‘Ÿ11 = βˆ’ 𝑐6 𝑐5 𝑠1𝑠4 βˆ’ 𝑐1𝑐2𝑐4 + 𝑐1𝑠2𝑠5 βˆ’ 𝑠6 𝑐4𝑠1 + 𝑐1𝑐2𝑠4π‘Ÿ21 = 𝑐6 𝑐5 𝑐1𝑠4 + 𝑐2𝑐4𝑠1 βˆ’ 𝑠1𝑠2𝑠5 + 𝑠6 𝑐1𝑐4 βˆ’ 𝑐2𝑠1𝑠4π‘Ÿ31 = 𝑠2𝑠4𝑠6 βˆ’ 𝑐6 𝑐2𝑠5 + 𝑐4𝑐5𝑠2

π‘Ÿ12 = 𝑠6 𝑐5 𝑠1𝑠4 βˆ’ 𝑐1𝑐2𝑐4 + 𝑐1𝑠2𝑠5 βˆ’ 𝑐6 𝑐4𝑠1 + 𝑐1𝑐2𝑠4π‘Ÿ22 = 𝑐6 𝑐1𝑐4 βˆ’ 𝑐2𝑠1𝑠4 βˆ’ 𝑠6 𝑐5 𝑐1𝑠4 + 𝑐2𝑐4𝑠1 βˆ’ 𝑠1𝑠2𝑠5π‘Ÿ32 = 𝑠6 𝑐2𝑠5 + 𝑐4𝑐5𝑠2 + 𝑐6𝑠2𝑠4

π‘Ÿ13 = 𝑐1𝑐5𝑠2 βˆ’ 𝑠5 𝑠1𝑠4 βˆ’ 𝑐1𝑐2𝑐4π‘Ÿ23 = 𝑠5 𝑐1𝑠4 + 𝑐2𝑐4𝑠1 + 𝑐5𝑠1𝑠2π‘Ÿ33 = 𝑐2𝑐5 βˆ’ 𝑐4𝑠2𝑠5

𝑑π‘₯ = 𝑑3𝑐1𝑠2 βˆ’ 𝑑6 𝑠5 𝑠1𝑠4 βˆ’ 𝑐1𝑐2𝑐4 βˆ’ 𝑐1𝑐5𝑠2 βˆ’ 𝑑2𝑠1𝑑𝑦 = 𝑑2𝑐1 + 𝑑6 𝑠5 𝑐1𝑠4 + 𝑐2𝑐4𝑠1 + 𝑐5𝑠1𝑠2 + 𝑑3𝑠1𝑠2𝑑𝑧 = 𝑑6 𝑐2𝑐5 βˆ’ 𝑐4𝑠2𝑠5 + 𝑑3𝑐2

Page 148: Forward Kinematics - TU Chemnitz

π‘Ÿ11 = βˆ’ 𝑐6 𝑐5 𝑠1𝑠4 βˆ’ 𝑐1𝑐2𝑐4 + 𝑐1𝑠2𝑠5 βˆ’ 𝑠6 𝑐4𝑠1 + 𝑐1𝑐2𝑠4π‘Ÿ21 = 𝑐6 𝑐5 𝑐1𝑠4 + 𝑐2𝑐4𝑠1 βˆ’ 𝑠1𝑠2𝑠5 + 𝑠6 𝑐1𝑐4 βˆ’ 𝑐2𝑠1𝑠4π‘Ÿ31 = 𝑠2𝑠4𝑠6 βˆ’ 𝑐6 𝑐2𝑠5 + 𝑐4𝑐5𝑠2

π‘Ÿ12 = 𝑠6 𝑐5 𝑠1𝑠4 βˆ’ 𝑐1𝑐2𝑐4 + 𝑐1𝑠2𝑠5 βˆ’ 𝑐6 𝑐4𝑠1 + 𝑐1𝑐2𝑠4π‘Ÿ22 = 𝑐6 𝑐1𝑐4 βˆ’ 𝑐2𝑠1𝑠4 βˆ’ 𝑠6 𝑐5 𝑐1𝑠4 + 𝑐2𝑐4𝑠1 βˆ’ 𝑠1𝑠2𝑠5π‘Ÿ32 = 𝑠6 𝑐2𝑠5 + 𝑐4𝑐5𝑠2 + 𝑐6𝑠2𝑠4

π‘Ÿ13 = 𝑐1𝑐5𝑠2 βˆ’ 𝑠5 𝑠1𝑠4 βˆ’ 𝑐1𝑐2𝑐4π‘Ÿ23 = 𝑠5 𝑐1𝑠4 + 𝑐2𝑐4𝑠1 + 𝑐5𝑠1𝑠2π‘Ÿ33 = 𝑐2𝑐5 βˆ’ 𝑐4𝑠2𝑠5

