Formulae v2

download Formulae v2

of 56

Transcript of Formulae v2

  • 8/2/2019 Formulae v2

    1/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 1

    (1) NUMBERS

    (a) Types of numbers

    Whole numbers Eg. : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

    Integer numbers Eg. : , 5, 4, 3, 2, 1, 0, 1, 2, 3, 4,

    Odd numbers Eg. : 1, 3, 5, 7, 9, 11, 13, 15, 17,

    Even numbers Eg. : 2, 4, 6, 8, 10, 12, 14, 16, 18,

    Prime numbers Eg. : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, ...

    Perfect square numbers Eg. : 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, ...

    Cube numbers Eg. : 1, 8, 27, 64, 125, 216, 343, 512, ...

    (2) POLYGONS / ANGLES

    (a) Triangles

    Equilateral Triangles Isosceles Triangles Right-angled Triangles Scalene Triangles

    a = 180 2b

    b =2

    180 a

    a + b= 90

    a = 90 b

    b = 90 a

    c = a + b

    (b) Rhombus

    All sides are equal in length.

    Opposite sides are parallel.

    Opposite angles are equal in size.

    Diagonal bisect each other in right angle.

    a + b = 180

    (c) Type of Polygon

    Polygons / sidesum of interior angles

    (n2) 180Regular Polygons

    exterior angle + interior angle = 180

    sum of exterior angle = 360

    Triangle / 3 180

    Quadrilateral / 4 360Pentagon / 5 540

    Hexagon / 6 720

    Heptagon / 7 900

    Octagon / 8 1080

    Nonagon / 9 1260

    Decagon / 10 1440

    (d) Angles

    Acute angle Right angle Obtuse angle Reflex angle

    60 60

    60

    a

    b b

    a

    b

    cb

    a

    a

    ab

    b

    Angle at centre =

    n

    360

    Interior angle = 180 n

    360

    Exterior angle =n

    360

    x < 90 x = 9090

  • 8/2/2019 Formulae v2

    2/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 2

    (e) Properties of angle

    a = c and b = d a + b + c = 180 a + b + c = 360

    a = c and b = da = c and b = d a + d = 180 and b + c = 180

    a + b = c a + b = c a + b = c

    b

    cd

    a

    cb

    ac

    ba

    b

    a

    c

    d

    bad c

    bad c

    b

    a

    cb

    a

    c

    a

    c b

  • 8/2/2019 Formulae v2

    3/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 3

    (3) INDICES

    (a) Table for Numbers Power ofn

    n 3 2 1 0 1 2 3 4 5 6 7

    2 81

    21

    1 2 4 8 16 32 64 128

    3 271

    91

    31

    1 3 9 27 81 243 729

    5 1251 251 51 1 5 25 125 625 3125

    6 2161

    361

    61

    1 6 36 216 1296

    2 = 21

    4 5 = 21

    25

    3 = 21

    9 6 = 21

    36

    4 = 21

    16 7 = 21

    49

    (b) Indices and Law of Indices

    a n = aa a ( n times of a )

    a0 = 1

    an

    =n

    a

    1, a n =

    na1

    ,

    n

    b

    a

    =

    n

    a

    b

    na

    1

    = n a

    nm

    a = mn a = n ma am an = am + n

    am an =n

    m

    a

    a= am

    n

    (am)n = (an)m = amn

    an bn = (ab)n,n

    n

    n

    b

    a

    b

    a

    Example 1 :

    2

    4

    k

    kk= ???

    = k4 + 1

    (2)

    = k4 + 1

    + 2

    = k7

    Example 2 :

    (3f5g)

    2 (f4)3f2g7 = ???

    = 9f10

    g2 f12 f2g7

    = 9f10 + (12) (2)

    g2 7

    = 9f10 12 + 2

    g5

    = 9f0 g5

    = 9g5

    Example 3 :

    3x 1 = 81

    3x 1 = 34

    x 1 = 4

    x = 4 + 1

    x = 5

    41

  • 8/2/2019 Formulae v2

    4/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 4

    (4) PYTHAGORAS THEOREMc = 22 ba c

    2 = a2 + b

    2

    b = 22 ac b2 = c2 a2

    a = 22 bc a2 = c

    2 b2

    Group 1 Group 2 Group 3 Group 4

    a /b b /a c/c a /b b /a c/c a /b b /a c/c a /b b /a c/c

    3 4 5 5 12 13 7 24 25 8 15 17

    6 8 10 10 24 26 14 48 50 16 30 34

    9 12 15 15 36 39

    12 16 20

    (5) SPEED, CHANGE OF RATES

    (a) Speed

    time

    cedisspeed

    tan

    speed

    cedistime

    tan distance = speed time

    (b) Change of Rates

    Example 1 :

    90 kmh1 = ?? ms1

    h

    km

    1

    90=

    s

    m

    60601

    100090

    = 25 ms1

    Example 2 :

    900 m min1 = ?? kmh1

    min1

    900 m=

    h

    km

    60

    11000

    900

    = 54 kmh1

    Example 3 :

    50 ms1 = ?? kmh1

    s

    m

    1

    50=

    h

    km

    6060

    11000

    50

    = 180 kmh1

    (6) LINEAR EQUATIONS I, II

    (a) Linear Equation

    Example 1 :

    2k 3 = k 2k+ 2

    2kk + 2k= 2 + 3

    3k = 5

    k =3

    5

    Example 2 :

    10k= 3 7k

    10k+ 7k = 3

    17k = 3

    k =17

    3

    Example 3 :

    5 8k= 12 + 4k

    8k 4k = 12 5

    12k = 17

    k = 12

    17

    k =12

    17

    ac

    b

    2k 3 = k 2 (k 1) 2k =5

    73 k

    )3(242

    5kk

    5 8k= 4 (3 k)

  • 8/2/2019 Formulae v2

    5/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 5

    (b) Simultaneous Linear Equation

    Example 1 :

    2k 3m = 9, 7k+ 3m =9 k= ?, m = ?

    Example 2 :

    x + 2y = 6 (i),2

    3xy = 7 x = ?, y = ?

    2k + 7k = 9 + (9)

    9k = 18

    k=9

    18

    k = 2

    2k 3m = 9

    2(2) 3m = 9

    4 3m = 9

    3m = 9 + 4

    3m = 5

    m =3

    5

    m =3

    5

    x + 3x = 6 + (14)

    4x = 8

    x =4

    8

    x = 2

    x + 2y = 6

    2 2y = 6

    2y = 6 + 2

    2y = 8

    y =2

    8

    y = 4

    Example 3 :

    2k3w = 10 (i), 4k+ w = 1 k= ?, w = ?

    Example 4 :

    7x 5y = 45 (i), 2x + 3y = 4 (ii) x = ?, y = ?

    (i) 2,

    6w (+w) = 20 (1)

    7w = 21

    w =7

    21

    w = 3

    4k+ w = 1

    4k + (3) = 1

    4k 3 = 1

    4k= 1 + 3

    4k= 2

    k=4

    2

    k= 2

    1

    (i) 2, (ii) 7

    10y (+ 21y) = 90 28

    31y = 62

    y =31

    62

    y = 2

    2x + 3y = 4

    2x + 3(2) = 4

    2x + 6= 4

    2x = 4 6

    2x = 2

    x =2

    2

    x = 1

    2k 3m =

    97k + 3m = 9+ )

    x + 2y = 63x 2y = 14+ )

    4k 6w = 204k + w = 1 )

    14x 10y = 9014x + 21y = 28 )

  • 8/2/2019 Formulae v2

    6/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 6

    (7) LINEAR INEQUALITIES

    (a) Linear Inequalities in One Unknown

    x < 3 x= , 6, 5, 4 x3 x = , 5, 4, 3.

    x > 2 x= 3, 4, 5, x 2 x= 2, 3, 4,

    3 2

    5

    Example 8 :

    2x 5

    x2

    5

    x2

    5

    Example 9 :

    x < 10

    Example 10 :

    x 10

    Example 11 :

    x > 10

    Example 12 :

    x10

    x

    3 2(a) x

    3 2(b)

    x

    3 2(c)

    3 2(d)

    x

    3 2(e) x

    3 2(f)

    x3 2

    (g) x3 2

    (h)

    2

    x< 5

    2

    x 5

    2

    x< 5

    2

    x 5

  • 8/2/2019 Formulae v2

    7/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 7

    (8) ALGEBRAIC FRACTIONS

    Example 1 :

    =mv

    vv

    15

    25(3

    =mv

    vv

    15

    253

    =mv

    v

    3

    1

    Example 2 :

    = 26

    )2(3

    m

    mm

    =2

    6

    23

    m

    mm

    =2

    3

    1

    m

    m

    Example 3 :

    =mp

    pp

    2

    )1(2321

    =mp

    pp

    2

    23

    =mp

    p 12

    Example 4 :

    3

    2

    x

    9

    52

    x

    x

    =9

    )5()3(22

    x

    xx

    =9

    5622

    x

    xx

    =9

    112

    x

    x

    (9) ALGEBRAIC FORMULAE

    Example 1 :

    5h 20 = 7g

    5h = 7g + 20

    5

    207

    gh

    Example 2 :

    v

    1+

    u

    1=

    f

    1, v = ???

    v

    1=

    f

    1

    u

    1

    v

    1

    = fu

    fu

    v =fu

    fu

    Example 3 :

    5m p 3m = 21

    5m 3m = 21 +p

    2m = 21 +p

    m =2

    21 p

    Example 4 :

    LT 3L = TLT

    LT+LTT= 3L

    2LTT= 3L

    T(2LT 1) = 3L

    T =12

    3

    LL

    Example 5 :

    32

    h

    g, g = ???

    h

    g2= 32

    2 + g = 9h

    g = 9h 2

    Example 6 :

    m = 5 3n2, n = ???

