Fluid structure interaction in abdominal aortic aneurysm using ANSYS Workbench

38
Fluid structure interaction in abdominal aortic aneurysm using ANSYS Workbench by Florentina Ene

description

Fluid structure interaction in abdominal aortic aneurysm using ANSYS Workbench

Transcript of Fluid structure interaction in abdominal aortic aneurysm using ANSYS Workbench

Page 1: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Fluid structure interaction in abdominal aortic aneurysm using

ANSYS Workbench

byFlorentina Ene

Page 2: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Outline

• Objectives• Abdominal aortic aneurysm (AAA)• Computational methods (CM)

Finite Element Analysis (FEA) Computational Fluid Dynamics (CFD) Fluid Structure Interaction (FSI)

• Validation of CM• Comparison of CM• Haemodynamics and mechanical factors

Page 3: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Objectives

• To simulate the interaction between the blood flow and the diseased aneurismal wall by– Computational simulation– Experimental testing

for the study of abdominal aortic aneurysm (AAA)

• To investigate the influence of certain haemodynamics factors

Page 4: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Abdominal Aortic Aneurysm (AAA)

• AAA - a localised abnormal dilatation of the abdominal aorta

• Diameter - 1.5 times larger than the nominal diameter

• Causes - primarily atherosclerosis

• Population - 4:1 ratio male to female, 75% over 60 years old

• Risk - a high risk of sudden rupture

• Rupture - 3:1 female to male risk rupture

http://www.emedicine.com/MED

Page 5: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Physics of AAA

• Rupture of AAA– Surgical criterion: max diameter 5-5.5 cm

– Maximum wall stress (Raghavan, 1996)(Raghavan, 1996)

– Asymmetry influence (Vorp, 1998; Scotti,2005)(Vorp, 1998; Scotti,2005)

– Intraluminal thrombus (ILT) ((Wang, 2002)Wang, 2002)

– Pulsating interaction (DiMartino, 2001)(DiMartino, 2001)

Page 6: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Hemodynamics in AAA

• Low flow

• Recirculation regions

• Secondary flow

• Low mean wall shear stress

• Temporal oscillations in shear

(Moore,1992; Moore, 1994; Taylor,1998; Taylor, 2002; Long,1998; Tang, 2006)(Moore,1992; Moore, 1994; Taylor,1998; Taylor, 2002; Long,1998; Tang, 2006)

Page 7: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

ANSYS Workbench

• ANSYS Workbench– ANSYS ICEM

Mesh– ANSYS Simulation (ANSYS Structural) FEA– ANSYS CFX CFD

Page 8: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Computational Methods for AAA

• Structural Pressure Analysis (FEA)– Static (sFEA)– Transient (tFEA)

• Computational Fluid Dynamics (CFD)– Steady flow (sCFD)– Pulsating flow (tCFD)

• Fluid-Structure Interaction (FSI)– Steady FSI (sFSI)– Pulsating FSI (tFSI)

Page 9: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Computational Methods for AAA

• FEA evaluates rupture potential– Deformations – Stresses

• CFD evaluates unfavourable flow conditions– Velocity distribution– Pressure distribution– Wall shear stress

• FSI evaluates rupture potential due to extra loading of unfavourable flow conditions

Page 10: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Steps of Computational Methods

Solver

Post-processor

Pre-processor

• Geometry• Mesh (Elements)• Materials• Boundary conditions

• Convergence• Solution monitor and control

• Independence analysis• Validation• Comparison

2

3

1

Page 11: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Realistic Aorta Model withAneurysm from CT Scan

IdealisedRealistic

Mimics,Materialise

1

Page 12: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

AAA Geometry

Realistic AAA model with/without ILT

Idealised AAA model with/without ILT

1

Page 13: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Meshing1

• Multiblocking technique with O-grid strategy

Page 14: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Meshing

• Hexahedral – fluid volume - Blood• Quadratic – shell element - Wall• Tetrahedral – solid volume - ILT

1

Page 15: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Material and Boundary Conditions

