(for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... ·...

45
20 New candidates (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions do Sul -Serido China: -Longyan -Xingyi DPR Korea: -Mount Paektu Ecuador: -Napo Sumaco -Tungurahua France: -Armorique -Normandie-Maine Germany: -Ries Iran: -Aras Jordan: -Mujib Mexico : -Huasteca Potosina New Zealand: -Waitaki Whitestone Poland : -Land of Extinct Volcanoes Sweden: -Platåbergen Thailand: -Khorat UK: -Mourne Gullion Strangford Vietnam: -Ly Son-Sa Huynh

Transcript of (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... ·...

Page 1: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

20 New candidates (for evaluation in 2020)

Bolivia: -Torotoro

Brazil: -Caminhos dos Cânions do Sul

-Serido

China: -Longyan

-Xingyi

DPR Korea: -Mount Paektu

Ecuador: -Napo Sumaco

-Tungurahua

France: -Armorique

-Normandie-Maine

Germany: -Ries

Iran: -Aras

Jordan: -Mujib

Mexico : -Huasteca Potosina

New Zealand: -Waitaki Whitestone

Poland : -Land of Extinct Volcanoes

Sweden: -Platåbergen

Thailand: -Khorat

UK: -Mourne Gullion Strangford

Vietnam: -Ly Son-Sa Huynh

Page 2: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

3 Extension requests < 10 %:

Czech Republic : -Boheminan Paradise

Germany: -Thuringia Inselsberg – Drei Gleichen

-Vulkaneifel

Disclaimer

The Secretariat of UNESCO does not represent or endorse the accuracy of reliability of any advice,

opinion, statement or other information or documentation provided by the States Parties to the

Secretariat of UNESCO.

The publication of any such advice, opinion, statement or other information documentation on the

website and/or on working documents also does not imply the expression of any opinion whatsoever

on the part of the Secretariat of UNESCO concerning the legal status of any country, territory, city or

area or of its boundaries.

Page 3: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Torotoro, Bolivia

Geographical and geological summary

Location of the Torotoro Andean Geopark, Aspiring Unesco, in Central Bolivia, South America.

Location of the Torotoro Andean Geopark, Aspiring Unesco, in Potosí Department, Bolivia.

1. Physical and human geography

Aspiring Torotoro Andean Geopark, located in the Province Charcas, North of Potosí Department, Bolivia, has the

same limits of the Municipality of Torotoro. The most used access occurs through the city of Cochabamba, whose

distance is 134 km. From Potosí city, the distance is 552 km. The Torotoro's coordinates are 18°08'01"S and

65°45'47"W, and the area is 118,218 km². Part of the area constitutes the Torotoro National Park, one of the most

important in Bolivia, with 16,570 ha, which represents 14% of 116,020 ha, the total area of the Municipality. The

territory comprises seven districts and 75 communities. The Torotoro-Caine synclinorium structures the

geomorphology with a significant diversification of geoforms resulted from the dissection of karstic and clastic

Page 4: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

sequences. Torotoro presents itself as a geological, biological, and anthropological singularity, whose evolution in

geological and civilizing times brings one of the most integrated and complete records in these mountains of the

Earth. The temperature varies in inverse relation to the altitude. The annual average is 16.9°C (62.4°F), with average

rainfall of 733 mm. The driest month is July, and the rainiest month, January. The temperature variation throughout

the year is 6.5°C (43.7°F). Torotoro has 10,870 inhabitants, and the majority is of Charca origin. Circa 90% of the

Torotoro population speaks Quechua, and two percent (2%) speak Aymara. However, increasingly, Spanish becomes

fluent in a higher number of people. Approximately 57% of the population speaks Quechua and Spanish. The

majority of the population of Torotoro (88.7%) lives in their rural areas in a traditional way. The 2012 Census revealed

that 90.5% of homes, in a total of 3,511, are privately owned. There is an essential conservation of traditional

architecture. The Autonomous Government of Torotoro (GAMT), National Board of Protected Areas (SERNAP), and

the Management Committee of the Torotoro National Park are essential members for management and understand

that this protected area is the heart of the Geopark. At the community level, there is a diversity of social

organizations composed of unions, associations, community enterprises, committees, and social actors such as non-

governmental organizations.

2. Geological characteristics and geology of international importance

The magnificent Torotoro-Caine synclinorium structures Torotoro landscape. It is a Pliocene, and Pleistocene

structure remaining of the thrust and fold belt type shrinkage generated by the Andean orogeny. The deformation

encompass thick sedimentary package of several geochronological Periods of the Paleozoic, Mesozoic, and the

Cenozoic. The Upper Cretaceous limestone sequence encompasses the main visible surface in the landscape that

defines the large fold geometry. In the whole of the Bolivian Eastern Andes Belt, this synclinal is the best preserved

in structural and morphological terms. Besides, only in this syncline, the carbonate package of the Cretaceous

Andean Sea was well preserved. At least three major structural geomorphological assemblies of a kilometric scale

should be highlighted. The first is the Torotoro suspended syncline. The carbonate beds topped the syncline's

southern hinge, which is projected into the valley with negative slopes by the differential erosion of the underlying

beds. This allows observing in the field a typical syncline ridge, typical of older folded terrains, just in tectonic terrain

that still are building, such as the Eastern Andes. The second is the geomorphology of the western limb of the

southern domain of the Torotoro syncline, where the dissection by transversal gorges to the axis and the dissolution

of the carbonate beds led to the formation of 16 hogback hills with a triangular shape, aligned as in a tooth, which

it is locally called k'asas. Some of the k'asas is considered sacred in the local culture. The third geomorphological set

takes place in the central domain, where the west limb of the Torotoro syncline becomes almost a monocline. There,

the erosion of carbonate and siliciclastic beds led to the formation of a labyrinth canyons web that run to the Caine

trough. The walls of the canyons show stratigraphic sections of the entire geological history and evolution of life in

the region. In carbonatic beds tend to have upwelling and caves.Thus, the Torotoro syncline, by a geomorphological,

stratigraphic and tectonic singularity, exposed the thick sedimentary package from the Paleozoic Peru-Bolivia basin

located at the border of the Western Gondwana, to the transarc basin installed with the individualization of Southern

America. During the Upper Cretaceous, the elevation of the sea level led to the marine transgression of this basin,

forming the Andean Cretaceous Sea. This epicontinental shallow sea, with several carbonate environments and a

diversity of marine trophic chain species, from microbial, mollusks, even fish and turtles, was registered by abundant

fossil and fifth and sixth order stratigraphic sequences, recorded by El Molino Formation. On the shore of this sea,

different groups of dinosaurs wandered, and the tracks and footprints were preserved. Due to these worldwide

known ichnites, Torotoro was registered as a Global Geological Site by UNESCO under the number 189 in the year

of 1986. More than 2,500 tracks of five groups of dinosaurs in various combinations of footprints estimated. The

Torotoro dinosaur footprints led to understand the behavior of Titanosaurus better and were the first convincing

evidence of Late Cretaceous sauropods grazing. They also provide evidence on the morphology of Titanosaurus, such

as caliber legs, and their threshing. On the other hand, the high diversity of tracks shows that there was no gradual

decrease in the dinosaurs at the end of the Cretaceous, which favors the thesis that there was a catastrophic event

in the Cretaceous / Paleogene boundary. Torotoro dinosaur tracks have already been considered as a very diverse

set, not recorded anywhere in the world, and is registered in more than seven successive stratigraphic levels.

Page 5: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Caminhos dos Cânions do Sul Global Geopark, Brazil

Geographical and geological summary

Page 6: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

1. Physical and human geography

The geopark is located in the Southern Brazilian region, encompassing the extreme south-southeast of

the state of Santa Catarina (SC) and the extreme northeast of the state of Rio Grande do Sul (RS), and the

total area reaches 2.830,8 km². CCSAG coordinates are around

28º37'48''S / 49º42'00''W in the North and 29º26'42''S /49º48'7.2''W in the South. The distance from

CCSAG to Florianópolis (SC) and to the Porto Alegre (RS) is 210 km and 184 km, respectively, and the main

roads access from these is through BR-101 and BR 295. The population of the territory is 74.120

inhabitants, estimated for 2019.

Climate of the region is diversified due to the topographic differences, which varies from sea level height

to 1,346 m altitude in less than 40 km, corresponding to the Cfb subtropical climate (cold winter and

moderate summer); and the subtropical type Cfa (cold winter and hot summer). The relief type include

canyons developed in the Serra Geral Formation escarpments, as well as an extensive Coastal Plain as a

result from the progressive recoil of the escarpments of the Serra Geral plateau The nature is

characterized by Atlantic Forest Biome, which is considered to be the richest in terms of biodiversity in

the whol world. The Human occupation in the territory and the associated economic activities, is

historically related to interactions between the native pre-Columbian people and the relief, that used the

paleoburrows as a shelter.

