Fluid-Structure Interactions – Challenges and Solution ... · Technische Universität München...

40
Technische Universität München Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6 Fluid-Structure Interactions – Challenges and Solution Approaches Miriam Mehl Technische Universität München

Transcript of Fluid-Structure Interactions – Challenges and Solution ... · Technische Universität München...

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Fluid-Structure Interactions – Challenges and Solution Approaches

Miriam Mehl

Technische Universität München

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Outline

Fluid-Structure Interactions

The Partitioned Approach

Surface Coupling

Coupling Strategies

Data Mapping for Non-Matching Grids

Lagrangian versus Eulerian Approaches

Conclusion

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Outline

Fluid-Structure Interactions

The Partitioned Approach

Surface Coupling

Coupling Strategies

Data Mapping for Non-Matching Grids

Lagrangian versus Eulerian Approaches

Conclusion

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Fluid-Structure Interactions

Vienna Online, 01/08/2009

Frederic Le Floch,1999 ACO Le Mans Annual

W. Wall, M. Gee, TUM, 2009

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Fluid-Structure Interactions

Characteristics:

surface-coupled problem

slightly different time scales

same spatial scale (at least for laminar flows)

non-linearities

fluid computationally more expensive

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Outline

Fluid-Structure Interactions

The Partitioned Approach

Surface Coupling

Coupling Strategies

Data Mapping for Non-Matching Grids

Lagrangian versus Eulerian Approaches

Conclusion

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Scenario 1: changing fields of application

Scenario 2: changing components (ideology-free coupling)

coupling

The Partitioned Approach

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

MpCCI (Fraunhofer SCAI – Algorithms and Scientific Computing)

client-server approach

coupling of parallel codes

coupling functionality on one CPU

no central coupling numerics

http://www.mpcci.de/mpcci/technical-description/system-features.html

The Partitioned Approach – Tools

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

preCICE – our inhouse coupling tool library approach – P2P solver communication coupling of parallel codes

coupling functionality on one CPU

central coupling numerics

Bernhard Gatzhammer

The Partitioned Approach – Tools

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Outline

Fluid-Structure Interactions

The Partitioned Approach

Surface Coupling

Coupling Strategies

Data Mapping for Non-Matching Grids

Lagrangian versus Eulerian Approaches

Conclusion

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Surface Coupling – Coupling Strategies

Fluid Structure

unidirectional coupling

small range of applicability

fixed and almost rigid

structures

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Surface Coupling – Coupling Strategies

Fluid Structure

staggered coupling

large range of applicability

standard approach

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Surface Coupling – Coupling Strategies

Fluid Structure

staggered coupling

instabilities!!!

conditionally stable

forces

velocities/displacements

en1, i=c⋅exp iκxiμt

∣en1, i1∣≈ρ f

mdt∣en1, i∣

compressible fluids

E. H. van Brummelen, Journal of Applied Mechanics (2009)

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Surface Coupling – Coupling Strategies

Fluid Structure

staggered coupling

instabilities!!!

unconditionally unstable

forces

velocities/displacements

en1, i=c⋅exp iκxiμt

∣en1, i1∣=ρ f

m∣κ∣−1∣en1, i∣

incompressible fluids

E. H. van Brummelen, Journal of Applied Mechanics (2009)

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Surface Coupling – Coupling Strategies

Fluid Structure

staggered coupling

instabilities!!!

unconditionally unstable

even worse for smaller dt

in case of massless

structure!

forces

velocities/displacements

incompressible fluids

J. Degroote, J. Vierendeels, In: Fluid-Structure Interaction II,Springer, LNCSE (2010)

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Surface Coupling – Coupling Strategies

Fluid Structure

staggered coupling

instabilities!!!

unconditionally unstable

forces

velocities/displacements

Aitken underrelaxation:

stabilizing low frequencies

slowing down high

frequencies

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Surface Coupling – Coupling Strategies

Fluid Structure

forces

velocities/displacements

u si1=Ass

−1 bs−Asf u fi1

usi1, ϑ , new∣Γ fs

=1−ωi , ϑ⋅usi , ϑ

∣Γ fsωi , ϑ¿ us

i1, ϑ∣Γ fs

for all levels ϑ

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Surface Coupling – Coupling Strategies

Fluid Structure

forces

velocities/displacements

multigrid???

unstable modes

more expensive coupling???

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Surface Coupling – Coupling Strategies

Fluid Structure

forces

velocities/displacements

interface quasi-Newton

(Degroote/Vierendeels):

underrelaxation for low

frequencies

Gauss-Seidel for high

frequencies

essential: few unstable modes!

solve xdispl

=s f x

Δ rit1=−rit= Δr k k=1, , it cto be det.

⇒ Δ x it1= Δ xk k=1, , it c

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

algorithm runtime #iterations

constant underrelaxation 136.5 852.38

Aitken underrelaxation 8.3 50.94

IQN-ILS 3.0 16.21

IQN-ILS(2) 1.3 6.20

IQN-ILS(4) 1.0 4.60

results with preCICE

Compare:Degroote, Bruggemann,

Haeltermann, Vierendeels,Computation & Structure 86,

2008

Surface Coupling – Coupling Strategies

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Surface Coupling – Coupling Strategies

Fluid Structure

forces

velocities/displacements

interface quasi-Newton extensions:

two-grid coupling (ECCOMAS Coupled Problems 2011, H. Bijl)

two-grid construction of sensitivities (ECCOMAS Coupled Problems 2011, J.

Degroote)

parallel computation of sensitivities (Munich Multiphysics Meeting 2001, J.