𝑑π‘₯ = 𝑑3𝑐1𝑠2 βˆ’ 𝑑6 𝑠5 𝑠1𝑠4 βˆ’ 𝑐1𝑐2𝑐4 βˆ’ 𝑐1𝑐5𝑠2 βˆ’ 𝑑2𝑠1𝑑𝑦 = 𝑑2𝑐1 + 𝑑6 𝑠5 𝑐1𝑠4 + 𝑐2𝑐4𝑠1 + 𝑐5𝑠1𝑠2 + 𝑑3𝑠1𝑠2𝑑𝑧 = 𝑑6 𝑐2𝑐5 βˆ’ 𝑐4𝑠2𝑠5 + 𝑑3𝑐2

14.11.2017 J.Nassour 148

Stanford Arm

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

π’›πŸ

π’›πŸ’

π’›πŸ‘ π’›πŸ“

𝑑2

π’›πŸ”

π’™πŸ π’™πŸ

𝒙

π’šπŸ”

π’™πŸ”

Page 149: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 149

Stanford Arm

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

π’›πŸ

π’›πŸ’

π’›πŸ‘ π’›πŸ“

𝑑2

π’›πŸ”

π’™πŸ π’™πŸ

𝒙

π’šπŸ”

π’™πŸ”

π‘Ÿ11 = βˆ’ 𝑐6 𝑐5 𝑠1𝑠4 βˆ’ 𝑐1𝑐2𝑐4 + 𝑐1𝑠2𝑠5 βˆ’ 𝑠6 𝑐4𝑠1 + 𝑐1𝑐2𝑠4π‘Ÿ21 = 𝑐6 𝑐5 𝑐1𝑠4 + 𝑐2𝑐4𝑠1 βˆ’ 𝑠1𝑠2𝑠5 + 𝑠6 𝑐1𝑐4 βˆ’ 𝑐2𝑠1𝑠4π‘Ÿ31 = 𝑠2𝑠4𝑠6 βˆ’ 𝑐6 𝑐2𝑠5 + 𝑐4𝑐5𝑠2

π‘Ÿ12 = 𝑠6 𝑐5 𝑠1𝑠4 βˆ’ 𝑐1𝑐2𝑐4 + 𝑐1𝑠2𝑠5 βˆ’ 𝑐6 𝑐4𝑠1 + 𝑐1𝑐2𝑠4π‘Ÿ22 = 𝑐6 𝑐1𝑐4 βˆ’ 𝑐2𝑠1𝑠4 βˆ’ 𝑠6 𝑐5 𝑐1𝑠4 + 𝑐2𝑐4𝑠1 βˆ’ 𝑠1𝑠2𝑠5π‘Ÿ32 = 𝑠6 𝑐2𝑠5 + 𝑐4𝑐5𝑠2 + 𝑐6𝑠2𝑠4

π‘Ÿ13 = 𝑐1𝑐5𝑠2 βˆ’ 𝑠5 𝑠1𝑠4 βˆ’ 𝑐1𝑐2𝑐4π‘Ÿ23 = 𝑠5 𝑐1𝑠4 + 𝑐2𝑐4𝑠1 + 𝑐5𝑠1𝑠2π‘Ÿ33 = 𝑐2𝑐5 βˆ’ 𝑐4𝑠2𝑠5

𝑑π‘₯ = 𝑑3𝑐1𝑠2 βˆ’ 𝑑6 𝑠5 𝑠1𝑠4 βˆ’ 𝑐1𝑐2𝑐4 βˆ’ 𝑐1𝑐5𝑠2 βˆ’ 𝑑2𝑠1𝑑𝑦 = 𝑑2𝑐1 + 𝑑6 𝑠5 𝑐1𝑠4 + 𝑐2𝑐4𝑠1 + 𝑐5𝑠1𝑠2 + 𝑑3𝑠1𝑠2𝑑𝑧 = 𝑑6 𝑐2𝑐5 βˆ’ 𝑐4𝑠2𝑠5 + 𝑑3𝑐2

Page 150: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 150

Stanford Arm

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

π’›πŸ

π’›πŸ’

π’›πŸ‘ π’›πŸ“

𝑑2

π’›πŸ”

π’™πŸ π’™πŸ

𝒙

π’šπŸ”

π’™πŸ”

π‘Ÿ11 = βˆ’ 𝑐6 𝑐5 𝑠1𝑠4 βˆ’ 𝑐1𝑐2𝑐4 + 𝑐1𝑠2𝑠5 βˆ’ 𝑠6 𝑐4𝑠1 + 𝑐1𝑐2𝑠4π‘Ÿ21 = 𝑐6 𝑐5 𝑐1𝑠4 + 𝑐2𝑐4𝑠1 βˆ’ 𝑠1𝑠2𝑠5 + 𝑠6 𝑐1𝑐4 βˆ’ 𝑐2𝑠1𝑠4π‘Ÿ31 = 𝑠2𝑠4𝑠6 βˆ’ 𝑐6 𝑐2𝑠5 + 𝑐4𝑐5𝑠2