2. Geological features and geology of international significance

Caminhos dos Cânions do Sul Aspiring Geopark (CCSAG) geological history dates back to Paleozoic and

includes Paraná Basin final stages of deposition, followed by Gondwana Supercontinent fragmentation.

Gondwana I Super Group corresponds to the older sedimentary unit in the studied area and comprises

terrigenous sequences which suggests transition features from coastal to continental systems at Permian

period. A desertic environment took over at Jurassic and its register is dominated by remaining wind

dunes. Mesozoic evolution is related to the fragmentation of Gondwana Supercontinent and a huge

basaltic magmatism is overspread generating space for Atlantic Ocean.

The complete break-up of Gondwana Supercontinent led to an uplift of east-side of the newly-created

South America Continent and also formed Serra do Mar unit. Geomorphological heights reach around

1500m and include significance of CCSAG. Structural control related to primary basement structures and

to the ones from the opening of the Atlantic Ocean generated the canyon system. The current fluvial

system is intimately related to these older structures eroding and outcropping the canyons of the region.

The relationship between the rock sequences ages expresses an important event of Earth history that

requires site preservation and scientific enhancement study in the region of CCSAG.

Page 7: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Seridó Aspiring Geopark, Brazil

Geographical and geological summary

Page 8: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

1. Physical and human geography

The Seridó Aspiring Geopark, located between 5°49'50"S, 36°15'20"W, 6°49'55"S and 36°41'60"W, in the

semi-arid northeastern region of Brazil, state of Rio Grande do Norte, has an approximately area of

2.800km² distributed among six municipalities (Cerro Corá, Lagoa Nova, Currais Novos, Acari, Carnaúba

dos Dantas and Parelhas) with an estimated population of 112.372 inhabitants.

The access from Natal, state capital, is through the federal highway BR-226, reaching the city of Currais

Novos, or through the state highway RN-203, reaching Cerro Corá, passing through other highways,

including BR-427 and other roads to access the further municipalities that are part of the region The

Seridó Aspiring Geopark is inserted in the BSw’h climatic context (hot semiarid) according to the

Köeppen’s classification, having a annual average rainfall of 650 mm, presenting high temperatures,

ranging from 15ºC to 38ºC. These climatic conditions are responsible for shaping the landscape of the

Seridó region, making it possible to observe the surface landforms and thus the geological outcrops of the

region shaped like inselbergs.

The main employment areas are tourism, education and public management, textile industry, agriculture,

and animal production. The territory has a good network of tourism, transport, cultural and health

facilities.

2. Geological features and geology of international significance

The geological history of the Seridó Aspiring Geopark began in the Paleoproterozoic age, the Rhyacian,

with orthoderivative rocks of the Caicó Complex (orthogneisses and augen gneisses). In this basis were

deposited sediments that today make up neoproterozoic metasedimentary rocks from the Cryogenian,

associated with the Seridó Group, with paragneisses, marbles and calc-silicates from the Jucurutu

Formation; quartzites and metaconglomerates of the Equador Formation and micaschist of the Seridó

Formation. Several types of igneous neoproterozoic rocks from the Ediacaran are found, discordantly

affecting all metamorphic rocks, with emphasis on fine to porphyritic granites and subordinate diorites.

The pegmatites found in the area are dated to 520 Ma and represent in this context the beginning of the

Cambrian.

More recent magmatisms are found in the form of diabase dykes from the Cretaceous and basalt spills

from the Paleogen/Oligocene. Capping all these units are sedimentary rocks from the Neocene/Miocene,

such as conglomerates and coarse sandstones of the Serra do Martins Formation and various sediments

(gravels, sands and clays) of Quaternary.

It is also noteworthy that the occurrence of scheelite ore minerals in the Jucurutu Formation brings to the

region national and international prominence, with the Brejuí Mine geosite in Currais Novos the main

scheelite mining in South America. The interaction between these often unique geological features and

the presence of different relief forms add scientific value to the Seridó Aspiring Geopark.

Page 9: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Longyan, China

Geographical and geological summary

1. Physical and human geography

Longyan Geopark is located in the southeastern part of China, the main source of the Minjiang,

Jiulongjiang and Tingjiang Rivers. Its geographical coordinates are

116°21′32″--117°04′00″E, 25°07′15″--25°47′50″N. Longyan Geopark covers a total area of 2175 km2,

encompasses parts of the administrative regions of Xinluo District, Shanghang County and Liancheng

County, includes 26 townships and 221 administrative villages, comprising a total population of 312,000.

Longyan Geopark is 327km away from Fuzhou, Capital of Fujian Province, and 160km away from Xiamen.

Transportation to Longyan Geopark is convenient; Guanzaishan Airport is situated within the geopark,

while Xiamen Gaoqi International Airport is only one hour away by train. There are 4 high-speed railroads,

4 expressways and 8 national/provincial highways that traverse the Geopark area and its immediate

surroundings. The main transportation network within the geopark is highway, which makes transit

convenient. The economy in the area can be characterized by agriculture, tourism and mining.

Longyan Geopark is situated in the Daimao Mountain Range and in the regions to its west and east,

characterized by middle-high mountains in the east, middle-low mountains in the middle, and low hills

and basins in the west. There are more than 70 peaks over 1000m in the geopark. The highest point is

Gouzinao Peak of Mt. Meihuashan, with an elevation of 1811m. The altitude range is 255-1811 meters.

Longyan Geopark has a humid subtropical climate. The average annual temperature is 19.1℃; annual

precipitation vary between 1100 – 2800mm, largely concentrated between April and September, which

accounts for 78% of total annual precipitation.

Page 10: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

2. Geological features and geology of international significance

Longyan Geopark lies in the inland South China. It is rich in geological heritage resources, and contains a

complete geological record of the evolutionary history of tectonic- magmatic-metallogenesis associated

with the assemblage of the multiple continents of southern China and the subduction of Paleo-Pacific

plates, making it a key region for the study of the tectonic evolution of southern China. The main

characteristic geological heritage sites include the Meihuashan granitic complex, Guanzhaishan huge-

thick red bed sedimentary rocks and Danxia landforms, as well as Zijinshan super-large porphyry-

epithermal copper-gold deposit.

The Meihuashan granitic complex is situated at the intersection of the E-W Nanling granite belt and the

N-E coastal granite belt in South China. The outcrop of the Meihuashan granitic complex exceeds 1000

km2, which consists of multi-stage granites, including the Early Paleozoic, Triassic, Late Jurassic and

Cretaceous. These granites were formed during a long period of approximately 300 million years (430 –

95 Ma), and the rock types range from gneissic granite, monzogranite containing K-feldspar megacrysts,

syenogranite, granodiorite to miarolitic alkaline feldspar granite. They form a complete geological record

of tectonic evolution and conversion process of different tectonic regimes in South China, including the

early Paleozoic intracontinental orogeny, Indosinian collisional orogeny and the subduction of Paleo-

Pacific plate, and thus the Meihuashan granitic complex is a microcosm and typical representative of the

multi-stage granites in South China. The 9th Hutton Symposium on the Origin of Granite and Related Rocks

which will take place in China in 2019 listed Meihuashan granitic complex as a post-conference field trip.

The Zijinshan Au-Cu deposit was the first typical high-sulfur epithermal deposit discovered from the Pacific

volcanic-magmatic belt in China. The deposit was formed between 103 to 101 Ma. The Zijinshan copper-

gold deposit was formed in the geological background of Late Mesozoic multi-stage, large-scale tectono-

magmatic events overlapped in southern China, and is a reflection of the Late Yanshan (Cretaceous)

lithosphere extensional tectonics. The Zijinshan copper-gold mine is renowned as “China’s top gold mine”

for its “largest production of gold, largest mining scale, lowest unit cost of ore”. The exploration and

research of the super-large copper-gold deposit was an important breakthrough in the history of Chinese

mining exploration, and won First Prize in the State Science and Technology Progress Award in 1996. The

unique metallogenic model has provided important lessons for the exploration of copper-gold deposits.

Researches by Dr. Richard J. Goldfarb of the U.S. Geological Survey have shown that the Zijinshan deposit

is the best representative of the metallogenesis of epithermal copper-gold deposits in an extensional

tectonic environment.

In the Late Cretaceous, the subduction of the Paleo-Pacific plate changed from early forward subduction

to late retreat subduction, giving rise to a long-term extensional tectonic environment in South China. The

Liancheng rift basin was born and deposited a huge-thick coarse clastic red bed sediment of the Chong’an

Formation. After then, due to tectonic uplifting and various exogenous forces, grand rock wall clusters

and cuesta clusters came into being, forming a Danxia landform. The Danxia landform in Guanzhaishan

Mountain took on a more typical form, with a more complete type series and a picturesque landscape,

which is a representative of monocline Danxia landform of the rock-wall and valley. The four distinct

grades of planation surfaces systematically displays the geological evolution cycles of the landforms, and

is hence an ideal site to reconstruct the development and evolution of the Danxia landform.

