Forecasting of icing for wind power applications...Forecasting of icing for wind power applications...

23
Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde [email protected] EWEA Wind Power Forecasting, Leuven, Belgium, 1-2 October 2015

Transcript of Forecasting of icing for wind power applications...Forecasting of icing for wind power applications...

Page 1: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Forecasting of icing for wind power

applications

Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde

[email protected]

EWEA Wind Power Forecasting, Leuven, Belgium, 1-2 October 2015

Page 2: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Outline

• Icing conditions

• Influence on wind energy

• Forecasting of icing conditions

• Validation of icing periods

• Validation of the onset of icing periods

• Forecasting of energy loss

2

Page 3: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Icing conditions

Temperatures below freezing

cloud or fog containing small water droplets

Something to freeze to

3

in-cloud

icing

Ålvikfjellet, 420 kV Sima-Samnanger, January 2014

photo: Ole Gustav Berg, Statnett

Page 4: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

4

May 2010

Nov 2009

How does icing influence wind energy production?

Photo: Finish Meteorological Institute

Page 5: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Forecasting of icing - motivation

5

The aim is to know when icing will occur:

Power trading

Blade heating systems: Start the heating before icing starts

Avoid unnecessary stops during heating

Risks of ice throw / ice fall Planning of maintainance

Public safety

Monitoring of exposed power lines Avoid damages

Page 6: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Operational

forecasting

WRF simulations at

4km x 4km resolution

4 times daily

GFS 48 hour forecasts

6

Page 7: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Calculation of in-cloud icing

Forecast parameters:

Icing intensity (dM/dt)

Ice loads

Ice shedding episodes

Wind energy

VAwdt

dM 321

According to ISO12494

w – liquid water content

V – wind speed

A - collision area

a1, a2, a3 - coefficients

Page 8: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Forecasting – icing intensity

8

17 dec 2013 10:0017 dec 2013 14:0017 dec 2013 17:0017 dec 2013 20:0018 dec 2013 00:0018 dec 2013 04:0018 dec 2013 08:00

Page 9: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Validation of icing forecasts

9

Page 10: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Icing definitions

Meteorological icing: When the meteorlogical conditons causes

buildup of ice to occur

Instrumental icing: The period of time when instruments (or

wind turbines) are influenced by icing

10Source: IEA wind task 19

Wind Energy in Cold Climates

Page 11: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Identification of icing from SCADA data

11

Icing flagged for each turbine (T4, T5, T6, T7) and for the

model:

Green: normal operation

Blue: icing identified

Red: Turbine alarm

Yellow: Curtailed production

Page 12: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Validation of instrumental icing periods

The periods with observed

instrumental icing compared to

modelled periods with

instrumental icing for 4 wind

power sites in Sweden:

Site A, B, C, D

Differences in ice shedding from

model and observations

12

A B C D

Ratio of time when ice is

detected

22 % 9 % 10 % 13 %

Probability of detection 74 % 82 % 79 % 63 %

Probability of false alarm 6 % 7 % 6 % 5%

Page 13: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Validation of meteorological icing - Timing

13

modeled icing

finished before

observed icing

starts

modeled icing

starts after

observed icing

has started

70 % of the observed icing

episodes starts when the

model indicates

meteorological icing

A B C D

Number of icing episodes 109 57 115 27

Probability of detection 67 % 70 % 71 % 70 %

Page 14: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

14

Energy forecasts for

wind power

Page 15: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

15

May 2010

Nov 2009

IceLoss - Forecasting of power losses

Pow

er

[% o

fra

ted]

Page 16: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Forecasting of power production

Bias and mean absolute error (MAE) in the forecasts are reduced

when we apply production losses due to icing according to the IceLoss

function:

Evaluation period: October 2013-march 2014

Case: One wind farm in northern Sweden

16

Page 17: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Forecasting of power

Reduced number of cases

with overprediction of

power production in the

forcast with icing

Higher number of cases

with error less than

+/-12.5 % in the forecast

with icing

Higher number of cases

with underprediction of

the power production in

the forecast with icing

17

Page 18: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Summary

We carry out forecasting of icing and energy production with

the WRF model running operationally

Timing of icing periods are well modelled

The IceLoss model improves the energy forecasts

Future work:

More realistic energy forecast by calulating icing on the turbine blades

Validation of liquid water content (LWC) from the model

Continuous work on the modelling of ice accretion in the projects

FRonTLINES and WISLINE funded by the Norwegian Research Council and

Statnett.

18

Page 19: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Thank you for your attention!

Øyvind Byrkjedal

[email protected]

THE WORK HAS BEEN SUPPORTED BY THE PROJECT

“LARGE SCALE, COST EFFECTIVE WIND ENERGY

DEVELOPMENT IN ICING ENVIRONMENTS” WHICH IS

FINANCED THROUGH THE SWEDISH ENERGY AGENCY

AND BY THE TOP-LEVEL RESEARCH INITIATIVE (TFI)

PROJECT, IMPROVED FORECAST OF WIND, WAVES AND

ICING (ICEWIND).

Page 20: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Extra slides for Q&A session

20

Page 21: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Icing conditions

Temperatures below freezing

cloud or fog containing small water droplets

Something to freeze to

21

in-cloud

icing

heig

ht

west east

wind

Lifting of airmasses

condensation

Page 22: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Identification of icing from SCADA data

Data available form four

wind farms:

Power

Nacelle wind speed

Nacelle wind direction

Temperature

Operational state

10 minute frequency

More than 2 years of data

from each wind farm

Identification of icing

Davis et al. (2015)

P10 treshold curve

Time constraint

Temperature constraints

22

Plow

Page 23: Forecasting of icing for wind power applications...Forecasting of icing for wind power applications Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

Estimating production loss

23

Production loss:model (blue)

observed (red)

Ice load:model (blue)

observed (red)

100%

50%

0%