π‘Ÿ12 = 𝑠6 𝑐5 𝑠1𝑠4 βˆ’ 𝑐1𝑐2𝑐4 + 𝑐1𝑠2𝑠5 βˆ’ 𝑐6 𝑐4𝑠1 + 𝑐1𝑐2𝑠4π‘Ÿ22 = 𝑐6 𝑐1𝑐4 βˆ’ 𝑐2𝑠1𝑠4 βˆ’ 𝑠6 𝑐5 𝑐1𝑠4 + 𝑐2𝑐4𝑠1 βˆ’ 𝑠1𝑠2𝑠5π‘Ÿ32 = 𝑠6 𝑐2𝑠5 + 𝑐4𝑐5𝑠2 + 𝑐6𝑠2𝑠4

π‘Ÿ13 = 𝑐1𝑐5𝑠2 βˆ’ 𝑠5 𝑠1𝑠4 βˆ’ 𝑐1𝑐2𝑐4π‘Ÿ23 = 𝑠5 𝑐1𝑠4 + 𝑐2𝑐4𝑠1 + 𝑐5𝑠1𝑠2π‘Ÿ33 = 𝑐2𝑐5 βˆ’ 𝑐4𝑠2𝑠5

𝑑π‘₯ = 𝑑3𝑐1𝑠2 βˆ’ 𝑑6 𝑠5 𝑠1𝑠4 βˆ’ 𝑐1𝑐2𝑐4 βˆ’ 𝑐1𝑐5𝑠2 βˆ’ 𝑑2𝑠1𝑑𝑦 = 𝑑2𝑐1 + 𝑑6 𝑠5 𝑐1𝑠4 + 𝑐2𝑐4𝑠1 + 𝑐5𝑠1𝑠2 + 𝑑3𝑠1𝑠2𝑑𝑧 = 𝑑6 𝑐2𝑐5 βˆ’ 𝑐4𝑠2𝑠5 + 𝑑3𝑐2

Page 151: Forward Kinematics - TU Chemnitz

PUMA 260

14.11.2017 J.Nassour 151

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

Page 152: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 152

PUMA 260

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“πœ½πŸ”

Page 153: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 153

PUMA 260

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“πœ½πŸ”

π’›πŸŽ

π’™πŸŽπ’šπŸŽ

Page 154: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 154

PUMA 260

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“πœ½πŸ”

π’›πŸŽ

π’™πŸŽπ’šπŸŽ

π’™πŸ

π’›πŸ

π’šπŸ

Page 155: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 155

PUMA 260

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“πœ½πŸ”

π’›πŸŽ

π’™πŸŽπ’šπŸŽ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ

π’›πŸ

π’šπŸ

π’…πŸ

π’‚πŸ

Page 156: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 156

PUMA 260

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“πœ½πŸ”

π’›πŸŽ

π’™πŸŽπ’šπŸŽ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ‘

π’šπŸ‘

π’›πŸ‘

π’…πŸ

π’‚πŸ

π’‚πŸ‘

Page 157: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 157

PUMA 260

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“πœ½πŸ”

π’›πŸŽ

π’™πŸŽπ’šπŸŽ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ‘

π’šπŸ‘

π’›πŸ‘

π’›πŸ’π’šπŸ’

π’™πŸ’

π’…πŸ

π’‚πŸ

π’…πŸ’

π’‚πŸ‘

Page 158: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 158

PUMA 260

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“πœ½πŸ”

π’›πŸŽ

π’™πŸŽπ’šπŸŽ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ‘

π’šπŸ‘

π’›πŸ‘

π’›πŸ’π’šπŸ’

π’™πŸ’

π’™πŸ“

π’šπŸ“

π’›πŸ“

π’…πŸ

π’‚πŸ

π’…πŸ’

π’‚πŸ‘

Page 159: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 159

PUMA 260

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“πœ½πŸ”

π’›πŸŽ

π’™πŸŽπ’šπŸŽ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ‘

π’šπŸ‘

π’›πŸ‘

π’›πŸ’π’šπŸ’

π’™πŸ’

π’™πŸ“

π’šπŸ“

π’›πŸ“

π’™πŸ”

π’šπŸ”

π’›πŸ”

π’…πŸ

π’‚πŸ

π’…πŸ’

π’‚πŸ‘

π’…πŸ”

Page 160: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 160

PUMA 260

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“πœ½πŸ”

π’›πŸŽ

π’™πŸŽπ’šπŸŽ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ‘

π’šπŸ‘

π’›πŸ‘

π’›πŸ’π’šπŸ’

π’™πŸ’

π’™πŸ“

π’šπŸ“

π’›πŸ“

π’™πŸ”

π’šπŸ”

π’›πŸ”

π’…πŸ

π’‚πŸ

π’…πŸ’

π’‚πŸ‘

π’…πŸ”

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 0 πœ½πŸβˆ—

2 π‘Ž2 0 Β° 𝑑2 πœ½πŸβˆ—

3 π‘Ž3 90 Β° 0 πœ½πŸ‘βˆ—

4 0 βˆ’90 Β° 𝑑4 πœ½πŸ’βˆ—

5 0 +90 Β° 0 πœ½πŸ“βˆ—

6 0 0 Β° 𝑑6 πœ½πŸ”βˆ—

π’‚π’Š is distance from π’›π’Šβˆ’πŸ to π’›π’Š measured along π’™π’Š.πœΆπ’Š is angle from π’›π’Šβˆ’πŸ to π’›π’Š measured about π’™π’Š. π’…π’Š is distance from π’™π’Šβˆ’πŸ to π’™π’Š measured along π’›π’Šβˆ’πŸ.