Page 11: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Xingyi Geopark, China

Geographical and geological summary

Aspiring UNESCO Global Geopark

According to the UNESCO Geopark application and revalidation procedure, this map is a standard map downloaded from the UNESCO official website and does not represent the position of the Chinese government on relevant issues.

Page 12: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

1. Physical and human geography

Xingyi Geopark is located in Xingyi Municipality, Qixinan Buyi & Miao Autonomous Prefecture, Guizhou

Province, China, and to the north of Nanpanjiang catchment area of Pearl River water system (24°45′02″-

25°14′12″N, 104°36′58″- 105°07′53″E), with a total area of 1456 km2. Xingyi Municipality, is situated at

the centre of the three provinces of Yunnan, Guizhou and Guangxi, featuring a good transport network

integrating railway, highway, aviation and shipping being only 357km away from Guiyang, 362km away

from Kunming and 525km away from Nanning.

Xingyi Geopark is in the transitional zone between the Yunnan-Guizhou Plateau and the Guangxi

Basin. It is strongly cut in the east, south and west by the Malinghe River, Nanpanjiang River and

Huangnihe River respectively, and features karst plateau mountain landscape with the terrain gradually

decreasing in height from northwest to southeast. It is more than 1800m above sea level in the western

mountainous area of the geopark, extending northeastward is generally less than 1000m a.s.l. in the

southern mountainous area of the geopark. The geopark belongs to the midsubtropical humid monsoon

climate zone. The annual average temperature is 16.1 °C and the average annual rainfall is 1520.9 mm.

There are 77 different size of rivers within the catchment area. The population is 533,600 in the whole of

the geopark, accounting for 62.92% of the total population of Xingyi Municipality. It is a gathering place

of many ethnic minority groups including Buyi, Miao, Yi, Bai, Dai and Zhuang and has rich culture heritages.

2. Geological features and geology of international significance

Xingyi Geopark is a part of the "Yangtze Block" of the “Qiangtang-Yangtze-South China Plate”; The

stratigraphic division covers the Yangtze stratigraphy region and the Youjiang stratigraphy region; The

Permian and Triassic strata are mainly exposed in the geopark, of which the Triassic strata are widely

distributed. Its stratigraphic sequence is complete and the platform-foreslope-basin sedimentary facies

zone are clearly distributed. The Triassic strata has an area of 1288.25 km2, accounting for 88.47% of the

geopark, of which the carbonate rock stratum covers 1066.88 km2, accounting for 73.27% of the geopark.

Xingyi Geopark is characterized by the Triassic “Xingyi fauna”, the Triassic sedimentary facies boundary,

Wanfenglin fengcong and fenglin, and Malinghe Karst Gorge of international and very national

significance.

Xingyi Fauna is the only known late Ladinian (Middle Triassic) Fossil Lagerstätte characterized by

exceptionally well-preserved marine reptiles and fishes in the world. It is the only paleo-fauna site

completely preserving turnover of Ladinian- Carnian marine reptiles from nearshore to deep ocean. This

indicates that the faunal types feature a turnover from nearshore to offshore in association with the

paleoenvironmental changes of global sea level variation and volcanic activities.

In addition, the Xingyi Geopark exhibits two classic aesthetic examples, i.e., Wanfenglin consisting more

than 20,000 magnificent peaks, and Malinghe River Gorge featuring 100 waterfalls and more than 2

million square meters bio-tufa on both sides.

Page 13: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Mt Paektu Global Geopark, Democratic People’s Republic Korea

Geographical and geological summary

Page 14: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

1. Physical and human geography

The territory of Mt Paektu Geopark match with the limits of Samjiyon County, Ryanggang Province, DPR Korea, with

an area of 1,326.1 km2, (41°34’03” - 42°01’40” N and 128°02’31” - 128° 39’05” E), and is 69km away from Hyesan

City, the seat of Ryanggang Province. It borders China on the northwest and Taehongdan, Paekam and Pochon

counties on the east.

The geopark has an average annual temperature of –0.6oC with minimum of -19.8oC in January and maximum of

16.4oC in July. The annual average rainfall is about 800mm. The relative humidity changes throughout the year,

reaching at the top in summer and followed by autumn, spring and winter, with the annual average of 74%.

By the Paektu range running from northwest to southeast through the middle of the Mt Paektu Geopark to connect

Mt Paektu and Mt Pukphotae, the proposed geopark area is largely divided in two zones. The highest altitude is in

the Janggun Peak with 2,750 m and the lowest altitude is in the Amnok River in Thongsin Worker’s District (800 m).

The geopark area, with a typical alpine climate, is characterized not only by the coldest temperature but also by ever

changing weather conditions such as high and low temperature, fine and rainy, claim and windy even in a day.

Administratively, Mt Paektu Geopark includes one town (Oup), 12 worker’s districts, wards and rural villages (ris).

The geopark has the population of 32,261 inhabitants from the 2016 Census. Presently, 40.8% of labour population

is employed in primary sector including forestry and agriculture, 18.5% in manufacturing sector, 19.5% in service

sector and 21.2% in other sectors.

A set of projects are being pursued to reconstruct the existing infrastructure including railway, road, electric power

and communication, while service and productive facilities of tourism, sports, conservation of nature and local

economy that had been constructed in modern style contribute to the sustainable development of the territory.

2. Geological features and geology of international significance

Spectacular volcano-geological heritage and landscapes made up by volcanic eruptions and geological evolution

show the most important geological highlight of the Mt Paektu Geopark. Mt Paektu is the biggest centre of volcanic

eruptions that had made the Paektu volcanic plateau.

The Mt Paektu volcano had numerous eruptions and continued its magmatic eruptions with distinctive stages of

eruption in the history and different chemical compositions, from alkali to acid, often combining both explosive and

effusive in contrast with other volcanoes. At around 1000 AD, volcano activity in the territory induced a tremendous

explosive eruption (i.e., The Millennium Eruption), when a subsequent collapse formed a caldera (Lake Chon) atop

Mt Paektu, at an altitude of 2,190 meters.

Most importantly, it keeps volcanic products preserved in original state, showing the stages of both shield volcano

and stratovolcano, and geological sections with the rising channel of magma well-preserved as it were (for example,

laccolith in Janggun Peak). In addition, the territory is of well-developed glacial geography in different ways. There

are cirques by glacial erosion and other topographical features such as moraine hill, moraine plain and outwash plain

by glacial deposition. Thus the area of Mt Paektu typifies volcanic and alpine area in the Northeast Asia.

Mt Paektu has been regarded as a volcano with great potentiality of further eruption. It had undergone several

eruptions even after the Millennium Eruption, including in 1597, 1668, 1702 and 1903, and also gaseous efflux

leaking out in recent years. The geophysical research on the Mt Paektu volcanic zone shows that it is underlain by a

magma chamber, which frequently causes volcanic earthquakes accompanied by changes in contents of some

components in springs in the area.

Thus, the Mt Paektu territory constitutes an integrated area in which natural spectacles (e.g., high volcanic

geographies rare in the world, flora and fauna, hydrology and weather etc.) are well organized with humanistic

scenery of historical, cultural and traditional things. The Mt Paektu Geopark, therefore, hits the first in the tourism

destinations of the country.

Page 15: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Napo Sumaco Geopark, Ecuador

Geographical and geological summary

Aspiring Global UNESCO Geopark

Page 16: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

1. Physical and human geography

It is located in Ecuador in the upper basin of the Ecuadorian Amazon, in the province of Napo at the

coordinates: northwest quadrant (latitude: 0 ° 29 'S and longitude: 77 ° 57'O) and southeast quadrant

(latitude: 1 ° 5 'S and longitude: 77 ° 29'O). The distance between the edges of the geopark and the cities

Tena and Archidona is 60 to 50 km to the north and 8 to 18 km to the southern limit of the geopark.

The Napo Sumaco Geopark project is based in the Amazonian mountainous region and consists primarily

of irregular slopes; hilly and mountainous systems; mesas; plateaus; valleys and terraces. The altitude

ranges from 3,830 m above sea level, at the top of the Sumaco volcano, and 400 m above sea in Misahuallí

Port. The climate is warm and humid with precipitation that ranges between 3,000 to 4,500 mm per year

and temperatures that range from 16 to 22 degrees Celsius (GAD Tena, 2014).

In the whole province it is estimated that 120.00 inhabitants live, 57% declare themselves indigenous,

65% live in rural areas and work in agriculture, workers or handicrafts. The average schooling reaches 8.5

years, the poverty rate by income is 49.8% and 41.6% (INEC 2017) due to unsatisfied basic needs, since

Napo is one of the poorest provinces in Ecuador.

In Napo, 70% of the Economically Active Population (EAP) of the province is engaged in agricultural

activities, specialized jobs (taxi drivers, machine operators, and artisanal fisher), tourist operators,

vendors or artisans.