    3n2 = 5 m

    n

    2

    = 3

    5 m

    3

    5 mn

    m5

    1

    mv

    v

    15

    25

    (3v)

    (3v)

    =mv

    v

    15

    55 5

    5

    (3m)m2

    1

    26

    2

    m

    m

    (3m)

    = 26

    22

    m

    m 2

    2

    2(p)m2

    3

    mp

    p2

    11

    (p) 2

    =mp

    p

    2

    24

    2

    2

    (x3)

    3

    2

    x

    9

    5

    2

    x

    x

    (x3)

    =

    g

    h )4(5 = 7, h = ???

    73

    5

    m

    pm, m = ?

    L =3

    )1(

    T

    LT, T = ???

    h

    g2 = 9

  • 8/2/2019 Formulae v2

    8/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 8

    (10) CIRCUMFERENCE / PERIMETER AND AREA OF A CIRCLE

    (a) the circumference / perimeter of circle = 2r

    (b) the length of arc AB =360

    2r

    (a) the area of circle = r2

    (b) the area of sector AOB =360

    r2

    Example :

    (a) the length of arc NR

    =360

    30 2 7

    22 7

    = 33

    2

    the length of arc QP

    =360

    60 2 7

    22 14

    = 143

    2

    the perimeter of the whole diagram

    = ON + NR + RQ + QP + PO

    = 7 + 33

    2+ 7 + 14

    3

    2+ 14

    = 463

    1

    (b) the area of sector ONR

    =360

    30 7

    22 72

    = 126

    5

    the area of sector ORM

    =360

    60 7

    22 72

    = 253

    2

    the area of sector OQP

    =360

    60 7

    22 142

    = 1023

    2

    the area of the shaded region

    = 1023

    2 25

    3

    2+ 12

    6

    5

    = 896

    5

    O

    r

    B

    A

    O

    r

    O

    r

    B

    A

    O

    r

    (a) the perimeter, in cm, of the whole diagram,

    (b) the area, in cm2, of the shaded region.

    60

    N R

    Q

    PMO 7 cm7 cm

  • 8/2/2019 Formulae v2

    9/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 9

    (11) AREA / TOTAL SURFACE AREA / VOLUME

    (a) Area

    (i) Square (ii) Rectangle (iii) Parallelogram

    (iv) Triangle

    Area = ab2

    1

    (v) Trapezium

    Area = ))((2

    1hba

    (b) Total Surface Area of a Solid

    (i) Cylinder

    Total surface area = 2r2 + 2rh

    (ii) Cone

    Total surface area = r2 + rl

    (iii) Sphere (iv) Hemisphere

    (c) Volume of a Solid

    (i) Cube (ii) Cuboid

    (iii) Cylinder (iv) Semi-Cylinder

    aArea = a a

    = a2 b

    a

    Area = ab

    b

    a

    Area = ab

    b

    aa

    bb

    ah

    h b

    b

    a

    a

    h

    b

    a

    r

    h h

    2r

    r

    l

    rl

    r

    r Total surface area = 4 r2 Total surface area = 3r2r

    a = a3

    Volume = a a a c

    ab

    Volume = abc

    h

    r

    Volume = base area h

    = r2hh

    r

    Volume =2

    2hr

  • 8/2/2019 Formulae v2

    10/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 10

    (v) Cone (vi) Pyramid

    (vii) Sphere (viii) Hemispheres

    (ix) Prism

    Volume = base area h

    =2

    1abh

    (x) Prism

    Volume = base area t

    =2

    1(a + b)(h) t

    Example 1 :

    the volume of cone

    =3

    1(

    7

    22) (9)2 (14)

    = 1188

    the volume of cylinder

    =7

    22(3)2 (7)

    = 198

    the volume of the remaining solid

    = 1188 198

    = 990

    Example 2 :

    the volume of pyramid

    =3

    1(14 6) (8)

    = 224

    the volume of prism

    = [2

    1(10 + 14) (FG) ] (6)

    = 72FG

    224 + 72FG = 584

    72FG = 584 224

    72FG = 360

    FG =72

    360

    FG = 5

    Volume =3

    1 base area h

    =3

    1r2h

    hr

    Volume =3

    1 base area h

    =3

    1abh

    h

    a

    b

    Volume =3

    4r3r Volume =

    3

    2r3

    r

    h

    b

    a

    b

    a

    b

    ah

    h b

    a

    a

    t

    h

    bh

    t

    The diagram shows a solid cone with radius 9 cm and

    height 14 cm. A cylinder with radius 3 cm and height 7

    cm is taken out of the solid. Calculate the volume, in

    cm3, of the remaining solid.

    V

    E

    D

    A B

    G

    H

    F C

    6 cm10 cm

    The height of the pyramid is 8 cm and FG = 14 cm.

    It is given that the volume of the combined solid is

    584 cm3. Calculate the length, in cm, of AF.

  • 8/2/2019 Formulae v2

    11/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 11

    (12) STANDARD FORM

    (a) Significant figures

    Type 1 ~ whole number Type 2 ~ decimal number < 1 Type 3 ~ decimal number > 1

    Example :

    63864 (3 s.f.) 63900 304638 (4 s.f.) 304600

    Example :

    0.00368 (2 s.f.) 0.0037 0.08195 (3 s.f.) 0.0820

    Example :

    1.75692 (3 s.f.) 1.76 1.00746 (4 s.f.) 1.007

    (b) Standard form ~ A number in the form of A 10n, where 1 A 10 and n is an integerType 1 ~ number > 1 Type 2 ~ number < 1

    Example :

    522.6 5.226 102

    5140000 5.14 106

    Example :

    0.565 5.65 101

    0.00042 4.2 104

    (c) Perform operation involving any two number and express the answer in the standard form

    a 10n + b 10n = (a + b) 10n a 10n b 10n = (a b) 10n

    Example :

    1.8 105 + 88000 = 1.8 105 + 0.88 105

    = (1.8 + 0.88) 105

    = 2.68 105

    Example :

    0.0000025 1.3 107 = 2.5 106 0.13 106

    = (2.5 0.13) 106

    = 2.37 106

    a 10m b 10n = (a b) 10m + n a 10m b 10n =

    b

    a 10mn

    Example :

    2.7 106 8.2 102 = (2.7 8.2) 106 + (2)

    = 22.14 104

    = 2.14 105

    Example :

    23

    2

    )103(

    1086.4

    =6

    2

    109

    1086.4

    =9

    86.4 102 (6)

    = 0.54 104

    = 5.4 103

    (13) QUADRATIC EXPRESSIONS AND EQUATIONS

    (a) Expanding Brackets

    = ac + adbcbd = acad bc + bd = a2 + ac + ab + bc = a2ac + abbc

    Example :

    (2x 1) (x + 1)

    = 2x2+ 2xx 1

    = 2x2 + x 7

    Example :

    (3x 1) (2x 7)

    = 6x2 21x 2x + 7

    = 6x2 23x + 20

    Example :

    (x + 2) (x + 3)

    = x2+ 3x + 2x + 6

    = x2+ 5x + 6

    Example :

    (x + 5) (x 4)

    = x2 4x + 5x 20

    = x2 +x20

    (a + b)2

    = a2 + 2ab + b

    2

    (a b)2

    = a2 2ab + b2

    (a + b) (a b)

    = a2b2

    a (b + c d)

    = ab + acad

    Example :

    (m + 3)2

    = m2+ 6m + 9

    Example :

    (3x 2y)2

    = 9x2 12xy + 4y2

    Example :

    (2x + 1) (2x 1)

    = 4x2 1

    Example :

    3p (4q p + 4)

    = 12pq 3p2 + 12p

    (a b) (c + d) (a b) (cd) (a + b) (a + c) (a + b) (ac)

  • 8/2/2019 Formulae v2

    12/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 12

    (b) Factorization

    ax + ay

    = a (x +y )

    a2b2

    = (a + b) (a b)

    = ab + ac + bd+ cd= a (b + c) + d(b + c)

    = (b + c) (a + d)

    a (b c) + d(c b)= a (b c) d(b c)= (b c) (a d)

    Example 1 :

    5 30k= 5 (1 6k)

    Example 2 :

    18pq 15q= 3q (6p 5)

    Example 1 :

    81 64d2

    .= 92 82d2

    = (9 + 8d) (9 8d)

    Example 2 :

    2x2 72 .