πœ½π’Š is angle from π’™π’Šβˆ’πŸ to π’™π’Š measured about π’›π’Šβˆ’πŸ.

Page 161: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 161

PUMA 260

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“πœ½πŸ”

π’›πŸŽ

π’™πŸŽπ’šπŸŽ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ‘

π’šπŸ‘

π’›πŸ‘

π’›πŸ’π’šπŸ’

π’™πŸ’

π’™πŸ“

π’šπŸ“

π’›πŸ“

π’™πŸ”

π’šπŸ”

π’›πŸ”

π’…πŸ

π’‚πŸ

π’…πŸ’

π’‚πŸ‘

π’…πŸ”

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 0 πŸ—πŸŽ

2 π‘Ž2 0 Β° 𝑑2 𝟎

3 π‘Ž3 90 Β° 0 πŸ—πŸŽ

4 0 βˆ’90 Β° 𝑑4 𝟎

5 0 +90 ° 0 𝟎

6 0 0 Β° 𝑑6 𝟎

π’‚π’Š is distance from π’›π’Šβˆ’πŸ to π’›π’Š measured along π’™π’Š.πœΆπ’Š is angle from π’›π’Šβˆ’πŸ to π’›π’Š measured about π’™π’Š. π’…π’Š is distance from π’™π’Šβˆ’πŸ to π’™π’Š measured along π’›π’Šβˆ’πŸ.

πœ½π’Š is angle from π’™π’Šβˆ’πŸ to π’™π’Š measured about π’›π’Šβˆ’πŸ.

In the configuration shown, find πœ½π’Š?

Page 162: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 162

PUMA 260π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 0 πœ½πŸβˆ—

2 π‘Ž2 0 Β° 𝑑2 πœ½πŸβˆ—

3 π‘Ž3 90 Β° 0 πœ½πŸ‘βˆ—

4 0 βˆ’90 Β° 𝑑4 πœ½πŸ’βˆ—

5 0 +90 Β° 0 πœ½πŸ“βˆ—

6 0 0 Β° 𝑑6 πœ½πŸ”βˆ—

Reminder: π‘¨π’Š

Page 163: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 163

r11 = βˆ’ s6 c4s1 βˆ’ s4 c1s2s3 βˆ’ c1c2c3 βˆ’ c6 c5 s1s4 + c4 c1s2s3 βˆ’ c1c2c3 + s5 c1c2s3 + c1c3s2

π‘Ÿ12 = 𝑠6 𝑐5 𝑠1𝑠4 + 𝑐4 𝑐1𝑠2𝑠3 βˆ’ 𝑐1𝑐2𝑐3 + 𝑠5 𝑐1𝑐2𝑠3 + 𝑐1𝑐3𝑠2 βˆ’ 𝑐6 𝑐4𝑠1 βˆ’ 𝑠4 𝑐1𝑠2𝑠3 βˆ’ 𝑐1𝑐2𝑐3

r13 = c5 c1c2s3 + c1c3s2 βˆ’ s5 s1s4 + c4 c1s2s3 βˆ’ c1c2c3

𝑑π‘₯ = 𝑑4 𝑐1𝑐2𝑠3 + 𝑐1𝑐3𝑠2 βˆ’ 𝑑2𝑠1 βˆ’ 𝑑6 𝑠5 𝑠1𝑠4 + 𝑐4 𝑐1𝑠2𝑠3 βˆ’ 𝑐1𝑐2𝑐3 βˆ’ 𝑐5 𝑐1𝑐2𝑠3 + 𝑐1𝑐3𝑠2 + π‘Ž2𝑐1𝑐2 + π‘Ž3𝑐1𝑐2𝑐3 βˆ’ π‘Ž3𝑐1𝑠2𝑠3

π‘Ÿ21 = 𝑠6 𝑐1𝑐4 + 𝑠4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 + 𝑐6 𝑐5 𝑐1𝑠4 βˆ’ 𝑐4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 βˆ’ 𝑠5 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2

π‘Ÿ22 = 𝑐6 𝑐1𝑐4 + 𝑠4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 βˆ’ 𝑠6 𝑐5 𝑐1𝑠4 βˆ’ 𝑐4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 βˆ’ 𝑠5 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2

π‘Ÿ23 = 𝑠5 𝑐1𝑠4 βˆ’ 𝑐4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 + 𝑐5 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2

𝑑𝑦 = 𝑑6 𝑠5 𝑐1𝑠4 βˆ’ 𝑐4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 + 𝑐5 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2 + 𝑑4 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2 + 𝑑2𝑐1 + π‘Ž2𝑐2𝑠1 + π‘Ž3𝑐2𝑐3𝑠1 βˆ’ π‘Ž3𝑠1𝑠2𝑠3