2. Geological features and geology of international significance

The Napo Sumaco geopark, geologically is located in the Subandean foothills and is part of a foreland and

back-arc basin system. The geopark tells the story of just over 170 million years of geological activity

between the Jurassic, Cretaceous, Paleogene, Neogene and Quaternary periods.

The geosites of the GNS show a great petrographic and structural variety, each of which hosts and

manifests the geological singularity of the territory. Diastrophic, tectonic, orogenic, magmatic,

sedimentary, erosive events, etc., are part of the processes evident in these geosites.

The most prominent geological site in the geopark is the Sumaco volcano. Its volcanic materials are

described as being distinctly alkaline, consisting of phonolites, basenites and feldspathoid tephrites

(Barragán, 1994) with a color typical of extruded basic material. It is notably different from the other

volcanoes of northern Ecuador, which are characteristically composed of basaltic and andesitic lava.

The Sumaco volcano is a geosite in which the relationship between geodiversity and biodiversity can be

studied. Hence, it has been the subject of a number of studies investigating its great diversity of flora and

fauna; and is considered as one of Ecuador's biodiversity hotspots. Geologically, the Sumaco volcano is

unique in the Ecuadorian geodynamic context. That is why, the Sumaco volcano is a destination of interest

for scientific tourism and is frequently visited by biologists and geocientists.

Page 17: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Tungurahua Volcano Geopark, Ecuador

Geographical and geological summary

Aspirig Global

UNESCO Geopark

It is located in Ecuador,

at Southamerica

northwestern area.

Coordinates:

00°55’00 and 01°34’00 S

78°06’51’’ and 78°31’60’’W

Standard Map

Page 18: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

1. Physical and human geography summary

Tungurahua Volcano Geopark Project TVGP, (00º55’00 and 01º34´00 S. 78º06’51” and 78º31’60”W ), is

located in the center of Ecuador, South America. It covers 2,397 square kilometers, including five cantons:

Baños de Agua Santa, Patate and Pelileo belonging to Tungurahua province, Guano and Penipe to

Chimborazo province. Which are close and around the Tungurahua volcano, at the center of the country.

Tungurahua is among the most densely populated in the whole Ecuador (170/km2). Its cantons are: Baños

de Agua Santa, Pelileo, Patate (which are part of the project), and Ambato, Quero, Cevallos, Tisaleo,

Mocha and Pillaro.

Chimborazo province has a lower density of population (97/km2) although it still represents the ninth

most densely populated province in Ecuador. Chimborazo cantons are: Guano, Penipe (which belong to

the project), Alausí, Chambo, Chunchi, Colta, Cumandá, Guamote, Pallatanga and Riobamba.

Inside the area project, there are 37 parishes. Most of them are, therefore, rural ones, with the exception

made normally of the capital city; even so, the most of the people used to live at the cities than at the

rural areas.

2. Geological Summary

The area of the Project Geopark Tungurahua Volcano includes parts of the Cordillera Oriental or Real

(Mama Tungurahua itself), of the rich Interandean Valley and of the Cordillera Occidental (Taita

Chimborazo). The Andes have probably grown by compression, uplift, intrusion, crustal thickening, and

volcanism. Indeed, the active continental margin of Ecuador is still characterized by the subduction of the

Nazca Plate below the South American Plate, at a mean rate of 58 mm/ yr. (Trenkamp et al., 2002).

The Cordillera Occidental contains remnants of a Cretaceous island arc overlain by Lower Tertiary volcanic

and volcaniclastic rocks. A series of Tertiary intrusions are found along the western flank of this cordillera.

Active volcanoes of the Pliocene/Pleistocene age occur along the western and eastern flanks of both the

western Cordillera Occidental and the eastern Cordillera Real. The Interandean Valley (35 km wide)

separates the Cordillera Occidental from the Cordillera Real.

The Cordillera Real is composed of metamorphic rocks and composite calc-alkaline batholiths of Triassic

to Tertiary age. The Oriente, which lies immediately beyond the area of the Geopark Tungurahua Volcano

consists of series of Cretaceous back-arc sedimentary basins occurring as flat-lying sequences in the

Amazon Basin.

Between the Agoyán bridge and the Agoyán waterfall, there is the site of the Tres Lagunas Granite (Late

Triassic-Early Jurassic) (Litherland et al., 1994). This is probably the most unmistakeable lithology of the

Ecuadorian Andes. Discontinuous outcrops are found also from Colombia to Peru with narrow slivers

occurring in the Alao-Paute unit in the Interandean valley (Litherland et al.,1994) and Pujilí fault (Hughes

and Piltasig, 2002).

Furthermore exist another geological intrusive body, which is a light grey, coarsegrained porphyritic

metagranite, only above Agoyán waterfall, there is a sub-vertical magmatic banding defined locally by

differences in grain size and mica content. Litherland et al. (1994) mapped both contacts of the granite as

major faults in Baños corridor. There is a well exposed part beneath Agoyán Bridge, a crucial location for

the geological history of the Cordillera Real.

Page 19: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Armorique Geopark, France

Geographical and geological summary

Location of Armorique Geopark in Europe.

General map of Armorique Geopark.

Armorique Geopark

.

Page 20: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

1. Physical and human geography

The Armorique Geopark is located at the western end of France, facing the Atlantic Ocean. Confined within

the mainland boundary of the Armorique Regional Nature Park, it is made up of 47 municipalities (1,587

km²). Located in the administrative region of Brittany, the Geopark is in the immediate vicinity of the urban

centre of Brest (319,947 inhabitants, 2016). Due to its geographical location, the Armorique Geopark is the

1st Geopark on the French Atlantic shoreline and completes the interpretation of geoheritage in France.

A distillation of Brittany, the region is distinguishable for its Armorican identity and its rural and maritime

nature. It supports a rich ecosystem and is culturally diverse, combining contrasting landscapes and terroirs.

Its landscapes can be distinguished by three major areas:

- The Crozon Peninsula, with a strong maritime character and high coastal cliffs ;

- The Brest Bay, a real inland sea and the River Aulne estuary, an area of transition between sea and

“mountain” ;

- The Arrée Mountains, evidence of the old Hercynian chain of mountains, whose crests stood along

an intercontinental rift between 350 and 300 million years ago. The mountain tops now have an

elevation of 385 metres.

The climate in Brittany is categorized among the temperate oceanic climates of the European Atlantic

shoreline, contributing to the creation of the Geopark’s varied landscape environments.

Lastly, with a total population of 104,298 inhabitants, the density in the region is low but uniform, with 73

inhabitants per km². The quality of the transport infrastructure facilitates mobility in the region, with highly-

active and attractive businesses.

2. Geological features and geology of international significance

The Armorique Geopark displays various lithological, structural and paleontological formations, characteristic

of the central domain of the Armorican Massif, mainly sedimentary and plutonic.

In the Crozon Peninsula, west of the Geopark, a sedimentary pile, from late Neoproterozoic to Devonian in

age, is remarkably and continuously exposed through several beautiful coastal cross-sections. Note also the

presence of interbedded Ordovician effusive (peperites and pillow lavas) and explosive volcanic products.

The Châteaulin Basin, south of the territory, shows a Carboniferous infilling of slate schists. Among the

fossiliferous associations, the most noteworthy one is undoubtedly the coral complex of the Plougastel-

Daoulas Peninsula, which is the best preserved Devonian reef in Europe. This sedimentary succession was

deformed through the Hercynian events, during which the granitic plutons of L’Île Longue, Commana,

Ponthou, and Huelgoat emplaced. The northeast-southwest trending Arrée Mountains, structured during

this orogenesis, form the backbone of the Geopark. There, amazing and wild landscapes can be

contemplated. The Brest Bay schist-sandstone formations are crosscut by a dense igneous hypabyssal

network, including the famous kersantites. This rock appellation, coming from the name of the hamlet

Kersanton in Loperhet, has become an official term in the international systematics of magmatic rocks.

The post-Hercynian times are represented by pre-Atlantic dolerites, Jurassic in age, Tertiary raised beaches

and superficial formations, which have recorded the Quaternary climate changes.

Page 21: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Normandie-Maine, France

Geographical and geological summary

Aspiring UNESCO Global Geopark

Page 22: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

1. Physical and human geography

The candidate Geopark territory covers 2,650km² and is located in north western France, straddling

Normandy and Pays-de-la-Loire. It presents a rather weak demography with 98,000 inhabitants and a density

of 38hab/km². This predominantly rural territory has many aspects. With more than 60% occupied by

farmland, agriculture is a significant part of the local economy. In the west, it is dominated by cattle breeding

- dairy or suckling. Whilst in the east, cereal farming is more prevalent. The forest also provides for

significant activity with more than 46,000 hectares of forest. In addition to agriculture and forestry, industry

and crafts have a significant presence.

The candidate Geopark thus brings together large forest areas that crown the Armorican sandstone ridgeline,

a veritable spine shaping the territory from east to west. It is home to the highest peak in the west of France

at 416 metres. These ancient hilly areas bear witness to the Hercynian chain; they present soft shapes known

locally as "mountains" and "valleys" but also outcrops such as rocky cliffs and precipices.