    = 2 (x2 36)

    = 2(x + 6) (x 6)

    Example 1 :

    2m + 2n + mn + n2

    = 2 (m + n) + n (m + n)

    = (m + n) (2 + n)

    Example 2 :

    cd+ 5c d 5= c (d+ 5) (d+ 5)= (d+ 5) (c 1)

    Example 1:

    8eu 2ew +fw 4fu= 2e (4uw) +f(w 4u)= 2e (4uw) f(4u w)= (4u w) (2ef)

    Example 2 :

    pq q2 4q + 4p= q (p q) 4(q p)= q (p q) + 4(p q)= (p q) (q +p)

    (c) Solving quadratic equations

    Example 1 :

    x2 + 9x + 20 = 0

    (x + 4) (x + 5) = 0

    x = 4, x = 5

    Example 2 :

    q2 18q + 45 = 0

    (q 3) (q 15) = 0

    q = 3, q = 15

    Example 3 :

    2n2

    + 9n 5 = 0

    (2n 1) (n + 5) = 0

    n = 2

    1

    , n = 5

    Example 4 :

    12k2 5k 3 = 0

    (3k+ 1) (4k 3) = 0

    k= 31

    , k= 4

    3

    9x20

    4+x

    x 4x

    5 5x

    x2

    q2 18q45

    3+

    q

    q 3q1515q

    2n2 9n5

    1+

    n

    2n n5 10n

    12k2 5k3

    1+

    4k

    3k 4k

    3 9k

  • 8/2/2019 Formulae v2

    13/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 13

    (14) SETS

    (a) Universal sets (), elements (), subsets (), empty set ({ }, ), intersection (), union (),complements of sets ()

    Example :

    = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

    A = { 3, 4, 5 } , B = { 4, 5, 6, 7, 8 } , C = { numbers that are greater than 10 }

    3 A, 4 A, 5 A

    0 B, 1 B, 2 B, 3 B, 9 B

    C = { } or C =

    A B

    n (B) = 5

    A B

    { } A, B

    the number of subsets of A = 23 = 8

    subset of A = { }, {3}. {4}, {5}, {3, 4},{3, 5}, {4, 5}, {3, 4, 5}

    A = { 0, 1, 2, 6, 7, 8, 9 }

    A B = { 4, 5 }

    (A B) = {0, 1, 2, 3, 6, 7, 8, 9 }

    A B = { 3, 4, 5, 6, 7, 8 }

    (A B) = { 0, 1, 2, 9 }

    ** the number of subsets of a given set with n elements = 2n

    ** all sets have an empty set as its subset.

    (b) Venn Diagrams

    set A set B set C

    set A set B set C

    set A B set A C set A B

    set ( A B ) set ( A C ) set A B

    4 3 5

    A BC

    6

    9

    7 8

    0

    1 2

    4 3 5

    A BC

    6

    9

    7 8

    0

    1 2

    4 3 5

    A BC

    6

    9

    7 8

    0

    1 2

    A BC

    9

    0

    1 2

    4 5

    6 7

    8 3 3

    A BC

    9

    0

    1 2

    4 5

    6 7

    8

    A BC

    9

    0

    1 2

    4 5

    6 7

    8 3

    3

    A BC

    9

    0

    1 2

    4 5 7

    6

    8

    4 3 5

    A BC

    6

    9

    7 8

    0

    1 2

    3

    A BC

    6

    9

    7 8

    0

    1 2

    4 5

    3

    A BC

    9

    0

    1 2

    7 6

    8 4 5

    A BC

    9

    0

    1 2

    4 5

    6 7

    8 3 3

    A BC

    9

    0

    1 2

    7 6 8

    4 5

  • 8/2/2019 Formulae v2

    14/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 14

    set A B set ( A B ) set ( B C )

    (c) Various Examples :

    set ( P Q ) R set G H F set A B C

    set A (B C ) set B C A set A B C

    A BC

    9

    0

    1 2

    6 7

    8 3

    4 5

    A BC

    9

    0

    1 2

    3 4 5

    6

    8 7

    A BC

    9

    0

    1 2

    3 4 5

    6

    8 7

    P

    Q R

    H

    G F A

    B C

    A

    B C

    A

    B C

    A B

    C

  • 8/2/2019 Formulae v2

    15/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 15

    (15) MATHEMATICAL REASONING

    (a) Statement

    Statement~ the sentences that is either true of false

    Non-statement~ the sentences that is neither true nor false

    Example :

    3 is a prime number true statement

    32 + 22 = (3 + 2)2 false statement

    x +x = 2x true statement

    7 < 6 false statement

    Example :

    3m 2 = 6,

    3k+ 7, 3 + 7, R (P Q)

    ** All questions, commands, exclaimations,

    algebraic expressions are non statement.

    (b) Quantifier all, someExample 1 :

    Object : odd numbers

    Property : multiple of 5

    Some odd numbers are multiple of 5.

    Example 2 :

    Object : cuboids.

    Property : cross section in the shape of rectangular.

    All cuboids has cross section in the shape ofrectangular.

    Example 3 :

    (i) of the prime numbers are odd numbers. some

    (ii) pentagons have five sides. all

    (c) Operations on Statements ~ Negation not or no ~P, not PExample :

    All equilateral triangles are isosceles triangles (true) Notall equilateral triangles are isosceles triangles (false)

    5 is a odd number (true) 5 is not a odd number (false)

    P = A quadrilateral has five sides (false) ~P = No quadrilateral has five sides (true)

    (d) Operations on Statements and or orp Q p and q

    true True true

    true False false

    false True false

    false False false.

    p q p or q

    true true true

    true false true

    false true true

    false false false

    Example 1 :

    8 2 = 4 and 82= 62 the truth = ???

    true and false = false

    Example 2 :

    8 > 7 or 32= 6 the truth = ???

    true or false = true

    Example 3 :

    (i) 42 = 8, (ii) 0.4 =5

    2, (iii) 6 < 5 (i) = false, (ii) = true, (iii) = true

    true = 42 = 8 or 0.4 =5

    2 , 42 = 8 or 6 < 5, 0.4 =5

    2 or 6 < 5, 0.4 =5

    2 and 6 < 5

    false = 42 = 8 and 0.4 =5

    2, 4

    2= 8 and 6 < 5

  • 8/2/2019 Formulae v2

    16/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 16

    (e) Implication

    Form 1

    antecedent : p

    consequent : q

    Implication : Ifp, then q

    Example :

    antecedent : n < 3consequent : n

    2< 9

    Implication : If n < 3, then n2 < 9 [ false ]

    Form 2

    p if and only if q

    Implication I : Ifp, then q Implication II : If q, then p

    Example :

    3m > 15 if and only if m > 5

    Implication I : If 3m > 15, then m > 5 Implication II : If m > 5, then 3m > 15

    Form 3

    Implication : If p, then q

    Converse : If q, then p

    Example :

    Ifx > 9, then x > 5

    Converse : Ifx > 5, then x > 9 [ false ]

    (f) Arguments

    Form 1

    Premise 1 : All A are B

    Premise 2 : C is A

    Conclusion : C is B

    Example :

    Premise 1 : All hexagons have six sides

    Premise 2 : PQRSTU is a hexagon

    Conclusion : PQRSTU has six sides

    Form 2

    Premise 1 : Ifp, then q

    Premise 2 : p is true.

    Conclusion : q is true.

    Example :

    Premises 1 : Ifx is greater than 0, thenx is a positive number

    Premises 2 : 6 is greater than 0

    Conclusion : 6 is a positive number

    Form 3

    Premise 1 : Ifp, then q.

    Premise 2 : Not q is true

    Conclusion : Not p is true.

    Example :

    Premises 1 : If set K is a subset of set L, then KL = LPremises 2 : KL LConclusion : Set K is not a subset of set L

    (g) Induction the process of making a general conclusion from specific cases.Example 1 :

    1 = 3 1 2

    4 = 3 2 27 = 3 3 2

    Conclusion : 3 n 2, n= 1, 2, 3, .

    Example 2 :

    2 = 3 1 1

    11 = 3 4 126 = 3 9 1

    Conclusion : 3 n2 1, n= 1, 2, 3, .

    Example 3 :

    1 = 2 = + 3 = + 24 = + 3

    Conclusion : + n, n= 0, 1, 2, 3 .

    + (n 1), n= 1, 2, 3, 4 .

    Example 4 :

    1 =2

    21

    1 + 2 =2

    32

    1 + 2 + 3 =2

    43

    Conclusion :2

    )1( nn, n= 1, 2, 3, 4 .

  • 8/2/2019 Formulae v2

    17/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 17

    Example 5 :

    The number of subsets in a set with 2 elements is 22

    The number of subsets in a set with 3 elements is 23

    The number of subsets in a set with 4 elements is 24

    Conclusion : The number of subsets in a set with n elements is 2n, n = 2, 3, 4, .