π‘Ÿ31 = 𝑠4𝑠6 𝑐2𝑠3 + 𝑐3𝑠2 βˆ’ 𝑐6 𝑠5 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 + 𝑐4𝑐5 𝑐2𝑠3 + 𝑐3𝑠2π‘Ÿ32 = 𝑠6 𝑠5 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 + 𝑐4𝑐5 𝑐2𝑠3 + 𝑐3𝑠2 + 𝑐6𝑠4 𝑐2𝑠3 + 𝑐3𝑠2π‘Ÿ33 = 𝑐5 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 βˆ’ 𝑐4𝑠5 𝑐2𝑠3 + 𝑐3𝑠2𝑑𝑧 = 𝑑4 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 βˆ’ π‘Ž2𝑠2 + 𝑑6 𝑐5 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 βˆ’ 𝑐4𝑠5 𝑐2𝑠3 + 𝑐3𝑠2 βˆ’ π‘Ž3𝑐2𝑠3 βˆ’ π‘Ž3𝑐3𝑠2

PUMA 260

Page 164: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 164

r11 = βˆ’ s6 c4s1 βˆ’ s4 c1s2s3 βˆ’ c1c2c3 βˆ’ c6 c5 s1s4 + c4 c1s2s3 βˆ’ c1c2c3 + s5 c1c2s3 + c1c3s2

π‘Ÿ12 = 𝑠6 𝑐5 𝑠1𝑠4 + 𝑐4 𝑐1𝑠2𝑠3 βˆ’ 𝑐1𝑐2𝑐3 + 𝑠5 𝑐1𝑐2𝑠3 + 𝑐1𝑐3𝑠2 βˆ’ 𝑐6 𝑐4𝑠1 βˆ’ 𝑠4 𝑐1𝑠2𝑠3 βˆ’ 𝑐1𝑐2𝑐3

r13 = c5 c1c2s3 + c1c3s2 βˆ’ s5 s1s4 + c4 c1s2s3 βˆ’ c1c2c3

𝑑π‘₯ = 𝑑4 𝑐1𝑐2𝑠3 + 𝑐1𝑐3𝑠2 βˆ’ 𝑑2𝑠1 βˆ’ 𝑑6 𝑠5 𝑠1𝑠4 + 𝑐4 𝑐1𝑠2𝑠3 βˆ’ 𝑐1𝑐2𝑐3 βˆ’ 𝑐5 𝑐1𝑐2𝑠3 + 𝑐1𝑐3𝑠2 + π‘Ž2𝑐1𝑐2 + π‘Ž3𝑐1𝑐2𝑐3 βˆ’ π‘Ž3𝑐1𝑠2𝑠3

π‘Ÿ21 = 𝑠6 𝑐1𝑐4 + 𝑠4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 + 𝑐6 𝑐5 𝑐1𝑠4 βˆ’ 𝑐4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 βˆ’ 𝑠5 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2

π‘Ÿ22 = 𝑐6 𝑐1𝑐4 + 𝑠4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 βˆ’ 𝑠6 𝑐5 𝑐1𝑠4 βˆ’ 𝑐4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 βˆ’ 𝑠5 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2

π‘Ÿ23 = 𝑠5 𝑐1𝑠4 βˆ’ 𝑐4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 + 𝑐5 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2

𝑑𝑦 = 𝑑6 𝑠5 𝑐1𝑠4 βˆ’ 𝑐4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 + 𝑐5 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2 + 𝑑4 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2 + 𝑑2𝑐1 + π‘Ž2𝑐2𝑠1 + π‘Ž3𝑐2𝑐3𝑠1 βˆ’ π‘Ž3𝑠1𝑠2𝑠3

π‘Ÿ31 = 𝑠4𝑠6 𝑐2𝑠3 + 𝑐3𝑠2 βˆ’ 𝑐6 𝑠5 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 + 𝑐4𝑐5 𝑐2𝑠3 + 𝑐3𝑠2π‘Ÿ32 = 𝑠6 𝑠5 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 + 𝑐4𝑐5 𝑐2𝑠3 + 𝑐3𝑠2 + 𝑐6𝑠4 𝑐2𝑠3 + 𝑐3𝑠2π‘Ÿ33 = 𝑐5 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 βˆ’ 𝑐4𝑠5 𝑐2𝑠3 + 𝑐3𝑠2𝑑𝑧 = 𝑑4 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 βˆ’ π‘Ž2𝑠2 + 𝑑6 𝑐5 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 βˆ’ 𝑐4𝑠5 𝑐2𝑠3 + 𝑐3𝑠2 βˆ’ π‘Ž3𝑐2𝑠3 βˆ’ π‘Ž3𝑐3𝑠2

PUMA 260

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“πœ½πŸ”

π’›πŸŽ

π’™πŸŽπ’šπŸŽ

π’™πŸ”

π’šπŸ”

π’›πŸ”

Page 165: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 165

r11 = βˆ’ s6 c4s1 βˆ’ s4 c1s2s3 βˆ’ c1c2c3 βˆ’ c6 c5 s1s4 + c4 c1s2s3 βˆ’ c1c2c3 + s5 c1c2s3 + c1c3s2