In terms of tourism and history, the Geopark is a territory of trails, routes and paths, with Grande Randonnée

hiking trails (GR) (Le Chemin Montois) and also the rise in cycle routes now reaching as far as Mont Saint-

Michel and the Atlantic coast. These trails routes combined with landscapes and historical interests,

encourage a green and family-oriented tourism such as at Bagnoles-de-l'OrneNormandie, a spa town since

the 19th century.

The management of the Geopark is assured by the Normandy-Maine Regional Nature Park, classified for the

quality of its landscapes and its heritages since 1975. Its administrative head office is located in Carrouges

(48.563284 / -0.15038159) where a Visitor’s Centre is open to the public from 1 April to 31 October.

2. Geological Features and Geology of International Importance

The candidate Geopark’s landscapes are a result of global geodynamics and tell a turbulent story of the

formation of two mountain ranges at the heart of the Armorican Massif and the creation of a subsident

sedimentary basin, the Paris Basin.

During its history, four major events have left their mark on this territory. The cadomian orogeny that

generated significant Cambrian volcanism is still visible in several outcrops on the territory. Then the

Hercynian orogeny, which following its long process of erosion, led to the formation of a crest line that today

shapes the territory from east to west and is home to the highest point in western France (416 m). In the

Mesozoic, the formation of the Paris Basin covered the foothills of the Armorican Massif, thus creating a clear

break in the agrarian landscapes in this part of the territory. Then a continental alteration occurred resulting

in the upheavals that formed the Pyrenees and the Alps. Finally, the plains screes from the cold periods of

the quaternary, which are an exceptional element of the geological heritage of the candidate territory. The

great diversity of rocks, phenomena and ages observable on the candidate territory makes Normandy-Maine

an area of exceptional geology that testifies to 600 million years of history of our planet and presents the

evolution of the palaeoclimates represented through the different ages.

The awareness of the geological heritage is mainly due to the numerous studies carried out since the 19th

century. The national inventory conducted in 2007 identified 52 sites, 37 of them were selected in the bid

process, 2 of which had international value, 5 national, 21 regional and 9 local.

The Geoparks landscapes are a result of global geodynamics and tell a turbulent story of the formation of two

mountain ranges at the heart of the Armorican Massif and the creation of a subsident sedimentary basin, the

Paris Basin.

Page 23: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

National Geopark Ries, Germany

Geographical and geological summary

Map of National Geopark Ries, showing the location of the aspiring UNESCO Global Geopark:

Map of the aspiring UNESCO Global Geopark indicating the boundary, cities, general geographic points.

Aspiring UNESCO Global Geopark

Page 24: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

1. Physical and human geography

The National Geopark Ries is in the middle of southern Germany at coordinates:

48°50‘07‘‘ N / 10°37‘17‘‘ E.

Driving time to nearby cities (Munich, Stuttgart, Nuremberg, Augsburg, Ulm) is 1-1.5 hours. Distance to

national borders is: west, France, 4 hours; east, the Czech Republic, 4 hours; south, Austria, 2.5 hours.

The Geopark encompasses the Nördlinger Ries with crater basin and rim as well as areas of the ejecta

blanket still preserved today in adjacent regions of the Swabian and Franconian Alb. The major part of

the total Geopark area is in Bavaria, a smaller portion in Baden-Württemberg. It comprises parts of 5

districts with 53 cities and municipalities, of which 46 communities lie in Bavaria (79 % of the total

surface area) and 7 in Baden-Württemberg. The outer border of the Geopark is also the border of the

respective municipality. The Nördlinger Ries, a flat, round, ca. 150m deep depression of about 25 km in

diameter (“Ries basin“) forms the border between the Franconian Alb in the east and the Swabian Alb in

the west. Population density is 93 residents per km². The region has one of the lowest unemployment

rates (2.2 % annual average) in Germany. The Geopark area has a total of 84 schools, including: 6

secondary, 8 junior-secondary, 2 commercial secondary, 13 middle, 7 vocational, 6 special education

and 42 elementary.

2. Geological features and geology of international significance

The 14.6-million-year-old meteorite crater Nördlinger Ries, situated between the Swabian and

Franconian Alb in southern Germany, is considered the most intensively studied impact structure among

the nearly 200 known craters worldwide. Since the 1960s much geo-scientific special impact-indicative

features have been unraveled here: Typical Suevite as an impact breccia rather than a volcanic rock,

containing high-temperature and high-pressure minerals (e.g., coesite, stishovite, lonsdaleite diamond),

diaplectic plagioclase glasses, and mechanical planar deformation features. Most were first described

from this area. Based on NASA experiments and a synopsis of lithological, petrological, mineralogical

and geophysical field and laboratory data, a detailed model of the impact "story" with mainly 3 stages

(contact/compression, excavation, crater modification) as the result of a progressive shock

metamorphism could be acquired. Complex ejecta placement (roll-and-glide, ballistic) is still a matter of

debate. The development of a post-impact soda lake in the crater depression left behind bituminous

shales and lacustrine carbonates with unique fossil associations (e.g., the only known green algae reefs).

With its still high interdisciplinary scientific potential (see graph), the Ries Crater can be rated as an

indicative reference and challenge for further analyses of terrestrial and extraterrestrial impact

structures. The Ries remains the focus of high scientific interest.

Page 25: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Aras, Iran

Geographical and geological summary

Page 26: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

1. Physical and human geography

Aras aUGGp boundary is totally defined to the Jolfa County limits. Jolfa County with an area of 1670 km2 is one the

21 counties of E. Azerbaijan Province. Jolfa County is dividing to 2 districts of Central and Saih Roud. Tabriz City the

capital of province with an international airport is located in 135km southeast of Jolfa. Although Hadishahr is the

biggest city, but Jolfa is the administrative and capital of the county. The Aras River makes the northern limit of the

geopark and considered as the borderline between Iran, Armenia and Nakhichevan (Azerbaijan). The lowest and

highest points in this area vary between 400-3347m. Kiamaki Mount is the highest peak in the northern part of

whole province. There are 3 protected areas in the geopark territory, Kamtal National Park, Kimaki Wildlife Refuge

and Marakan protected area. The semi-arid weather in this area is hot in summer and very cold during the winter

(+40°C to -10°C).

About 65000 people are living in this area and their main jobs are farming and gardening, livestock farming and

trading. The majority of the population is Muslim and speaks Azeri (Local Turkish) Language, while the official

language is Persian (Farsi).

Aras Free Zone Organization (AFZ) is the governing body of the area. The area is under the rapid industrial and

trading developments due to the benefits of the Free Zones Regulations. Numerous investment projects are

running by domestic and international investors. The roads and railway network in the area is in a good situation,

easy access to the main neighboring cities as well as international connections. Varieties of accommodations are

available in the area, local guest houses and hotels up to 5 stars. Shopping malls, markets and bazar are among the

most popular attractions of this area receiving many visitors especially during the holidays and weekends.

Ecotourism, cultural tourism and geotourism are the second important reason to receive considerable amount of

tourists, nationally and internationally. The UNESCO World Heritage site of “Armenian monastic Ensembles” is

another added value to the tourism of the area.

2. Geological features and geology of international significance

Aras aUGGp is part of Lesser Caucasus terrane. The collision of Iran- Eurasia plates in the late

Triassic and then, Arabian-Central Iran microcontinents in the late Miocene formed this region. Numerous

interesting geological features that resulted out of these collisions emerge in Aras aUGGp area. For instance,

Oligocene intrusive rocks cropped out in eastern part, extrusive igneous rocks in southern part and folded and

faulted Cenozoic flysch type deposits in the central part. The Paleozoic and Mesozoic successions are also exposed

in western part of the region.

Briefly, the most important geological phenomena are introduced in the following geosites: Ordobad granite -

diorite rocks in Oshtobin, Dasitic volcanic rocks in Kiamaki, variety of folding and faulting in

Cretaceous and Eocene flysch type sediments in Irri, Holaq and Asiab Kharabeh, The Permian- Triassic boundary in

Ali Bashi* Mountain, Qechi Qalasi travertine spring, Tohlom landslide and Dykes and Sills in Marakan.

The most important geological feature with international significance in this geopark is the Permian- Triassic

Boundary. The End Permian mass extinction made it as one the most important events in the Earth's History. The

different stratigraphic sections containing the mentioned boundary in the Jolfa area are, together with localities in

Central Iran and South China, the world’s most important sections. It makes a unique opportunity for the

geoscientists to study uninterrupted, highly fossiliferous successions in carbonate to claystone-dominated facies

and represent an important link to the well-investigated global stratotype of the Permian-Triassic boundary in

China. The advantages of this section are: The good outcrop conditions of the strata (hundred meters thick

outcrop), The easy accessibility of the outcrops, The variability of the sedimentary rocks, The abundance of various

fossil groups, Ease of sampling and study of the end Permian mass extinction event.