    (h) Deduction the process of making a specific conclusion based on a given general statementExample :

    The sum of the interior angles of a n- sided polygon is (n 2) 180

    Specific case : PQRSTU ialah sebuah poligon.

    Conclusion : The sum of the interior angles of PQRSTU is 720

  • 8/2/2019 Formulae v2

    18/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 18

    (16) THE STRAIGHT LINE

    (a) Type of straight line and their respective gradient, m

    (b) y-intercept (c), and y-intercept of a straight line

    find x-intercept, sub. y = 0

    findy-intercept, sub. x = 0

    Example 1 :

    3x 4y = 24, y-intercept = ???

    x = 0,

    3(0) 4y = 24

    4y = 24

    y =4

    24

    = 6

    Example 2 :

    3y 2x = 6, x-intercept = ???

    y = 0,

    3(0) 2x = 6

    2x = 6

    x =2

    6

    = 3

    (c) Gradient of a straight line, m

    m =distancehorizontal

    distancevertical m =

    12

    12

    xx

    yy

    =

    21

    21

    xx

    yy

    m =intercept-x

    intercept-y

    Example 1 :

    m =

    2

    4= 2

    Example 2 :

    P (0, 2),

    m =04

    23

    =4

    1

    Example 3 :

    m =

    4

    8= 2

    Example 4 :

    k= ???

    )3(3

    6

    k

    =3

    1

    6

    6k=

    3

    1

    k6 = 2k = 2 + 6

    k= 4

    Example 5 :

    x-intercept = ???

    x

    3=

    4

    1

    x

    3=

    4

    1

    x = 12

    x

    y

    O

    m > 0 (m +if)

    x

    y

    O

    m < 0 (mif)

    x

    y

    O

    m = 0

    x

    y

    O

    m

    x

    y

    y-intercept

    x-intercept(0, y)

    (x, 0)O

    4 Q

    y

    xO

    2

    P

    y

    xO

    R (4, 3)

    P

    2 8

    Qy

    xO4

    P

    Q (3, 6)

    y

    xO

    R (3, k)

    m =3

    1 m =

    4

    1

    y

    xO

    3 F

    E

  • 8/2/2019 Formulae v2

    19/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 19

    (d) Equation of a straight line

    x = 5 y = 3 x = 5 y = 3

    x +y = 3 y = x + 3 y x = 3 y =x + 3 y =x x y = 0 y = x x + y = 0

    (e) Form equation of a straight line, y =mx + c, where erceptyc

    gradientm

    int

    Example 1 :

    y = mx + c

    y = 2x + 4

    Example 2 :

    m =03

    06

    = 2

    y = mx + c

    y = 2x

    Example 3 :

    y = mx + c8 = 2(3) + c

    8 = 6 + c8 + 6 = c

    14 = c

    y = 2x + 14

    Example 4 :

    y = mx + c3 = m(1) + 63 = m + 6m = 6 3

    m = 3

    y = 3x + 6

    Example 5 :m =

    )2(4

    26

    =2

    1

    y = mx + c

    6 = 2

    1

    (4) + c

    6 = 2 + c

    4 = c

    y =2

    1x + 4

    Example 6 :

    equation of QR = ???

    y = 0,

    2x + 0 = 5

    2x = 5

    x2

    5

    x

    y

    5O

    y

    x

    3

    Ox

    y

    (5, 3)

    Ox

    y

    (5, 3)

    O

    y

    x

    3

    O 3x

    3

    3

    y

    O

    ( 3, 3)

    y

    xO

    x

    y

    O

    ( 3, 3)

    x

    y

    O

    4 m = 2y

    xO

    P (3, 6)

    m = 2

    P

    y

    xO

    Q (3, 8)

    (1, 3)

    y

    xO

    6

    Q (4, 2)

    y

    xO

    R (4, 6)

    2x +y = 5

    O Q

    y

    x

    P

    R

  • 8/2/2019 Formulae v2

    20/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 20

    (f) Solve problems involving the equation of a straight line

    Example 1 :

    a = ???

    y = 2x + 3

    a = 2(2) + 3

    a = 7

    Example 2 :

    2x 7y = 14, m = ???

    7y = 2x + 14

    7y = 2x 14

    y = 7

    2

    x + 2

    m =7

    2

    (g) Parallel lines, m1 = m2

    Example 1 :

    2y =x + 6 is parallel to 4y =px + 9, p = ???

    Example 2 :

    h = ???

    2

    1 =

    42

    3

    h

    2

    1 =

    2

    3

    h

    2h 6 = 2

    2h = 4

    h = 2

    2y =x + 6

    y =2

    1x + 3

    m1 =2

    1

    4y =px + 9

    y =4px +

    49

    m2 =4

    p

    2

    1=

    4

    p

    2p = 4

    p =2

    4

    p = 2

    (h) Form equation of a parallel line

    Example 1 :

    equation of PQ = ???

    m =

    2

    4= 2

    y = mx + c5 = 2 (3) + c

    5 = 6 + c

    5 + 6 = c

    11 = c

    y = 2x + 11

    Example 2 :

    equation of ST = ???

    x + 2y = 14

    2y = x + 14

    y = x2

    1 + 7

    y = mx + c

    5 =2

    1 (2) + c

    5 = 1 + c4= c

    y =2

    1 x 4

    (i) Distance, Midpoint

    distance = 2122

    12 )()( yyxx midpoint, (x, y) =

    2,

    2

    2121 yyxx

    Example :

    distance PQ = 22 ])2(4[)19(

    = 10

    Example :

    291 = x

    5 = x

    2

    2 y

    = 8

    2 +y = 16

    y = 14

    x

    y

    O

    (2, a)

    y = 2x + 3

    y

    xO

    F (4, 3)

    C

    D

    y =2

    1x + 1

    E (2, h)

    O

    R (0, 4)

    S (2, 0)

    y

    x

    P (3, 5)

    O

    y

    x

    P

    R

    x + 2y = 14

    T (2, 5)

    S

    y

    x

    (1, 2)

    P ( 9, 4)

    O x

    y

    Q (x, 8)

    P (1, 2)

    R (9, y)

    x = ???, y = ???

  • 8/2/2019 Formulae v2

    21/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 21

    (17) STATISTICS I, II, III

    (a) Mode of a ungrounded data

    Mode = the value of data with the highest frequency

    Example 1 :

    6, 7, 7, 11, 5, 6, 11, 13, 14, 11, 8

    5, 6, 6, 7, 7, 8, 11, 11, 11, 13, 14

    mode = 11

    Example 2 :

    Score 2 4 6 8 10Frequency 3 15 7 12 9

    mode = 4

    Example 3 :

    Score 0 1 2 3 4

    Frequency 1 3 7 x 5

    mode = 2, the maximum value ofx = ???

    x < 7 x = 6

    Example 4 :

    Score 0 1 2 3 4

    Frequency 1 7 0 x 2

    mode = 3, the minimum value ofx = ???

    x > 7 x = 8

    (b) Median of a ungrounded data

    Median = the middle value when a set of data is arranged in ascending order

    Example 1 :

    5, 3, 3, 5, 7, 7, 1

    median = 5

    Example 2 :

    24, 23, 12, 19, 16, 17

    median =2

    1917 = 18

    Example 3 :

    Number of books 1 2 3 4 5

    Number of pupils 3 0 1 5 6

    median = 4

    Example 4 :

    Saiz of shoes 1 2 3 4 5

    Number of students 8 14 12 x 3

    median = 3, range of x = ???

    8 14 1 11 x 3

    8 14 11 1 x 3.

    8 + 14 = 11 +x + 322 =x + 14

    8 =x

    8 + 14 + 11 =x + 333 =x + 3

    30 =x

    8 x 30

    (c) Mean of a ungrounded data

    mean =dataofnumberthe

    dataofvaluestheallofsum mean =

    frequencytotal

    frequencyvalueofsum )(

    Example 1 :

    68, 62, 84, 75, 78, 89

    mean =6

    797875846268

    = 76

    Example 2 :

    Mark 74 78 82 86

    Frequency 5 10 2 3

    mean =32105

    )3(86)2(82)10(78)5(74

    = 78.6

    1, 3, 3, 5, 5, 7, 7 12, 16, 17, 19, 23, 24

    1, 1, 1, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5

  • 8/2/2019 Formulae v2

    22/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 22

    (d) Measure of Dispersion ~ range, first / lower quartile (Q1), third / upper quartile (Q3), interquartile range

    range = ( largest smallest ) value of data

    Q1 = the value that divides the values of data that are less than median into 2 equal parts

    Q3 = the value that divides the values of data that are greater than median into 2 equal parts

    Interquatile range = Q3 Q1

    Example 1 :

    5, 30, 45, 29, 25, 6, 21, 8, 28, 4

    4, 5, 6, 8, 21, 25, 28, 29, 30, 45

    range = 45 4 = 41

    Q1 = 6

    Q3 = 29

    Interquartile range = 29 6 = 23

    Example 2 :

    8, 12, 6, 10, 6, 7, 13, 3, 8, 10, 13, 19

    3, 6, 6, 7, 8, 8, 10, 10, 12, 13, 13, 19

    range = 19 3 = 16

    Q1 =2

    76 = 6.5

    Q3 =2

    1312 = 12.5

    Interquartile range = 12.5 6.5 = 6

    (e) Solve problem involving ungorounded data

    Example 1 :

    Score 1 3 6 x 12 14

    Frequency 1 1 2 3 1 1.