π‘Ÿ12 = 𝑠6 𝑐5 𝑠1𝑠4 + 𝑐4 𝑐1𝑠2𝑠3 βˆ’ 𝑐1𝑐2𝑐3 + 𝑠5 𝑐1𝑐2𝑠3 + 𝑐1𝑐3𝑠2 βˆ’ 𝑐6 𝑐4𝑠1 βˆ’ 𝑠4 𝑐1𝑠2𝑠3 βˆ’ 𝑐1𝑐2𝑐3

r13 = c5 c1c2s3 + c1c3s2 βˆ’ s5 s1s4 + c4 c1s2s3 βˆ’ c1c2c3

𝑑π‘₯ = 𝑑4 𝑐1𝑐2𝑠3 + 𝑐1𝑐3𝑠2 βˆ’ 𝑑2𝑠1 βˆ’ 𝑑6 𝑠5 𝑠1𝑠4 + 𝑐4 𝑐1𝑠2𝑠3 βˆ’ 𝑐1𝑐2𝑐3 βˆ’ 𝑐5 𝑐1𝑐2𝑠3 + 𝑐1𝑐3𝑠2 + π‘Ž2𝑐1𝑐2 + π‘Ž3𝑐1𝑐2𝑐3 βˆ’ π‘Ž3𝑐1𝑠2𝑠3

π‘Ÿ21 = 𝑠6 𝑐1𝑐4 + 𝑠4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 + 𝑐6 𝑐5 𝑐1𝑠4 βˆ’ 𝑐4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 βˆ’ 𝑠5 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2

π‘Ÿ22 = 𝑐6 𝑐1𝑐4 + 𝑠4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 βˆ’ 𝑠6 𝑐5 𝑐1𝑠4 βˆ’ 𝑐4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 βˆ’ 𝑠5 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2

π‘Ÿ23 = 𝑠5 𝑐1𝑠4 βˆ’ 𝑐4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 + 𝑐5 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2

𝑑𝑦 = 𝑑6 𝑠5 𝑐1𝑠4 βˆ’ 𝑐4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 + 𝑐5 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2 + 𝑑4 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2 + 𝑑2𝑐1 + π‘Ž2𝑐2𝑠1 + π‘Ž3𝑐2𝑐3𝑠1 βˆ’ π‘Ž3𝑠1𝑠2𝑠3

π‘Ÿ31 = 𝑠4𝑠6 𝑐2𝑠3 + 𝑐3𝑠2 βˆ’ 𝑐6 𝑠5 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 + 𝑐4𝑐5 𝑐2𝑠3 + 𝑐3𝑠2π‘Ÿ32 = 𝑠6 𝑠5 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 + 𝑐4𝑐5 𝑐2𝑠3 + 𝑐3𝑠2 + 𝑐6𝑠4 𝑐2𝑠3 + 𝑐3𝑠2π‘Ÿ33 = 𝑐5 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 βˆ’ 𝑐4𝑠5 𝑐2𝑠3 + 𝑐3𝑠2𝑑𝑧 = 𝑑4 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 βˆ’ π‘Ž2𝑠2 + 𝑑6 𝑐5 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 βˆ’ 𝑐4𝑠5 𝑐2𝑠3 + 𝑐3𝑠2 βˆ’ π‘Ž3𝑐2𝑠3 βˆ’ π‘Ž3𝑐3𝑠2

PUMA 260

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“πœ½πŸ”

π’›πŸŽ

π’™πŸŽπ’šπŸŽ

π’™πŸ”

π’šπŸ”

π’›πŸ”

Page 166: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 166

PUMA 260

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“πœ½πŸ”

π’›πŸŽ

π’™πŸŽπ’šπŸŽ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ‘

π’šπŸ‘

π’›πŸ‘

π’›πŸ’π’šπŸ’

π’™πŸ’

π’™πŸ“

π’šπŸ“

π’›πŸ“

π’™πŸ”

π’šπŸ”

π’›πŸ”

π’…πŸ

π’‚πŸ

π’…πŸ’

π’‚πŸ‘

π’…πŸ”

π’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

1 0 βˆ’90 Β° 0 πŸ—πŸŽ

2 π‘Ž2 0 Β° 𝑑2 𝟎

3 π‘Ž3 90 Β° 0 πŸ—πŸŽ

4 0 βˆ’90 Β° 𝑑4 𝟎

5 0 +90 ° 0 𝟎

6 0 0 Β° 𝑑6 𝟎

π’‚π’Š is distance from π’›π’Šβˆ’πŸ to π’›π’Š measured along π’™π’Š.πœΆπ’Š is angle from π’›π’Šβˆ’πŸ to π’›π’Š measured about π’™π’Š. π’…π’Š is distance from π’™π’Šβˆ’πŸ to π’™π’Š measured along π’›π’Šβˆ’πŸ.

πœ½π’Š is angle from π’™π’Šβˆ’πŸ to π’™π’Š measured about π’›π’Šβˆ’πŸ.