Page 27: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Mujib Geopark, Jordan

Geographical and geological summary

Location of the aspiring UNESCO Global Geopark and detailed map

Page 28: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

1. Physical and human geography

The proposed Geopark is located at the eastern shoulder of the Rift Valley of Jordan, along the shoreline

of the Dead Sea. Mujib Geopark lies within west central part of Jordan, immediately east of the Dead Sea,

with the centre coordinates: Lat 31.480131 Long 35.658505. The King's Highway crosses its middle part,

some 55 km SSW of the Capital Amman. The Dead Sea Highway passes by its mouth in the west where it

discharges to the Dead Sea, some 85 km of Amman in a SW direction. Several minor roads reach to various

parts of the geopark. The total surface area of the proposed site is 387.02Km2.

The area is rugged and mountainous with elevations in excess of 1000 m above mean sea level (amsl).

Wadi Mujib base level is the Dead Sea surface at -433 m below sea level as of 2019; a difference in

elevation around 1500 m. There are no permanent settlers in the Geopark, but about 10 villages belonging

to Al-Qaser district and the two sub districts Al-Qaser and Al-Mujib are all located around the site. The

estimated population around the site is around 30,000. People around the geopark have traditional

livelihood style and basic income resources. Most of them are working in governmental or military

permanent jobs, while having small herd of livestock to provide the basic needs of meat and dairy products

which is also helping to increase the income when produced and sold at local level. Some are working in

the dam authority at the two dams located at the eastern side of the geopark.

2. Geological features and geology of international significance

Wadi Mujib is the Grand Canyon of Jordan with a difference in elevation of around 1500m. It exposes

most of the geological history of Jordan and adjacent areas from the early Middle Cambrian to the Recent.

Strata are uncovered by soil or vegetation where the fine primary sedimentary structures can be seen in

three dimensions. For example, the early Middle Cambrian marine Burj Formation gives a widow for the

eastern Gondwana supercontinent and the adjacent Paleo-Tethys, Umm Irna Formation (Late

Permian)/Ma’en Formation of the lowermost Triassic (and the P/T boundary) with the associated

volcanics show the first rifting the Neo-Tethys, and the Late Cretaceous-Eocene deposits are good

examples for paleo upwelling the formation of giant phosphorite and bedded chert sequences. Moreover,

The Dead sea and the Dead Sea Transform (plate boundary) make the western reaches of the geopark,

with all that can be said on the geology, geochemistry and evolution of the supersaturated water (salinity

is nearly 10 times that of the open oceans), paleoseismology, sinkholes, oil seepages, of the lowermost

terrestrial area on Earth (- 433.5m bmsl 2019). Furthermore, the area, as a whole, is attractive for local

and international tourists for geological features, hot water and Dead Sea water therapeutic, wild life and

adventure.

Page 29: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Huasteca Potosina, Mexique

Geographical and geological summary

Page 30: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

1. Physical and human geography

The area covered by the Project Geopark Huasteca Potosina is in the region known as the Huasteca Potosina.

Is located in a part of the physiographic province known as Sierra Madre Oriental and part of the coastal plain of the

Gulf of Mexico. The geographic coordinates that delimit the Geopark are 21°27’ a 22°24’ north latitude to98°19’ a

99°3’ length west.

The boundaries correspond to the municipal administrative boundaries of the political division of the State.

The Project includes, from North to South six municipalities of the 58 that make up the state: Ebano, Tamuín, Ciudad

Valles, Tamasopo, Aquismón and Huehuetlán. The total perimeter is 1,307.68 Km.

The total area of the project is 7,153.97 km2. The territory is large on surface, but it is more important because of

its geological heritage, its cultural and natural diversity and the development opportunities for the people living in

this abundant region.

The Huasteca is considered to be the second most important region in the State of Mexico, socio-economically.

The project region can be classified under three sub-provinces: Plains and Hills (Llanos y Lomerías), Huasteco Karst

(Carso Huasteco) and the Gran Sierra Fold (Gran Sierra Plegada).

The climate is highly specific making the Huasteca Potosina unique with ranges from an average 26º all year round

to record highs of 50ºC in the month of May.

Three languages often spoken. (Huasteco o Tennek, Nahuatl y Xiʔúi.)

The total population within the GHP project, as the last census (2015), was 345,557 in habitants.

The distribution is eminently rural and unfortunately, is a territory that still has conditions of high and very high

social marginalization. The project aims to help overcome the lag and improve the quality of life of its inhabitants.

2. Geological features and geology ofinternational significance

The geological and geomorphological evolution has originated the two main physiographic features that dominate

the eastern region of Mexico and cover the territory of the Huasteca Potosina Geopark project:

The Sierra Madre Oriental - the eastern Sierra Madre - (SMO) and the Coastal Plain of the Gulf of Mexico (CPGM).

The SMO, is the most relevant orographic element in the Geopark project, is a significant tectonic example, since its

origin is associated with the Laramide orogenic phase, which occurred during the Upper Cretaceous and the

Paleogene.

On the other hand, the region that occupies the CPGM stands out in relation to the history of the development of

oil exploration since the end of the 19th century. In this, several companies, mainly foreign, operated in various oil

fields; In 1904, the first well that commercially marked the rise of the oil industry in Mexico was drilled near Ebano.

Much of the territory of the Geopark is located on the geological province known as the Valles-San Luis Potosí

Platform, an extensive carbonated paleogeographic unit of the Upper Cretaceous on which marine rock sequences

were deposited, highlighting powerful sections of evaporitic rocks and reef limestone of Mesozoic age.

This characteristic of geodiversity has a geological and geomorphological significance due to:

1) Its affinity with hydrocarbon-generating and storage rocks that has influenced multiple studies on the

evolution of large carbonated platforms, hydrocarbon prospecting, sedimentology, stratigraphy and

structural geology and

2) The development of karst features that have allowed basic and speleological exploration studies to

understand karst hydrology, the nature and origin of caves, surface karst geomorphology and

hydrogeochemistry.

Page 31: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Waitaki Whitestone Geopark, New Zealand

Geographical and geological summary

Aspiring UNESCO Global Geopark

Waitaki Whitestone Geopark

Page 32: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

1. Physical and human geography

Waitaki Whitestone Geopark is located on the central eastern side of Te Waipounamu (South Island), Aotearoa

(New Zealand). With an area of 7,214 km2, the Geopark boundaries are aligned with the administrative

boundaries of the Waitaki District, and form part of the northern Otago and southern Canterbury regions.

The Geopark is characterised by diverse landscapes ranging from steep alpine terrain with small modern

glaciers in the Southern Alps in the far northwest, an array of ranges and basins, giving way to broad downlands

and the braided channel of the Waitaki River in the east, and ending at the cliffed eastern sea coast. Within the

downlands are the Geopark's most iconic landforms, including flat-topped mesas and karst topography

developed on limestones, with scattered volcanic peaks.

The population of the Geopark is 22,300. Ōamaru is the largest town with a population of 13,715, and there

are 16 towns and villages in the area. The Geopark offers a home for local wine and food producers, which is

reflected in the emerging range of geogastronomy offerings available. Although the dominant business sector

in the Waitaki area is agriculture, tourism is a significant and growing contributor to the local economy.

Geographic coordinates of the Waitaki Whitestone Geopark:

Max Longitude: 171° 10' 46.01"

Min Longitude: 169° 27' 43.09"

Max Latitude: -45° 35' 07.32"

Min Latitude: -43° 46' 40.08"

2. Geological features and geology of international significance

Many of the geosites of the aspiring Waitaki Whitestone Geopark yield evidence of a very dynamic basement

geology reflecting the ongoing fracturing of Zealandia, the Earth’s '8th continent', but mostly drowned

landmass. The Waitaki Whitestone Geopark preserves many key components of the geological history of

Zealandia. Zealandia’s story begins in the Gondwana supercontinent, where Zealandia’s basement rock was

formed, including the greywacke and schist rock foundations of the Geopark. Opening of the Southern Ocean

and Tasman Sea pushed the Zealandia block of continental crust out into the Pacific Ocean. Progressive

subsidence of Zealandia’s crust saw the sea slowly encroach across the land, heralding the deposition marine

sediments and culminating in formation of the iconic Oligocene-age limestones of the Geopark, with hot-spot

volcanic eruptions adding further nuances to the environment.

The shallow seas enriched by volcanic nutrients nurtured a rich diversity of marine life, especially ancestral

whales and dolphins. The propagation through Zealandia of a new boundary between the Pacific and Australian

plates caused compression and uplift, and a small part of Zealandia progressively emerged from the sea to

create the New Zealand landmass. Mountain-building, erosion, the coalescence of drainages to form major

rivers, and episodes of glaciation on the highest ground, brought about the Geopark’s landscape elements.