    1, 3, 6, 6, x, x, x, 12, 14

    2

    12x= 11

    x + 12 = 22

    x = 22 12x = 10

    Example 2 :

    3, 3, 6, x, x, 3

    mode = 3, median = 4. Two new pieces of data, 4 and 7 put into the set, mean = ???

    3, 3, 3, x, x, 62

    3 x= 4

    3 +x = 8

    x = 8 3x = 5

    mean

    =8

    74655333

    = 4.5

    (f) Class interval, lower / upper limit, lower / upper boundary, size of class interval, midpoint

    Example :

    Class interval 1115 1620 2125 2630 3135 3640 4145.

    lower limit = 16, upper limit= 20

    size of class interval = 5

    = upper. B lower. B

    = midpoint2 midpoint1

    lower boundary = 15.5, upper boundary = 20.5

    midpoint = 2limlim itupperitlower

    =2

    boundaryupperboundarylower

    = 18

    third quartile = 11, x = ???

  • 8/2/2019 Formulae v2

    23/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 23

    (g) Frequency table, Cumulative Frequency, Modal class, Mean, Range

    Example :

    Donation, x 1115 1620 2125 2630 3135 3640 4145

    Frequency, f 1 3 6 10 11 7 2

    `

    Cumulative F. 1 4 10 20 31 38 40.

    modal class = the class interval with the highest frequency = 3135

    mean =

    f

    fx=

    frequencyofsum

    frequencymidpoofsum )int( =40

    )2(43)7(38)11(33)10(28)6(23)3(18)1(13 = 30

    range = midpoint of (hightest lowest ) class = 43 13 = 30

    (h) Histogram, frequency polygons, ogive, first quartile, third quartile, interquartile range

    Histogram

    lower / upper boundary.

    frequency

    **

    the frequency polygon can beconstructed based on a histogram

    Example : [ base on frequency table in (g) ]

    Frequency Polygons

    midpoint

    frequency

    **

    the frequency polygon should add aclass with zero frequency before the

    first class and after the last class

    Example : [ base on frequency table in (g) ]

    Ogive

    upper boundary

    cumulative frequency

    **

    add a class with zero frequency

    before the first class

    Example : [ base on frequency table in (g) ]

    Histogram

    2

    4

    6

    10

    8

    Frequency

    Donation

    10.

    5

    0

    15.

    5

    20.

    5

    25.

    5

    30.

    5

    35.

    5

    40.

    5

    45.

    5

    Frequency

    polygon

    2

    4

    6

    10

    8

    Frequency

    Donation

    8

    0

    13

    18

    23

    28

    33

    38

    43

    48

    34.5

    Cumulative Frequency

    Donation0

    10.

    5

    15.

    5

    20.

    5

    25.

    5

    30.

    5

    35.

    5

    40.

    5

    45.

    5

    10

    20

    30

    40

    30.525.5

    21 N

    43 N

    41 N

    Q1 Q3med

  • 8/2/2019 Formulae v2

    24/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 24

    (18) PROBABILITY I / II

    (a) Probability of an event, P (A)

    P (A) =)(

    )(

    Sn

    An, 0 P (A) 1

    Example 1 :

    P (B) =10

    3

    P (R) =10

    7

    Example 2 :

    20

    x=

    5

    1

    5x = 20

    x =

    5

    20

    x = 4

    Example 3 :

    12xx

    =3

    2

    3x = 2x + 24

    3x 2x = 24

    x = 24

    (b) Probability of the complement of an event, P(A)P (A) = 1 P (A) P (A) + P (A) = 1

    Example 1 :

    P (G) = 1 7

    2

    =7

    5

    Example 2 :

    P (D) = 1 3

    1

    9

    2

    =9

    4

    Example 3 :

    x

    4=

    6

    1

    x = 24

    (c) Probability of combined event

    P(A and B) = P(A B) =)(

    )(

    sn

    BAn = P(A) P(B) P(A or B) = P (A B) =

    )(

    )(

    sn

    BAn = P(A) + P(B)

    Example 1 :

    (i) P (RR)

    =95

    95

    =81

    25

    (ii) P (RB)

    =95

    94

    =81

    20

    (iii) P (only one R)

    = P (RB or BR)

    =9

    5

    9

    4+

    9

    4

    9

    5

    =81

    40

    B P(B) = ??3

    7

    10

    R P(R) = ??

    ?? (5

    1)W

    B

    20

    ?? (3

    2)Y

    G12

    ( ?? )

    (

    7

    2)B

    G

    (3

    1)W

    L

    D

    (92 )

    ( ?? )

    (21 )

    R

    G

    B (3

    1)

    4

    ??

    ( )

    9

    R

    B

    5

    4

    2 marbles are chosen at random,

    with replacement

  • 8/2/2019 Formulae v2

    25/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 25

    Example 2 :

    (i) P (first is F and second is M)

    = P (FM)

    =12

    7

    11

    5

    =132

    35

    (ii) P (both are M)

    = P (MM)

    =12

    5

    11

    4

    =33

    5

    (iii) P (both are same gender)

    = P (FF or MM)

    =12

    7

    11

    6+

    12

    5

    11

    4

    =66

    31

    (iv) P (a F and a M)

    = P (FM or MF)

    =12

    7

    11

    5+

    12

    5

    11

    7

    =

    66

    35

    (v) P (at least a F)

    = P (FM or MF or FF)

    =12

    7 11

    5+

    12

    5 11

    7+

    12

    7 11

    6

    =

    33

    28

    = 1 P (MM)

    or = 1 12

    5

    11

    4

    =

    33

    28

    12

    F

    M

    7

    5

    2 workers are selected at random,

  • 8/2/2019 Formulae v2

    26/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 26

    (19) CIRCLES II / III

    (a) Properties of angle in a circle, Cyclic Quadrilaterals

    (b) Properties of the tangle to circle

    O

    aO

    b

    a = b = 90 Oa

    2a

    O

    a

    2a

    Oa

    2a

    bb

    aa aa

    a

    aO

    aa

    O2a

    a

    c

    bd

    a a + b = 180

    c + d = 180 e

    a

    a = e

    tangent

    ab

    a + b = 180

    tangent

    a + b = 90

    b

    tangent

    ba

    a

    b

    b

    a + b = 90

    tangent

    aa

    b

    tangentb

    aa

    b

    b

    a

    a

    tangent

  • 8/2/2019 Formulae v2

    27/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 27

    (20) TRIGONOMETRY I / II

    (a) Trigonometrical ratios

    sin =H

    O

    cos =H

    A

    tan =A

    O

    sin =H

    O

    cos =H

    A

    tan =A

    O

    (b) The values of trigonometric ratios of 30, 45, and 60 (Special angles) sin cos tan

    3021

    2

    3

    452

    1 2

    1 1

    60 23 21 3

    (c) The value of sine, cosine and tangent, of an angle

    In a unit circle,

    sin = the value of coordinate-y

    cos = the value of coordinate-x

    tan =xcoordinateofvaluethe

    ycoordinateofvaluethe

    =

    cos

    sin

    (d) The values of the angles in quadrant I which correspond to the value in other quadrants

    in other quadrant, > 90 Corresponding angle in quadrant I

    II 180

    III 180

    IV 360

    (e) Finding the angles, given the value of sine, cosine and tangent

    Quadrant Angle

    I , from calculator

    II 180

    III 180 +

    IV 360

    Example 1 :

    sinx = 0.5299, 0x 360 x = ???sinx +if, x I, IIsin 32 = 0.5299 (from the scientific calculator)

    x = 32, 148

    Example 2 :

    cosx = 0.7721, 0x 360 x = ???cosx if, x II, IIIcos 39.46 = 0.7721 (from the sc. calculator)

    x = 140.54, 219.46

    (f) Solve problem involving sine, cosine and tangent

    OH

    A

    23

    60

    302

    11

    1

    1

    2 45

    45

    3

    1

    Quadrant 1

    0 < < 90 sin +if cos +if tan +if

    Quadrant 2

    90 < < 180 sin +if cos if tan if

    Quadrant 3

    180 < < 270 sin if cos if tan +if

    Quadrant 4

    270 < < 360 sin if cos +if tan if

  • 8/2/2019 Formulae v2

    28/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 28

    Example 1 :

    answer

    Example 2 :

    answer

    tan BCA =4

    3sin ECD =

    5

    4

    BC

    6=

    4

    3

    CD

    4=

    5

    4

    BC = 8 CD = 5

    EC = 3, BE = 8 3 = 5

    (g) Compare and differentiate the graph of sine, cosine and tangent for angle between 0x 360

    y = sinx y = cosx y = tanx

    y = sin 2x y = cos 2x y = tan 2x

    PQ R

    S

    8 cm

    9 cm

    17 cm

    y cosy = ???