Page 167: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 167

r11 = βˆ’ s6 c4s1 βˆ’ s4 c1s2s3 βˆ’ c1c2c3 βˆ’ c6 c5 s1s4 + c4 c1s2s3 βˆ’ c1c2c3 + s5 c1c2s3 + c1c3s2

π‘Ÿ12 = 𝑠6 𝑐5 𝑠1𝑠4 + 𝑐4 𝑐1𝑠2𝑠3 βˆ’ 𝑐1𝑐2𝑐3 + 𝑠5 𝑐1𝑐2𝑠3 + 𝑐1𝑐3𝑠2 βˆ’ 𝑐6 𝑐4𝑠1 βˆ’ 𝑠4 𝑐1𝑠2𝑠3 βˆ’ 𝑐1𝑐2𝑐3

r13 = c5 c1c2s3 + c1c3s2 βˆ’ s5 s1s4 + c4 c1s2s3 βˆ’ c1c2c3

𝑑π‘₯ = 𝑑4 𝑐1𝑐2𝑠3 + 𝑐1𝑐3𝑠2 βˆ’ 𝑑2𝑠1 βˆ’ 𝑑6 𝑠5 𝑠1𝑠4 + 𝑐4 𝑐1𝑠2𝑠3 βˆ’ 𝑐1𝑐2𝑐3 βˆ’ 𝑐5 𝑐1𝑐2𝑠3 + 𝑐1𝑐3𝑠2 + π‘Ž2𝑐1𝑐2 + π‘Ž3𝑐1𝑐2𝑐3 βˆ’ π‘Ž3𝑐1𝑠2𝑠3

π‘Ÿ21 = 𝑠6 𝑐1𝑐4 + 𝑠4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 + 𝑐6 𝑐5 𝑐1𝑠4 βˆ’ 𝑐4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 βˆ’ 𝑠5 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2

π‘Ÿ22 = 𝑐6 𝑐1𝑐4 + 𝑠4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 βˆ’ 𝑠6 𝑐5 𝑐1𝑠4 βˆ’ 𝑐4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 βˆ’ 𝑠5 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2

π‘Ÿ23 = 𝑠5 𝑐1𝑠4 βˆ’ 𝑐4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 + 𝑐5 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2

𝑑𝑦 = 𝑑6 𝑠5 𝑐1𝑠4 βˆ’ 𝑐4 𝑠1𝑠2𝑠3 βˆ’ 𝑐2𝑐3𝑠1 + 𝑐5 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2 + 𝑑4 𝑐2𝑠1𝑠3 + 𝑐3𝑠1𝑠2 + 𝑑2𝑐1 + π‘Ž2𝑐2𝑠1 + π‘Ž3𝑐2𝑐3𝑠1 βˆ’ π‘Ž3𝑠1𝑠2𝑠3

π‘Ÿ31 = 𝑠4𝑠6 𝑐2𝑠3 + 𝑐3𝑠2 βˆ’ 𝑐6 𝑠5 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 + 𝑐4𝑐5 𝑐2𝑠3 + 𝑐3𝑠2π‘Ÿ32 = 𝑠6 𝑠5 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 + 𝑐4𝑐5 𝑐2𝑠3 + 𝑐3𝑠2 + 𝑐6𝑠4 𝑐2𝑠3 + 𝑐3𝑠2π‘Ÿ33 = 𝑐5 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 βˆ’ 𝑐4𝑠5 𝑐2𝑠3 + 𝑐3𝑠2𝑑𝑧 = 𝑑4 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 βˆ’ π‘Ž2𝑠2 + 𝑑6 𝑐5 𝑐2𝑐3 βˆ’ 𝑠2𝑠3 βˆ’ 𝑐4𝑠5 𝑐2𝑠3 + 𝑐3𝑠2 βˆ’ π‘Ž3𝑐2𝑠3 βˆ’ π‘Ž3𝑐3𝑠2

PUMA 260

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“πœ½πŸ”

π’›πŸŽ

π’™πŸŽπ’šπŸŽ

π’™πŸ”

π’šπŸ”

π’›πŸ”

Page 168: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 168

NAO Left Arm

Page 169: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 169

NAO Zero Position

Provided by Aldebaran Robotics

The torso is the point where all the kinematic chains begin and is located at the center of the NAO body.

Page 170: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 170

NAO Zero Position

Page 171: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 171

NAO Left Arm

𝜽𝟏

𝜽𝟐

Page 172: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 172

NAO Left Arm

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

Page 173: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 173

NAO Left Arm

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“

Page 174: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 174

NAO Left Arm

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“

𝒛𝑻

π’™π‘»π’šπ‘»

Page 175: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 175

NAO Left Arm

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“

𝒛𝑻

π’™π‘»π’šπ‘»

π’›πŸŽπ’™πŸŽ

π’šπŸŽ

Page 176: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 176

NAO Left Arm

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“

𝒛𝑻

π’™π‘»π’šπ‘»

π’›πŸŽπ’™πŸŽ

π’šπŸŽ

π’›πŸ

π’šπŸ

π’™πŸ

Page 177: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 177

NAO Left Arm

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“

𝒛𝑻

π’™π‘»π’šπ‘»

π’›πŸŽπ’™πŸŽ

π’šπŸŽ

π’›πŸ

π’šπŸ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ

Page 178: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 178

NAO Left Arm

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“

𝒛𝑻

π’™π‘»π’šπ‘»