Ongoing tectonic deformation is expressed by occasional movement of some faults in the Geopark, and the

ever-present ocean continues to eat away at the eastern shoreline. The diverse geological features of the

Geopark attract geological researchers and tourists alike and bring to life the fundamental origins and

processes of our geological heritage. The Geopark contains illustrative geological archives that are relevant not

only to all of Zealandia but also our neighbouring fragments of Gondwana (Australia and Antarctica).

Page 33: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Land of Extinct Volcanoes, Poland

Geographical and geological summary

Page 34: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

1. Physical and human geography

Proposed geopark is located in the south-west of Poland, in Kaczawskie Mountains and foothills region. It

covers the area of 1262,75 km² (14 municipalities). The terrain configuration is very diversified. Southern parts

represent relief typical for low mountains. The highest peak is reaching 723 m a.s.l. The relative heights vary

from 200 up to 300m. Kaczawskie Foothills are highlands in general, characterised by presence of isolated small

ridges and hills, elevated plateaus and rather short but sometimes relatively deep rivers valleys (gorges). The

northernmost region of the proposed geopark are typical lowlands, with the minimal elevation equals ca. 115-

120 m a.s.l.

The whole region is in the temperate climate zone, with average temperatures of 18°C in July and -4,5°C in

January. The sum of precipitation is ca. 600-700 mm for the mountain part and 500-600 mm for the rest of the

terrain. The main river is Kaczawa, which is 98 km long. The flora of Kaczawskie Mountains and Foothills reflects

complicated geological structure and related diversity of soils. The region is inhabited by 104 694 citizens. The

average population density equals 248 person/km²; however, the average density in the rural areas is ca. 56

person/km². The most represented economic sectors are trade, mechanics, construction, industrial processing

and transport; however, the majority of existing enterprises are microenterprises. The unemployment rate is

around 12%.

2. Geological features and geology of international significance

The area of the proposed Geopark covers the three important geological units of the western part of the Sudety

Mountains. Kaczawa Metamorphic Complex (KMC) is built from many folded nappes, which create currently

many smaller units. It is a continuous sequence from early Cambrian to late Devonian. The rock material is

represented mainly by metamorphosed in low grade siliciclastic sediments, volcaniclastic, carbonates, mafic

and volcanic rocks, mudstones and flysh sediments. The rocks of KMC are a basement for North Sudetic

Synclinorium (NSS). It started to form in late Carboniferous as a result of vertical movements of smaller block

of the KMC. It is filled with Upper Carboniferous, Permian, Triassic, Upper Cretaceous, Tertiary, and Quaternary

sedimentary rocks. The NSS is also filled by late Carboniferous and Permian volcanic rocks. This episode of

volcanism involved mainly rhyolitic and trachyandesitic lavas. The last episode of volcanism took place about

18-28 million years ago. Most of these outcrops have a form of volcanic necks or lava flows. The rocks occurring

on the Fore-Sudetic Block (FSB) are in a significant part an extension of the northern branch of the Kaczawa

Metamorphic Complex, however separated from it by the Sudetic Marginal Fault.

Within the borders of planned geopark the are plenty of interesting geosites, including those of international

and national importance. From the international perspective, it is worth to mention at least two: outcrop of

Permian ryolites, called Organy Wielisławskie (where thermal cracks are clearly visible in the rhyolitic rock wall)

and Wojcieszów crystalline limestones (excavated in several quarries). Besides those geosites, the are over 130

other defined. The outcrops enable studying many structures and issues, mainly from the field of sedimentary

geology (laminations, deformations, fossils) and metamorphic geology (foliation, folds, cleavege,

lineation,faults, etc.). Several locations offer interesting minerals.

The Geopark area is characterised by truly perplexed geological structure and history. This mosaic type of

geological structure creates huge geodiversity. This causes big attractiveness from geotouristic and geological

point of view.

Page 35: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Platåbergens Geopark, Sweden

Geographical and geological summary

Page 36: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

1. Physical and human geography

Platåbergens Geopark is located in west Sweden, the region of Västergötland and is a collaboration between

nine municipalities (Trollhättan, Vänersborg, Grästorp, Lidköping, Götene,

Mariestad, Skara, Skövde and Falköping). The surface of the Geopark is 3,690 km2 and it has 289,198

inhabitants. The population is estimated to increase by an average of 11,200 annually until 2040. Business

turnover and new enterprises have continued to increase in 2019.

The mid point of the geopark is approx. 58°23’09.3”N 13°26’21.9”E. The highest point is Ålleberg, 330 metres

above sea level. There are three distinct landscape types within the geopark: plains, table mountains and

coastal areas. Platåbergens Geopark is located within a temperate climate zone with four distinct seasons. The

county’s climate is strongly affected by the Gulf Stream and the moist air currents which produce a maritime

climate, i.e. humid and with relatively minor variations in temperature. The area is very rich in

precipitation with an annual rainfall of up to 1,000 mm. The average temperature in Jan–Feb is ca –4°C, the

average temperature in July is ca 15°C. The highest measured temperature is 36°C and the lowest measur ed

temperature is –37°C.

The area is easily accessible and you can get here by air travel, train, bus, car, boat and bike, or by hiking. A

regional airport is located in Trollhättan. Three major railroad lines and several highways, such as the E45 and

E20, run through the geopark.

The table mountains of Västergötland have provided the conditions for completely unique natural

environments. The variation in rocks and composition of the bedrock make for an unusually large variation in

ecosystems. The entire area is characterised by the remains of the last Ice Age.

2. Geological features and geology of international significance

Platåbergens Geopark is situated in the southwest Swedish gneiss terrane of the Fennoscandian shield,

covering the Swedish table mountain landscape. Several remarkable and unique geological features are easily

accessible in the geopark, together representing a time span of around 1.7 billion years. The significant features

of the geopark are:

1. The Paleoproterozoic and Neoproterozoic Gothian and Sveconorwegian orogenies (ca 1650–950 Ma).

2. Deep denudation and stripping of bedrock forming the widespread sub-Cambrian peneplain (ca 600–550

Ma). The peneplain is easily accessible in the geopark, including at localities where the transition from

gneiss to the first Cambrian strata can be studied in cross­section, an option that is unique in its availability

for scientists and the public.

3. The table mountains that are built by layers of sedimentary rocks spanning the Cambrian through the

lower Silu rian time periods (ca 540–400 Ma). The rocks yield a great diversity of well­preserved marine

fossils as well as fossil meteorites from the break­up of a major asteroid in Ordovician time and volcanic

ash from the collision between Baltica and the Avalonia microcontinent.

4. Late Palaeozoic rifting and intrusion of late Carboniferous to Permian dolerite sills (ca 300 Ma). It is due

to the erosional resistance of this sill that the table mountains have been able to survive Cenozoic erosion.

5. The Quaternary deposits illustrating the last Ice Age, formed during the retreat of the last continental ice

sheet and including prominent moraines of the Younger Dryas re-advance and spectacular deposits of the

catastrophic drainage of the Baltic Ice Lake at around 11,600 YBP.

Page 37: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Khorat Geopark, Thailand

Geographical and geological summary

Map of Khorat aspiring UNESCO Global Geopark region (red point),using a standard UN map showing

thelocation of theaspiring UNESCO Global Geopark

Khorat aspiring UNESCO Global Geopark indicating the boundary,cities,general geographic points.

Page 38: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

1. Physical and Human Geography

Khorat Geopark is situated in the middle to lower Lam Takhong Basin in Nakhon Ratchasima

Province, Northeast Thailand. The geopark covers 5 out of 32 districts in the province, Sikhio, Sung Noen,

Kham Thale So, Mueang Nakhon Ratchasima, and Chaloem Phra Kiat districts, extending from 14° 40’ 48” to

15° 08’ 24” N Latitude and 101° 23’

46” to 102° 23’ 53” E Longitude. The total area is 3,167.38 km2. The geopark is 170 km northeast of the Thai

capital (Bangkok), connected by major highways. Three topographical regions are encompassed by Khorat

Geopark: 1) a montane area with cuestas, 2) undulating plains, and 3) flat plains. The highest and lowest

points are 782 and 163 meters amsl, respectively. The major river flowing through the geopark is the Lam

Takhong River. The climate is Tropical Wet and Dry, with a mean annual precipitation of 1,019.2 mm and

mean annual temperature of 27.4 °C. The natural vegetation is mostly dry dipterocarp forest and dry

evergreen forest. The human population of Khorat Geopark is approximately 741,239 (2018), comprising

mainly Thai Khorat, Thai Northeastern (Isan), and Thai Chinese groups. The major economic activity is

agriculture, with cultivation of rice, cassava, and sugar cane and raising of cattle, pigs, and chickens. Nakhon

Ratchasima is a regional highway and railway transportation center. In the city center of Nakhon Ratchasima

and the surrounding district cities, the majority of the populat.ion is engaged in industry, commerce, and

services.