    PQ R

    S

    8 cm

    9 cm

    17 cm

    y

    cosy = cos

    =10

    6

    = 5

    3

    15 cm

    10 cm

    6 cm

    tan BCA =4

    3,

    sin ECD =5

    4

    BE = ???

    D

    C

    B

    A

    6 cm

    4 cm

    E

    x

    y

    O 90 180 270360

    1

    1 1

    x

    y

    O 90 180 270360

    1

    y

    x

    O 90 180

    270

    360

    x

    y

    O 90 180 270360

    1

    1 1

    x

    y

    O 90 180 270360

    1

    x

    y

    O 90 180 270 360

  • 8/2/2019 Formulae v2

    29/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 29

    (21) ANGLES OF ELEVATION AND DEPRESSION

    (a) Angle of elevation and angle of depression

    Example 1 :

    answer

    Example 2 :

    answer

    (b) Solve problems involving angle of elevation and angle of depression

    Example 1 : Example 2 :

    answer answer

    tan =60

    45

    = 3652

    tan 42 = 10t

    10 tan 42 = t

    9.004 = t

    h = 9.004 + 3

    = 12.004

    horizontal line

    = angle of elevation

    = angle of depression

    M

    RN

    P

    QThe angle of elevation

    of P from M is ???

    M

    RN

    P

    Q PMQ

    P

    Q

    T

    S

    R

    The angle of depression

    of P from T is ???

    P

    Q

    T

    S

    R

    TPS

    P

    Q

    95 m50 m

    S

    R60 m

    the angle of

    depression of

    S from Q is

    ???T U

    V

    h m

    10 m

    S

    3 m

    the angle of

    elevation of

    V from S is

    42, h = ???

    P

    Q

    95 m 50 m

    S

    R60 m

    45 m

    60 m

    T U

    V

    h m

    10 m

    S

    3 m

    t42

    10 m

  • 8/2/2019 Formulae v2

    30/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 30

    (22) LINES AND PLANES IN 3-DIMENSIONS

    (a) Normal to a plane, Orthogonal Projection

    (b) The line of intersection between two planes, the point of intersection between two planes

    (c) Steps of determine the angle between a line and a plane / base

    determine and shade the plane (base).

    determine and draw the line mark lower point (point on the base), mark upper point (point on the other side).

    from the upper point draw the normal to the plane (base)

    then, connect it to the lower point (orthogonal projection to the line).

    the angle is at the lower point.

    by using trigonometrical ratios, calculate the angle.

    Example :

    answer

    UXV

    plane (base)

    normal plane (base)

    normal

    lineorthogonal

    projectionline

    orthogonal

    projection

    line of intersection line of intersection

    point of intersection

    point of intersection

    angle between line XU and the plane WXYZ ???

    RQ

    U

    S

    Z

    W

    X

    V

    Y

    U

    RQ

    S

    Z

    W

    XY

    V

    RQ

    U

    S

    Z

    W

    X

    V

    YLw.

    Up.

    RQ

    U

    S

    Z

    W

    XY

    Nor.V

    RQ

    U

    S

    Z

    W

    XY

    V

  • 8/2/2019 Formulae v2

    31/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 31

    (d) Step of determine the angle between two planes

    determine and shade the first plane (base).

    determine the second plane.

    determine the line of intersection of the two planes / the point of intersection of the two planes.

    from the second plane, determine the line that will be chosen.

    after choosing the line mark lower point (point on the base), mark upper point (point on the other side).

    from the upper point draw the normal to the plane (base)

    then, connect it to the lower point (orthogonal projection to the line). the angle is at the lower point.

    by using trigonometrical ratios, calculate the angle.

    Example :

    answer

    PRS

    line of intersection / point of intersection

    the line that will be chosen

    the angle between plane CRP and plane CDRS ???A

    B C

    D

    R

    SP

    A

    B C

    D

    R

    SP

    A

    B C

    D

    R

    SP

    QA

    B C

    D

    R

    SP

    Q

    A

    B C

    D

    R

    SP

    A

    B C

    D

    R

    SP

    A

    B C

    D

    R

    SP

  • 8/2/2019 Formulae v2

    32/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 32

    (23) NUMBER BASES

    (a) Comparision between number in bases ten, two, five and eight

    Base 10 0 1 2 3 4 5 6 7 8 9 10

    Base 2 02 12 102 112 1002 1012 1102 1112 10002 10012 10102

    Base 5 05 15 25 35 45 105 115 125 135 145 205Base 8 08 18 28 38 48 58 68 78 108 118 128

    (b) The value of a digit of a number in bases two, eight and five

    Base 22

    92

    82

    72

    62

    52

    42

    32

    22

    12

    0

    512 256 128 64 32 16 8 4 2 1

    Base 88

    48

    38

    28

    18

    0

    4096 512 64 8 1

    Base 55

    55

    45

    35

    25

    15

    0

    3125 625 125 25 5 1

    Example 1 :

    5 4 3 2 1 0

    1100112

    the value of the digit 1

    = 1 24 = 16

    or

    = 1 16 = 16

    Example 2 :

    3 2 1 0

    75028

    the value of the digit 5

    = 5 82 = 320

    or

    = 5 64 = 320

    Example 3 :

    2 1 0

    2415

    the value of the digit 4

    = 4 51 = 20

    or

    = 4 5 = 20

    (c) Changing numbers in base 2, base 8, base 5 base 10base 2 base 10 base 8 base 10 base 5 base 10

    Example 1 :

    101102

    = (1 24) + (1 22) + (1 21)

    = 22

    Example 2 :

    10568

    = (1 83) + (5 81) + (6 80)

    = 558

    Example 3 :

    3245

    = (3 52) + (2 51) + (4 50)

    = 89

    (d) Changing numbers in base 10 base 2, base 8, base 5 [type 1]Base 10 base 2 ( 2) ~ cal. base 10 base 8 ( 8) ~ cal. base 10 base 5 ( 5)Example 1 :

    1210 = ???2

    = 11002

    Example 2 :

    28810 = ???8

    = 4078

    Example 3 :

    14410 = ???5

    = 10345

    remainder1 22

    6 02

    3 02

    1 12

    0 1

    remainder2 6 38

    3 2 78

    4 08

    40

    remainder1 4 45

    2 8 45

    5 35

    015

    0 1

  • 8/2/2019 Formulae v2

    33/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 33

    (e) Changing numbers in base 10 base 2, base 8, base 5 [type 2]base 10 base 2 ~ cal. base 10 base 8 ~ cal. base 10 base 5

    Example 1 :

    25 + 22 + 1 = ???2

    = 1001012

    Example 2 :

    2 (83) + 5 (8) + 7 = ???8

    = 20578

    Example 3 :

    53 + 3 = ???5

    = 10035

    (f) Base 2 base 8 (group of three digits)base 2 base 8 ~ cal. base 2 base 8 ~ cal.

    Example 1 :

    10111012 = ???8

    = 1358

    Example 2 :

    5628 = ???2

    = 1011100102

    (g) Base 2 base 5, Base 8 base 5base 2 base 5 Base 8 base 5

    base 2 base 5 = base 2 base 10 base 5 base 5 base 2 = base 5 base 10 base 2

    base 8 base 5 = base 8 base 10 base 5 base 5 base 8 = base 5 base 10 base 8

    (h) Addition and subtraction of two number in base two

    Example 1 : ~ cal. Example 2 : ~ cal.

    Remarks : Step convert a number in base 10, 2 or 8 to a number in any of these bases by using calculator

    Step perform addition and subtraction of numbers in base 2

    mode mode (3) base 10 DEC (d), base 2 BIN (b), base 8 OCT (o)

    0

    25 2324 22 21 20

    ( 2 ) ( 1 )

    1 1 1 200

    83 82 81 80

    ( 8 ) ( 1 )

    0 7 852

    53

    52

    51

    50

    ( 5 ) ( 1 )