Fluid domainCFD simulation

Solid domainFEA simulation

Material properties

Material properties

Simulationparameters

Boundaryconditions

Simulationparameters

Boundaryconditions

Solver

FEA CFD

•Linear elastic•E=2.7 MPa•ν=0.45•ρ=2000 kg/m3

•Newtonian homogenous incompressible laminar•ρ=1055 kg/m3

•µ=0.0035 Pa s•Ui=0,i=x,y,z@Si,So•FSI interface

@wall(Pressure from

CFD)

• Time step 0.01s• 5 pulse cycles

• Time step 0.01s• 5 pulse cycles

Geometry&

Mesh

1

-0.05

0.05

0.15

0.25

0 0.4 0.8 1.2

Time (s)

Vel

oci

ty (

m/s

)

-10

0

10

20

30

40

Pre

ssu

re (

mm

Hg

)

Velocity inlet Pressure outlets

Page 16: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Solver

FLUID governing equations• The continuity equation

• Navier-Stokes momentum equation

SOLID governing equations• The motion equation• The equilibrium equation • The constitutive equation

FSI• Fluid: Force send as load to solid• Solid: Displacement send as BC to fluid

2

)(in Skl tCijklij

)(on S ttn iiij )(in S

, taf iijij

Fluid

Solid

0u

uuuu 2)/(/)(

ffpt

Page 17: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Postprocessor

• Vector/Countours/Streamlines/Animation/GraphsResults for every domain’s element

• Is the solution valid?– Engineering criteria– Compare to analytical solutions– Compare to experimental solutions– Compare to previous studies– Compare to similar applications– Mesh check

3

Page 18: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Independence Tests

Independence tests Determine

Mesh type independence 1 mesh type

Mesh independence 1 mesh density

Convergence criteria 1 convergence value

For time-dependent analysis

Pulse cycle independence No of pulse cycles

Timestep independence 1 timestep size

3

Page 19: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Verification and Optimisation

Analytical solutions

Solution type Wall type Numerical technique

Laplace Pressure in thin wall Elastic CSD (FEA)

Hagen-Poiseuille’s Steady flow Rigid CFD (FVM)

Womersley Pulsatile flow Rigid CFD (FVM)

Womersley Pulsatile flow Elastic FSI (FEA, FVM)

Inlet surface

FLUID DOMAIN

Wall surface

Outlet surface

Inlet edge

SOLID DOMAIN

Wall surface

Outlet edge

Solid domain Fluid domain

Young’s modulus E=2.7MPa Density ρ=1055kg/m3

Poisson ratio υ=0.45 Viscosity µ=0.0034 Pas

Density ρ=2000kg/m3

Thickness (SHELL181) h=0.002m

3

Page 20: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Validation with Analytical Solutions

Steady flow in rigid tube

3

0

0.1

0.2

-0.01 -0.005 0 0.005 0.01

Radial distance (m)

Ve

loc

ity

(m

/s)

Theory CFD

0

0.04

0.08

0.12

-1 -0.5 0 0.5 1

Diameter ratio

Velo

cit

y w

(m

/s)

Theory FSI0.25s

Pulsatile flow in elastic tube

Pulsatile flow in rigid tube

0.25 sec

0

0.04

0.08

0.12

-1 -0.5 0 0.5 1

Diameter Ratio

Ve

loc

ity

(m

/s)

Theory CFD

Page 21: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Validation with Experimental/Published Results

Pulsatile pressure in compliant AAA model

3

Static pressure in compliant AAA model

0.00

0.50

1.00

1.50

0 5 10 15 20 25

Axial length from maximum diameter (mm)

Ra

dia

l de

form

ati

on

(m

m)

10

20

30

Ra

diu

s (

mm

)

FEA w/ILT EXP w/ILT FEA w/outEXP w/out Outer radius Inner radiusILT radius

0

0.4

0.8

1.2

0 0.4 0.8 1.2

Time (s)

Ch

an

ge

in d

iam

ete

r(m

m)

Position 1 FEAPosition 2 FEAPosition 3 FEAPosition 4 FEAPosition 1 EXPPosition 2 EXPPosition 3 EXPPosition 4 EXP