The human population of Khorat Geopark is approximately 741,239 (2018), comprising mainly Thai Khorat,

Thai Northeastern (Isan), and Thai Chinese groups, with minorities including Thai Muslim,ThaiYuan, andThai

Sikh groups. The major economic activity in the geopark area is agriculture, with cultivation of rice, cassava,

and sugar cane and raising of cattle, pigs, and chickens. Furthermore, Nakhon Ratchasima is a regional

highway and railway transportation center. In the city center of Nakhon Ratchasima and the surrounding

district cities, the majority of the population is engaged in industry, commerce, and services.

2. Geological features and geology of international significance

Khorat Geopark, part of the Khorat Plateau, is underlain by Mesozoic rocks of the Khorat Group, consisting of

sandstone, conglomerate, siltstone, shale, claystone, and rock salt. The rising of the Himalayas 65 to 55

million years ago caused lifting and folding of the rock layers of the Khorat Group to form a plateau and a

basin. Alternating layers of more and less resistant rock has resulted in the formation of 2 rows of cuestas in

the western geopark region. In the center, the Early Cretaceous Khok Kruat Formation has yielded numerous

reptile fossils,including 3 new species of iguanodontid dinosaurs and new species of turtle and crocodile. In

the east, fluvial sediments, 60 m thick, from Neogene to Quaternary, have yielded 3 new species of fossil

mammals, Khoratpithecus piriyai, an ancient orangutan, Merycopotamus thachangensis, a possible

hippopotamus ancestor, and Aceratherium porpani, a hornless rhinoceros. Ten genera of ancient elephants

have been recovered, out of 55 genera known worldwide: Gomphotherium, Prodeinotherium, Protanancus,

Tetralophodon, Zygolophodon, Stegolophodon,

Deinotherium, Sinomastodon, Stegodon, and Elephas. More than 20 other mammal species have been

obtained as well as abundant fossil wood, fruits, seeds, and pollen. Five geological features of international

significance, ranked in order of importance, are 1) the high diversity of fossil mammals, especially elephants,

from Neogene to Quaternary deposits, 2) deposits of iguanodont dinosaurs and associated animals from the

Early Cretaceous, 3) sources of abundant and diverse petrified wood, 4) the type locality of the Khok Kruat

Formation in the Khorat Group, and 5) a prominent section of the Khorat cuesta,one of the longest cuesta

systems in the world.

Page 39: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Mourne Gullion Strangford, UK

Geographical and geological summary

Page 40: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

1. Physical and human geography

The Mourne Gullion Strangford Aspiring UNESCO Global Geopark (aUGGp) is midway between the cities

of Belfast (UK) and Dublin (Republic of Ireland) and is located on the main road and rail network that

connects the two. Belfast has a population of 340,220 people whilst Dublin has a population of 1,346,359

people. The main city is Newry that is within 1-hour travelling time of two international airports (Dublin

and Belfast International), one regional airport (George Best Belfast City), and two international passenger

ferry ports (Warrenpoint and Dublin).

The Mourne Gullion Strangford aUGGp is located in the SE of Northern Ireland, adjacent to the border

with the Republic of Ireland. The aUGGp has an area of 960 sq km, and a population of 100,322. The mean

population density is 106.62 people per sq km but this ranges from the sparsely populated upland areas

to the urban centres of Newry, Downpatrick, Newcastle and Kilkeel.

The region boasts 3 discrete upland regions in the Dromara Hills, Mourne Mountains, and Slieve Gullion.

The highest point is within the Mourne Mountains and is Slieve Donard at 850 m. The uplands are

surrounded by lowlands covered in glacial sediment, much of which is in the form of drumlins. The

mountains are dissected by valleys formed by ice during the last glaciation. Carlingford Lough, a drowned

glacial valley, lies on the southern edge of the proposed Geopark, and Strangford Lough, the largest sea

inlet in the UK and Ireland, lies at the eastern edge of the proposed Geopark, both of which are important

to the early human history of the region and later as major transport routes.

2. geological features and geology of international significance

The Mourne Gullion Strangford aUGGp has over 400 million years of geological history. It charts the

closure of the Iapetus Ocean and the bringing together of the two parts of what we now know as the

island of Ireland, its passage through tropical latitudes, the birth of the North Atlantic Ocean, and finally

the shaping of landscape by ice during the last glaciation. There are two particular highlights that should

be mentioned.

The Mourne Gullion Strangford Gullion aUGGp is noted for its discrete Palaeogene Complexes. Each one

has its own character and beauty and therefore importance for tourism but each one is still an area of

intense scientific research. The complexes are part of the British and Irish

Igneous Province, which is itself part of the North Atlantic Igneous Province. They all have contacts with

the Silurian/Devonian end-Iapetus lithologies making this region the only region on the island of Ireland

where it is possible to tell the story of the closing of the Iapetus Ocean and the opening of the Atlantic

Ocean in the same place. There are currently no other UNESCO Global Geoparks with similar

characteristics.

One of the other geological highlights is the more recent glacial history in the Strangford area of the

proposed Geopark. The best examples of this are found along the Ballyhornan coastline which is a

beautiful locality even without knowing anything about its geological history and in particular, the

spectacular Quaternary geology on display at Killard Point. This designated site records the events and

processes that operated in this area from 15,000 to 13,000 years ago during the closing stages of the final

glaciation to affect the island of Ireland, the Midlandian. The site is of such importance that this short

period has won a place in the scientific literature as the Killard Point Event.

Page 41: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Ly Son-Sa Huynh Geopark, Vietnam

Geographical and geological summary

Page 42: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

1. Physical and human geography

Located in Quang Ngai Province of Central Coastal Vietnam (central point coordinates: N15°06’20”;

E108°47’50”), Ly SonSa Huynh Geopark - the Land of Motions - covers a land area of 2,537km2 and an

internal sea area of 2,617km2, and can be reached by several routes by land, sea and air. The Geopark is

characterized by high mountains in the west (highest summit 1,431m asl), flat and narrow coastal lowland

in the east (a coastline of c.130km) and a number of small islands in the northeastern corner. Subject to

tropical climate with two distinct dry and wet seasons, it also features a dense network of rivers, lakes,

reservoirs, wetlands, bays and lagoons. A population of c.1,023,000 people, including several ethnic

groups, live in the area, occupied mostly in agroforestry, fishing, seafood farming and salt production,

trade and services and small industries. Many archaeological, historical and cultural relics, mainly of the

ancient Sa Huynh, Champa and Vietnamese cultures, are recognized and conserved. Many festivals and

traditions, in particular the UNESCO “Art of Bai Choi” Intangible Cultural Heritage, also contribute to the

values of the Geopark.

2. Geological features and geology of international significance

LSSHAUGGp is distinctive in terms of its geological features and geoheritage value. It’s history started c.2

billion years ago, being a piece of the Gondwana ancient super-continent. Subsequent drift to the north

along with collision, subduction, accretion and divergence of its various members resulted in a very

diverse assemblage of magmatic and sedimentary rocks, which were subject to at least two major regional

metamorphic events c.460-410 and 260-225 Ma ago. During Late Cenozoic (c.35-17 Ma ago), the strong

interaction between Eurasian, Australian and Pacific plates strongly tensioned the area, forming a new

oceanic crust in the South China Sea, which was followed immediately thereafter (c.17 Ma ago to present)

by its subduction along the Manila Trench. These processes triggered multi-episodic volcanic activities,

though reduced but still occasionally taking place c.10,000 years ago till present in the Southeast Asian

region. Also during this period, the oceancontinental interaction was active with many cycles of marine

transgression-regressions, evidence of which remains quite abundant, particularly those that happened

in the last few hundred thousand years. LSSHAUGGp can, therefore, be considered a lively outdoor

geological museum with many types of geological formations, rocks, minerals, hot springs, landforms,

landscapes, volcanic craters, waterfalls etc., illustrating a very dynamic area - the Land of Motions.

Page 43: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

UNESCO Global Geopark of Bohemian Paradise, Czech Republic

Old area: 759.4 km2

New extended area: 832.8 km2

Present area Requested area

Bohemian Paradise UGGp

Location de Bohemian Paradise UNESCO Global Geopark

Page 44: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Nationaler GeoPark Thüringen Inselsberg – Drei Gleichen, Germany (candidate)

Old area: 688.7 km2

New extended area: 725.1 km2

Standard UN map of Europe, showing the location of the UNESCO Global Geopark candidate

Location of Nationaler GeoPark

Thüringen Inselsberg – Drei

Gleichen

Map of Nationaler Geopark Thüringen Inselsberg – Drei Gleichen indicating the extension area

Page 45: (for evaluation in 2020) - UNESCO › sites › default › files › unesco_global... · 2020-02-05 · (for evaluation in 2020) Bolivia: -Torotoro Brazil: -Caminhos dos Cânions

Applicant UNESCO Global Geopark

Vulkaneifel UNESCO Global Geopark, Germany

Old area: 1221 km2

New extended area: 1290 km2

Location of Vulkaneifel

UNESCO Global Geopark

N

5 km

Zone actuelle

Extension demandée

Frontières

communautaires

Germany

Vulkaneifel