    0 3 501

    5 831

    1 0 1 2

    4 2 1 4 2 1 4 2 1

    1 0 1 1

    0 10 2

    4 2 1 4 2 1 4 2 1

    2 865

    1 0 1 1 1 0

    02

    + 02

    02

    12

    + 02

    12

    02

    + 12

    12

    12

    + 12

    1 02

    1

    112

    + 12

    1002

    11

    02

    02

    02

    12

    02

    12

    12

    12

    02

    1 02 12

    12

    0 2

    1 0 02 12

    1 12

    10 2

    2

    1 1 1 0 12

    + 1 1 1 02

    1 0 1 0 1 12

    111 0 2

    1 1 0 0 0 12

    1 1 0 12

    1 0 0 1 0 0 2

    1 2

  • 8/2/2019 Formulae v2

    34/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 34

    (24) GRAPH OF FUNCTIONS

    (a) Graphs of linear functions

    y = mx, m > 0 y = mx, m < 0 y = mx + c, m > 0 y = mx + c, m < 0

    (b) Graphs of quadratic functions

    y = ax2, a > 0 y = ax

    2+ c, a > 0 y = ax2 + bx, a > 0 y = ax2 + bx + c, a > 0

    y = ax2, a < 0 y = ax

    2+ c, a < 0 y = ax

    2+ bx, a < 0 y = ax

    2+ bx + c, a < 0

    (c) Graphs of cubic functions

    y = ax3, a > 0 y = ax

    3, a < 0 y = ax

    3+ c, a > 0 y = ax

    3+ c, a < 0

    (d) Graphs of reciprocal functions

    y =x

    a, y = ax

    1, xy = a, a > 0 y =x

    a, y = ax

    1, xy = a, a < 0

    x

    y

    O

    m +ify

    Ox

    mif

    x

    y

    O

    c

    m +if

    x

    y

    O

    c mif

    y

    xO

    a +if

    y

    xO

    ca +if

    a +ify

    xO

    y

    xO

    c

    a +if

    y

    xO

    aifaif

    y

    xO

    cy

    xO

    aify

    xOc

    aif

    y

    xO

    a +ify

    xO

    aif y

    xO

    c

    a +if

    c

    y

    xO

    aif

    y

    xO

    a +if

    y

    xO

    aif

  • 8/2/2019 Formulae v2

    35/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 35

    (e) Solve problems involving functiuons

    Example 1 :

    y = 2x2

    +px , (4, 0)

    0 = 2 (4)2

    +p (4)

    0 = 32 + 4p

    4p = 32

    p =4

    32

    p = 8

    Example 2 :

    y = 2x3 + 2 , (h, 0)

    0 = 2h3 + 2

    2h3 = 2

    h3=

    2

    2

    h3

    = 1

    h = 3 1

    h = 1

    (f) Region representing inequalities in two variables

    Example 1 :

    Example 2 :

    4

    y = 2xn

    +px,

    y

    p = ???

    O

    y = 2x3 + k

    (h, 0)

    y

    xO

    2 h = ???

    y =xy

    x

    x +y = 5O

    shaded the region which

    satisfies the three inequalities

    x +y 5, y x, and x < 5

    y =xy

    x

    x +y = 5O

    5

    5

    x = 5

    y

    xO

    y =x

    y = 2x + 8

    state the threeinequalities which satisfy

    the shaded region

    y = 88

    y

    xO

    y =x

    y = 2x + 8

    0, c < 0

    y = ax3 + cx + d,

    a < 0, c > 0y =

    2x

    a, a > 0 y =

    2x

    a, a < 0

    x 4 16

    y 6 3

    relation between y

    and x = ???

    p 8 w

    q 3 10

    r 4 12 r pq, w = ???

    w x y

    40 4 2

    m 6 4

    w varies directly as

    the square ofx and

    inversely asy,

    m = ???

    y

    xO

    d

    a +if, c ify

    xO

    d

    aif, c +if

    y

    xO

    a +if

    y

    xO

    aif

  • 8/2/2019 Formulae v2

    45/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 45

    (28) GRADIENT AND AREA UNDER A GRAPH

    (a) Distance-time graph

    speed =in timechange

    distanceinchange

    average speed =takentimetotal

    travelleddistancetotal

    Example :

    distance travelled in the first 6 s = 8 m

    speed, in the first 6 s =s

    m

    6

    8=

    3

    4ms1

    distance travelled in the last 5 s = 12 m

    speed, in kmh1, in the last 3 s

    = speed in the last 5 s =h

    km

    36005

    100012

    = 8.64 kmh1

    length of time, the particle is stationary = 4 s

    average speed, in ms1

    , for the period of 15 s = s

    m

    15

    20

    distance travelled in the first 4 s = ???

    speed in the first 4 s = speed in the first 6 s

    6

    8

    4

    d d= )4(

    6

    8 d=

    3

    15 m

    (b) Speed-time graph

    distance = area under the graph

    rate of change in speed = gradient of graph rate of change in speed +if acceleration

    rate of change in speed if deceleration

    Example :

    distance travelled in the first 3 s=

    21 (3)(6) = 9 m

    distance travelled, with uniform speed= (5)(6) = 30 m

    distance travelled in the last 2 s=

    21 ( 6 + 12 ) (2) = 18 m

    distance travelled in the first 6 s.=

    21 ( 3 + 6 ) (6) = 27 m

    uniform speed = 6 ms1

    the length of time, moves with uniform speed= 5 s

    average speed for the period of 10 seconds

    =

    s

    m

    10

    57= 5.7 ms

    1

    the rate of change in speed in the first 3 s

    =03

    06

    = 2 ms2

    acceleration in the last 2 s

    =810

    612

    = 3 ms2

    speed, in the last second = ???

    acceleration ~ in the last second = in the last 2 s

    89

    6

    v

    = 810

    612

    v 6 = 3

    v = 9

    stationary / stopDistance (m)

    Time (s)

    constant / uniform speed

    d

    Time (s)

    Distance (m)

    106

    O

    4

    12

    154

    Speed (ms1)

    Time (s)

    constant / uniform speed

    acceleration /increasing speed

    deceleration /decreasing speed

    (10, 12)

    O Time (s)

    Speed (ms1

    )

    83

    6

    12

    106

    (8, 6)

    9

    (3, 6) (9, v)

  • 8/2/2019 Formulae v2

    46/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 46

    (c) Solve problem involving distance-time graph and

    Distance-time graph Speed-time graph

    Example 1 :

    speed of AB and BC are the same, T = ???

    4

    8=

    4

    12

    T

    2 =4

    12

    T

    2T 8 = 12

    2T = 12 + 8

    2T = 20

    T =2

    20

    T = 10

    Example 1 :

    total distance travelled for the period of ts is 148,

    t = ???

    25 + 63 + 15t 180= 14815t= 148 25 63 + 180

    15t= 240

    t= 16

    Example 2 :

    deceleration is 5m s2, u = ??

    117

    0

    u

    = 5

    4u

    = 5

    u = 5 (4)

    u = 20

    Example 2 :

    average speed for the period tmin. is 30 km h1

    ,t = ???

    st

    m18= 30 km h1

    h

    km

    t

    60

    18= 30 km h1

    18 = 30 (60

    t)

    18 (30

    60) = t

    36 = t

    Distance (m)

    Time (s)4O

    4

    12

    T

    B

    A C

    Speed (ms1)

    Time (s)O

    1

    9

    21

    5 12 t

    t 12

    9

    9

    19

    21

    7

    5

    d =21 (1+ 9) (5) = 25

    d= 9(7) = 63

    d =21 (9+ 21) (t 12)

    = 15 (t 12)

    = 15t 180

    Speed (m s1

    )

    Time (s)7O

    6

    u

    11

    (7, u)

    (11, 0)

    Time (min.)

    Distance (km)

    171

    O

    10

    18

    t

  • 8/2/2019 Formulae v2

    47/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 47

    (29) BEARING

    (a) Bearing

    the bearing of a point B from a point A is the angle at a measured clockwise from the north tothe line joining A and B.

    written in a three-digit form, from 000 to 360

    Example 1 :

    The bearing of M from N is 060. Diagrams shows the positions of M and N = ???

    Example 2 :

    P is due south of Q. The bearing of R from Q is 150 and the bearing of P from R is 300

    Diagrams shows the posititon of P, Q and R = ???

    Example 3 :

    bearing of M from N = ???

    answer

    Example 4 :

    bearing of G from F = ???

    answer

    = 360 70= 290

    = 360 105 60= 195

    Example 5 :

    E lies to the north of G,

    bearing of G from F = ???

    answer

    Example 6 :

    Q lies to the west of P,

    bearing of Q from R = ???

    answer

    North

    60

    N

    North

    60

    N

    M

    North

    N

    North

    Q

    P

    300

    North

    P

    R

    150

    North

    Q

    R

    North

    Q

    P

    answer

    combine

    R

    NorthM

    N

    7075

    E

    N

    G

    F

    NorthM

    N

    70North

    70

    75

    E

    N

    G

    F

    N

    60

    105

    E

    50

    20GF

    P

    R70

    Q

    50

  • 8/2/2019 Formulae v2

    48/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 48

    = 360 50 20

    = 290

    = 360 40

    = 320

    F

    E

    50

    20G

    North

    North

    50

    Q 40

    50

    P

    60

    R

    N

    90

    (W)

    30

  • 8/2/2019 Formulae v2

    49/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 49

    Example 7 :

    bearing of L from K is 110,bearing of K from J = ???

    answer

    Example 8 :

    bearing of H from K is 080,bearing of G from H = ???

    answer

    = 180 142

    = 038

    = 360 20 100

    = 240

    Example 9 :

    bearing of P from R is 215,bearing of P from Q = ???

    answer

    Example 10 :

    bearing of P and R from Q is 050, and 290,bearing of R from P = ???