Cp1 - rest

Page 22: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Validation with Experimental/Published Results3

Pulsatile flow in rigid wall bifurcation

(Morris, 2004)Steady flow in rigid wall bifurcation

(Walburn & Stein, 1981)

10 mm

-0.05

0.05

0.15

0.25

0.35

0.45

-1 -0.5 0 0.5 1Diameter ratio

Ve

loc

ity

(m

/s)

Walburn & Stein CFDPosition 2

0

0.02

0.04

0.06

0.08

-1 -0.5 0 0.5 1

Diameter ratio

Ve

loc

ity

(m

/s)

LDA CFD

Page 23: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Ultrasound Flow Visualisation3

Page 24: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Comparison of CM

• 6 numerical methods– sFEA/tFEA– sCFD/tCFD– sFSI/tFSI

• 3 models Idealised Realistic Realistic with ILT

3

Page 25: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Comparison in Realistic AAA3

Page 26: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Comparison in Realistic AAA

1

2

3

4

1 - AAA without ILT

2 - AAA with ILT

POSITIONS

3

Page 27: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Comparison in Realistic AAA

• Deformations & Von Mises Stresses– Max 5% difference between sFEA and tFSI

• Pressure– Max difference 2%

• Velocity– tCFD>tFSI by max 40%

• Wall shear stress– tCFD>tFSI by max 20%

• Computational effort– tFSI - 10 x sFEA sFEA may be used as clinical tool– tFSI – 10 x sCFD

3

Page 28: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Haemodynamics & Mechanical Factors

• Non-planarity effect• Aortic arch• Wall thickness• ILT presence

• ILT properties Exp• Wall curvature

A1

A2

A3

A4

A5

A6

Page 29: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

FSI in realistic aorta model with aneurysmA1

Page 30: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

FSI in realistic aorta model with aneurysmA1

Page 31: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Aortic Arch Velocity (tCFD)

Max acceleration

T=0.15s

Max velocityT=0.25s

Max deceleration

T=0.35s

A2

Page 32: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Wall Thickness

– AAA – thinning of wall

– 3 models of varying wall thickness

Aorta

H1 & H2: 2 mm

AAA

H1 : 2 mm

H2: 1 mm

Iliac arteries:

H1 & H2: 2 mm

0

0.001

0.002

0.00 0.05 0.10 0.15 0.20

Axial length (m)

Th

ick

ne

ss

(m

)

0

0.02

0.04

Dia

me

ter

(m)Thickness Diameter

Aorta AAA Iliac

arteries

H3

A3

Page 33: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Wall ThicknessD

efo

rma

tio

n (

m)

AAA without ILTH1 H2 H3

Vo

n M

ise

s s

tre

ss

(P

a)

Vo

n M

ise

s s

tre

ss

(P

a)

De

form

ati

on

(m

)

AAA with ILTH1 H2 H3

A3

Page 34: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

AAA With and Without ILTV

elo

cit

y (

m/s

)

Wa

ll s

he

ar

str

es

s (

Pa

)

De

form

ati

on

(m

)

Pre

ss

ure

(P

a)

-ILT +ILT -ILT +ILT

A4

Page 35: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Influence of ILT Properties &Wall Curvature

A5

• Wall curvature– ↑ peaks in diametral strains and compliance– ↑ high stress

1: No ILT2: ILT E=0.05 MPa3: ILT E=0.1 MPa4: ILT E=0.2 MPa

Page 36: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Conclusions

• ANSYS was proven to be an efficient and accurate tool to analyse haemodynamics and mechanical factors influencing AAA

• Mesh independence and pulse cycle independence should be optimised

• Validation of FEA/CFD/FSI was obtained with analytical and experimental results

Page 37: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Conclusions

• AAA rupture could be predicted using computational simulation

• Effects of patient specific geometry are important on haemodynamics in AAA

• Wall thickness and ILT presence are essential in evaluating AAA rupture potential

Page 38: Fluid structure interaction in  abdominal aortic aneurysm using  ANSYS Workbench

Thank you!