Degroote)

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Surface Coupling – Coupling Strategies

Fluid Structure

forces

velocities/displacements

other aspect: fitting time steps decisive for

damping of spurious modes (Vierendeels et al., FSI II, Springer, 2010)

order of convergence (van Zuijlen, Bijl, Computers & Structures 83, 2005)

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Surface Coupling – Coupling Strategies

Fluid

non-staggered coupling

parallel!!!

stability?

efficiency?

Structure

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

non-staggered coupling

equality of displacements for non-matching grids

explicit time-stepsolve interface equation exactly

LLM (compressible fluids, Ross, Park, Felippa)Mike Ross, Phd thesis, 2006

Surface Coupling – Coupling Strategies

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

fully parallel coupling

M ff M fI

M If M II M Is

M sI M ssu f

u I

us=

f f

f If s

Block-Jacobi:

fluid: u fi1=M ff

−1 f f−M fI u Ii

interface: u Ii1=M II

−1 f I−M If u fi −M Isu s

i structure: u s

i1=M ss−1 f s−M sI u I

i

Fluid

Structure

Surface Coupling – Coupling Strategies

black-box solvers!!!

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Surface Coupling – Data Mapping

non-matching grids neighbourhood relations? mapping?

without interface grid with interface grid

differences inlocations,

mesh width,discr. order

accuracy?conservation?

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Surface Coupling – Data Mapping

non-matching grids neighbourhood relations? mapping?

without interface grid with interface grid

projections(bi-)linear interpolationradial basis functions

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Surface Coupling – Data Mapping

non-matching grids neighbourhood relations? mapping?

without interface grid with interface grid

always required:neighbourhood

search

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

octree-supported neighbourhood search

octree depth

time (sec)

nodes

7 0.8 203,905

9 4.9 3,288,225

11 48.2 52,662,337

13 662.8 842,687,105

Surface Coupling – Data Mapping

Klaus Daubner

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

conservation of energy at the discrete interface

mapping forces and displacements:

mapping stresses and displacements:

Surface Coupling – Data Mapping

work: {u fT f f=u s

T f s¿ f s=H fs f f , {u ¿ f=H sf us⇒H fs=H sf

T ¿¿

work: {u fT M f

mass matrix

σ f=usT M s

mass matrix

σs

¿σ s=H fsσ f , {u¿ f=H sf u s⇒H fsT M s=M f H sf ¿¿

(de Boer, van Zuijlen, Bijl, ECCOMAS CFD 2006)

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Surface Coupling – Data Mapping

projection interpolation

surface discretiszationrequired

radial basis functions (cf. A. Beckert, H. Wendland, 2001; CP-related work by H. Bijl et al.)

works for arbitrary point clouds

∑i

αi φ ∥x− x i∥p x

http://en.wikipedia.org/wiki/Radial_basis_function

Markus Brenk

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Outline

Fluid-Structure Interactions

The Partitioned Approach

Surface Coupling

Coupling Strategies

Data Mapping for Non-Matching Grids

Lagrangian versus Eulerian Approaches

Conclusion

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Lagrangian versus Eulerian Approaches

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Lagrangian versus Eulerian Approaches

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

monolithic FE: partitioned FE: weakly enforce boundary conditions at cell-cuts

fluideq⋅χ fstructureeq⋅χs

Fluid with Dirichlet boundary (FE):

boundary integrals

from partial integration

boundary condition

enforcing

right hand

side

boundary condition

enforcing

a u , p φ , ξ standard FE

c u , p φ underbracealignl ¿¿

b u φ ,ξ underbracealignl ¿¿

¿ ¿= f φunderbracealignl ¿¿

¿b g φ ,ξ underbracealignl ¿¿

¿ ¿¿

Lagrangian versus Eulerian Approaches

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

monolithic FE:

partitioned FE: weakly enforce boundary conditions at cell-cuts

fluideq⋅χ fstructureeq⋅χs

Janos Benk, method implemented

in Sundance

Lagrangian versus Eulerian Approaches

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

monolithic FE:

partitioned FE: weakly enforce boundary conditions at cell-cuts

fluideq⋅χ fstructureeq⋅χs

γ=1,000 drag lift

111x21 5.57919 0.012239

221x41 5.57935 0.010597

441x81 5.57935 0.010622

γ=10,000

111x21 5.57936 0.0120811

221x41 5.57936 0.0105961

441x81 5.57936 0.0106214

reference 5.579535 0.0106189

Reference values from:R. Becker, M. Braack, R. Rannacher, and C. Waguet. Fast and reliable solutions of the Navier-stokes equations including chemistry. Computer and Visualization in Science, 2(3), 1999.

Lagrangian versus Eulerian Approaches

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

monolithic FE:

partitioned FE: weakly enforce boundary conditions at cell-cuts

fluideq⋅χ fstructureeq⋅χs

Source: Janos Benk

Lagrangian versus Eulerian Approaches

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Outline

Fluid-Structure Interactions

The Partitioned Approach

Surface Coupling

Coupling Strategies

Data Mapping for Non-Matching Grids

Lagrangian versus Eulerian Approaches

Conclusion

Technische Universität München

Miriam Mehl, ICiS Multiphysics Workshop 2011, July 31-August 6

Conclusion

modular multiphysics simulations require partitioned approaches

current partitioned coupling not parallel!!!

methods with general applicability:

Aitken underrelaxation

interface quasi-Newton: few unstable modes

conservative and consistent mapping

modular software structure

structured grids versus unstructured grids

Eulerian versus Lagrangian grids