    answer

    = 360 25 90 = 245 = 360 102 = 258

    N

    42

    30

    K

    L

    J

    140

    K

    G H

    N

    42

    30

    K

    L

    J

    N

    110

    108

    142

    140

    K

    G H

    N

    80

    20

    100N

    Q

    R

    P

    60

    R

    32

    Q

    P

    215

    N

    P

    R35

    Q

    R

    P

    60 25

    35

    NN

    30

    R

    32Q

    P

    50

    290

    70

    N

    N

    28

    102

  • 8/2/2019 Formulae v2

    50/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 50

    (30) EARTH AS A SPHERE

    (a) Longitudes [ xE or yW ]

    (b) Latitudes [ xN or yS ]

    (c) Difference between two longitudes, Difference between two latitudes

    Difference between two longitudes, Difference between two latitudes,

    same direction = find the difference

    Example :

    20E, 50E = 50 20 = 30

    30W, 120W = 120 30 = 90

    same direction = find the difference

    Example :

    20N, 50N = 50 20 = 30

    30S, 120S = 120 30 = 90

    opposite direction = find the sum

    Example :

    10E, 70W = 10 + 70 = 80

    if the sum of two angles of longituded> 180, = 360 (the sum)

    Example :

    120E, 80W = 360 (120 + 80)= 160

    opposite direction = find the sum

    Example :

    10N, 70S = 10 + 70 = 80

    N

    S

    Great circle

    meridian

    ( half of great circle )

    10E

    N

    S

    30

    10

    Greenwich Meridian(Longitude 0)

    30W

    N

    S

    equator

    parallel of latitude

    parallel of latitude35S

    N

    3520

    equator

    (latitude 0)

    20N

  • 8/2/2019 Formulae v2

    51/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 51

    (d) Find longitude, latitude

    Find longitude Find latitude

    Example :

    20W (50) 30E (50) 80E(diference if +ifchange direction)

    Example :

    160E (50) 150W (50) 80W(sum > 180 (360 sum)change direction)

    dif. if,

    +ifch. dir.

    Example :

    (50N)

    (40)

    10N

    (40)

    (30S)

    sum > 90,

    (180sum)

    Example :

    (30S)

    (40)

    70S

    (40)

    (70S)

    (e) Diameter of the earth, Diameter of the parallel of latitude

    a + b = 180

    Example :

    P (30N, 130E), Q (30S, 130E)

    (f) Location of a place

    Example 1 :

    R (40N, 110E)

    Example 2 :

    latitude of P = 30N 45 = 15S

    longitude of P = 80E + 60 = 140E P (15S, 140E)

    E EW+

    W EW+

    S

    N

    N

    +

    S

    S

    N

    +

    N

    S

    aU

    aS

    diameter of

    the earth

    S

    bW aE

    N diameter of theparallel of latitude

    diameter of

    the earth

    N

    S

    P = ??(30N, 50W)

    Q = ??

    O

    N

    S

    P R

    40

    70

    R = ???

    Greenwich

    Meridian

    O

    N

    S

    P

    R

    80E60

    30 N

    45

    P = ???

  • 8/2/2019 Formulae v2

    52/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 52

    (g) Distance on the surface of the earth

    along a meridian along the equator along the parallel of latitude, yN / S

    distance = 60, = different in latitude

    =60

    tan cedis

    distance = 60, = different in longitude

    =60

    tan cedis

    distance = 60 cosy, = different in longitude

    =y

    cedis

    cos60

    tan

    (h) Shortest distance ( distance along a great circle : ------------------- )

    shortest distance

    = (180 2a) 60shortest distance

    = (180 ab) 60shortest distance

    = (180 a + b) 60

    Remark :

    knot = unit of speed nautical mile = unit of distance

    speed =time

    cedis tan time =

    speed

    cedis tan distance = speed time

    N

    S

    distance 0distance

    N

    S

    yN

    distance

    N

    S

    aNaN

    bNaN

    bS

  • 8/2/2019 Formulae v2

    53/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 53

    (i) Problem solving

    Example 1 :

    The diagram shows four points, P, Q, R and X, on the surface of the earth. P lies on longitude of

    80W. QR is the diameter of the parallel of latitude of 50N. X lies 5820 nautical miles due southof P.

    Solution :

    (a) longitude of Q = 80W 35 = 45W R (50N, 135E)

    (b) different in longitude of QR = 180 QR = 180 60 cos 50 = 10421.63

    (c) different in latitude of PX =60

    5820= 97

    latitude of X = 50N 97 = 47S

    (d) different in longitude of RR = 145PR = 145 60 = 8700

    time =600

    8700= 14.5 hours

    Example 2 :

    P (60S, 70E), Q, and R are three points on the surface of the earth. PQ is the diameter of theparallel of latitude 60S. R lies 4800 nautical miles due north of P.(a) State the longitude of Q.

    (b) Find the latitude of R.

    (c) Calculate the distance, in nautical miles, from P to Q measured along the parallel of latitude.

    (d) An aeroplane took off from Q and flew towards P using the shortest distance, as measured along

    the surface of the earth, and then flew due north to R. Given that its average speed for thewhole flight was 560 knots, calculate the total time taken for the flight.

    Solution :

    (a) longitude of Q = 110W

    (b) different in latitude of PR =60

    4800= 80

    latitude of R = 60S 80 = 20N

    (c) different in longitude of PQ = 180 QR = 180 60 cos 60 = 5400

    (d) different in between PQ = 180 60 60 = 60PQ = 60 60 = 3600

    Total distance = 3600 + 4800 =8400 time =

    560

    8400= 15 hours

    N

    S

    O

    3550

    X

    PQ

    R

    (a) Find the position of R.(b) Calculate the shortest distance, in nautical miles,

    from Q to R, measured along the surface of the earth.

    (c) Find the latitude of X.

    (d) An aeroplane took off from P and flew due west to R

    along the parallel of latitude with an average speed of

    600 knots. Calculate the time, in hours, taken for

    the flight.

    80W

    N

    S

    O

    3550

    X

    PQ

    R

    45W 100E

    135E

    50N

    145

    N

    S

    O

    P60S

    4800

    70E110W

    Q

    R

  • 8/2/2019 Formulae v2

    54/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 54

    (31) PLANS AND ELEVATIONS

    (a) Types of lines are used when drawing the plans and elevations of solids

    thick solid lines ( ) visible edges

    thick dashed lines ( ----------------------- ) hidden or unvisible edges

    (b) Plans and elevations

    (c) Examples

    Solid Plan Viewed from X Viewed from Y

    object

    side elevation

    plan

    front elevation

    X

    Y

    10 cm

    8 cm

    4 cm

    10 cm

    8 cm

    10 cm

    8 cm

    YX

    8 cm

    10 cm4 cm

    10 cm

    8 cm

    10 cm

    4 cm

    Y

    X

    9 cm

    5 cm12 cm

    5 cm

    12 cm

    9 cm

    12 cm

    9 cm

    5 cm

    X

    Y

    3 cm

    2 cm

    3 cm

    3 cm

    1 cm

    3 cm

    2 cm

    1 cm

    3 cm

    1 cm

    2 cm

    2 cm

    3 cm

    1 cm

    2 cm

    7 cm

    6 cm5 cm

    5 cm

    X

    Y 6 cm

    2.5 cm

    2.5 cm

    5 cm

    5 cm

    7 cm

    2 cm

    5 cm

    6 cm

  • 8/2/2019 Formulae v2

    55/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 55

    Solid Plan Viewed from X Viewed from Y

    5 cm

    2 cm

    4 cm

    7 cm 2 cm

    3 cm

    X

    Y 5 cm

    4 cm

    2 cm3 cm

    5 cm

    7 cm2 cm

    2 cm

    3 cm

    2 cm

    2 cm

    4 cm

    5 cm

    5 cm

    2 cm

    2 cm

    7 cm 5 cm

    X

    Y 5 cm 2 cm

    5 cm

    7 cm

    2 cm

    2 cm

    5 cm

    5 cm

    5 cm

    2 cm

    2 cm

    3 cm

    XY

    2 cm6 cm

    3 cm

    4 cm7 cm

    4 cm

    8 cm4 cm

    3 cm

    3 cm

    4 cm 8 cm

    4 cm2 cm

    5 cm

    4 cm

    6 cm

    3 cm

    4 cm2 cm

    3 cm

    3 cm 4 cm

    4 cm

    6 cm 2 cm

    X

    Y3 cm 4 cm

    3 cm

    3 cm 4 cm

    2 cm

    6 cm

    2 cm

    4 cm

    4 cm

    6 cm

    5 cm

    X6 cm

    6 cm

    2 cm3 cm

    7 cm

    3 cm

    Y

    6 cm

    5 cm

    1 cm

    2 cm

    3 cm6 cm

    5 cm

    1 cm

    2 cm

    6 cm7 cm

    3 cm6 cm

    6 cm

    Y

    5 cm

    3 cm

    4 cm6 cm

    3 cm

    2 cm

    2 cm

    X

    4 cm

    5 cm

    3 cm

    3 cm

    2 cm

    2 cm

    3 cm

    2 cm6 cm

    5 cm3 cm

    4 cm 2 cm

    2 cm

    3 cm

  • 8/2/2019 Formulae v2

    56/56

    [ Baroka ] [2010] [ MATHEMATICS FORMULAE ] 56