π’›πŸŽπ’™πŸŽ

π’šπŸŽ

π’›πŸ

π’šπŸ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ

π’šπŸ‘

π’™πŸ‘

π’›πŸ‘

Page 179: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 179

NAO Left Arm

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“

𝒛𝑻

π’™π‘»π’šπ‘»

π’›πŸŽπ’™πŸŽ

π’šπŸŽ

π’›πŸ

π’šπŸ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ

π’šπŸ‘

π’™πŸ‘

π’›πŸ‘

π’›πŸ’

π’™πŸ’

π’šπŸ’

Page 180: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 180

NAO Left Arm

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“

𝒛𝑻

π’™π‘»π’šπ‘»

π’›πŸŽπ’™πŸŽ

π’šπŸŽ

π’›πŸ

π’šπŸ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ

π’šπŸ‘

π’™πŸ‘

π’›πŸ‘

π’›πŸ’

π’™πŸ’

π’šπŸ’

π’›πŸ“

π’™πŸ“π’šπŸ“

Page 181: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 181

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“

𝒛𝑻

π’™π‘»π’šπ‘»

π’›πŸŽπ’™πŸŽ

π’šπŸŽ

π’›πŸ

π’šπŸ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ

π’šπŸ‘

π’™πŸ‘

π’›πŸ‘

π’›πŸ’

π’™πŸ’

π’šπŸ’

NAO Left Armπ’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

0 𝑇 0𝐡𝐴𝑆𝐸 (0, π‘†β„Žπ‘œπ‘’π‘™π‘‘π‘’π‘Ÿπ‘‚π‘“π‘“π‘ π‘’π‘‘π‘Œ, π‘†β„Žπ‘œπ‘’π‘™π‘‘π‘’π‘Ÿπ‘‚π‘“π‘“π‘ π‘’π‘‘π‘)

1 0 90 Β° 0 πœ½πŸβˆ—

2 π‘Ž2 90 Β° 0 𝝅

𝟐+ 𝜽𝟐

βˆ—

3 0 βˆ’90 Β° 𝑑3 πœ½πŸ‘βˆ—

4 0 +90 Β° 0 πœ½πŸ’βˆ—

5 π‘Ž5 0 Β° 𝑑5𝝅

𝟐+ πœ½πŸ“

βˆ—

π’‚π’Š is distance from π’›π’Šβˆ’πŸ to π’›π’Š measured along π’™π’Š.πœΆπ’Š is angle from π’›π’Šβˆ’πŸ to π’›π’Š measured about π’™π’Š. π’…π’Š is distance from π’™π’Šβˆ’πŸ to π’™π’Š measured along π’›π’Šβˆ’πŸ.

πœ½π’Š is angle from π’™π’Šβˆ’πŸ to π’™π’Š measured about π’›π’Šβˆ’πŸ.

π’›πŸ“

π’™πŸ“π’šπŸ“

Page 182: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 182

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“

𝒛𝑻

π’™π‘»π’šπ‘»

π’›πŸŽπ’™πŸŽ

π’šπŸŽ

π’›πŸ

π’šπŸ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ

π’šπŸ‘

π’™πŸ‘

π’›πŸ‘

π’›πŸ’

π’™πŸ’

π’šπŸ’

NAO Left Armπ’Š π’‚π’Š πœΆπ’Š π’…π’Š πœ½π’Š

0 𝑇 0𝐡𝐴𝑆𝐸 (0, π‘†β„Žπ‘œπ‘’π‘™π‘‘π‘’π‘Ÿπ‘‚π‘“π‘“π‘ π‘’π‘‘π‘Œ, π‘†β„Žπ‘œπ‘’π‘™π‘‘π‘’π‘Ÿπ‘‚π‘“π‘“π‘ π‘’π‘‘π‘)

1 0 90 Β° 0 πœ½πŸβˆ—

2 π‘Ž2 90 Β° 0 𝝅

𝟐+ 𝜽𝟐

βˆ—

3 0 βˆ’90 Β° 𝑑3 πœ½πŸ‘βˆ—

4 0 +90 Β° 0 πœ½πŸ’βˆ—

5 π‘Ž5 0 Β° 𝑑5𝝅

𝟐+ πœ½πŸ“

βˆ—

π’‚π’Š is distance from π’›π’Šβˆ’πŸ to π’›π’Š measured along π’™π’Š.πœΆπ’Š is angle from π’›π’Šβˆ’πŸ to π’›π’Š measured about π’™π’Š. π’…π’Š is distance from π’™π’Šβˆ’πŸ to π’™π’Š measured along π’›π’Šβˆ’πŸ.

πœ½π’Š is angle from π’™π’Šβˆ’πŸ to π’™π’Š measured about π’›π’Šβˆ’πŸ.

𝑻 πŸ“π‘©π‘¨π‘Ίπ‘¬ = ?

π’›πŸ“

π’™πŸ“π’šπŸ“

Page 183: Forward Kinematics - TU Chemnitz

14.11.2017 J.Nassour 183