FLUENT-Intro 14.0 L08 MovingZones

download FLUENT-Intro 14.0 L08 MovingZones

of 37

Transcript of FLUENT-Intro 14.0 L08 MovingZones

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    1/37

    2011ANSYS,Inc. January19,20121 Release14.0

    14.0Release

    IntroductiontoANSYS

    FLUENT

    Lecture8NonConformalInterfaces&MovingZones

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    2/37

    2011ANSYS,Inc. January19,20122 Release14.0

    LectureTheme:

    ManyCFDapplicationsacrossindustriesinvolvesystemsordeviceswithmovingparts. FLUENToffersmanydifferentmodelsforrotatingmachinery,

    forarbitrary

    prescribed

    motion

    and

    for

    objects

    whose

    path

    isdetermined

    by

    theflow.

    LearningAims:Youwilllearn:

    Howtodefinenonconformalinterfacesandperiodicboundaryconditions

    Themodelsavailableforrotatingmachinerysuchasthemultiplereferenceframeandslidingmeshmodels

    Thedifferentdynamicmeshingmethodsforarbitrarymotion,includingthecoupled6DOFsolver

    LearningObjectives:

    YouwillbeabletousenonconformalmeshesandwillbecomefamiliarwithFLUENTsmodelsforsystemswithmovingpartsandwhenaparticularmodelisapplicable.

    Introduction

    Introduction NonConformalInterfaces RotatingZones DynamicMesh Summary

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    3/37

    2011ANSYS,Inc. January19,20123 Release14.0

    Acrossaninterfacebetweentwocellzones,thenodesmayormaynotexactlyalign

    Ifthenodesmatchperfectly,thisisaConformalmesh

    IfusingDesignModeler,combiningbodiesintoasinglepartwillgiveaconformalmesh Ifthenodesdonotmatchup,thisisaNonConformalmesh

    FLUENTcaninterpolateacrosstheinterface,butthismustbedefinedintheGUI.

    Ifnot,FLUENTwilltreattheinterfaceasawall,andnofluidcanflowthrough.

    Overview

    NonconformalInterfaces

    Conformal NonConformal

    Introduction NonConformalInterfaces RotatingZones DynamicMesh Summary

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    4/37

    2011ANSYS,Inc. January19,20124 Release14.0

    NonconformalInterfacescanbeusedfor: Connectionofmismatchedmeshes(hextotet forexample)

    asinglemeshfilemaycontainnonmatchingmeshregionsandrequirenonconformalinterfaces

    Changesinreferenceframesbetweencellzones

    evenifthemeshmatches

    Connectdifferenttypesofcellzonestogether(e.g.FluidandSolid)

    Createperiodicregionswithinadomain

    Overview

    NonconformalInterfaces

    Introduction NonConformalInterfaces RotatingZones DynamicMesh Summary

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    5/37

    2011ANSYS,Inc. January19,20125 Release14.0

    InsertingNonconformalInterfaces

    Tocreateanonconformalinterface:

    Step1:Define/BoundaryConditions

    Changethetypeofeachpairofzonesthatcomprisesthenonconformal

    boundarytointerface

    Step2:Define/MeshInterfaces

    EnteranamefortheinterfaceintheMeshInterfacetextentrybox

    Specifythetwointerfacezonesthatcomprisethemeshinterfacebyselectingoneormore

    zonesintheInterfaceZone1listandoneormorezonesintheInterfaceZone2list Ifoneofyourinterfacezonesismuchsmallerthantheother,youshouldspecifythesmallerzone

    asInterfaceZone1toimprovetheaccuracyoftheintersectioncalculation

    EnablethedesiredInterfaceOptions ifappropriate

    NonconformalInterfaces

    Introduction NonConformalInterfaces RotatingZones DynamicMesh Summary

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    6/37

    2011ANSYS,Inc. January19,20126 Release14.0

    TocreateaPeriodicboundarycondition EnablethePeriodicBoundaryConditionoptionintheMeshinterfacespanel SelecteitherTranslationalorRotationalastheperiodicboundaryconditionType

    RetaintheenableddefaultsettingofAutoComputeOffsetifyouwantANSYSFLUENTto

    automaticallycomputetheoffset Meshcanbenonconformal

    PeriodicBoundaryCondition

    TranslationalPeriodicity Simulatesgeometriesthathavetranslational

    periodicity

    Allowsforeitherthemassflowrateorthepressurechangeacrosstheinterfacetobespecified

    Thequantitynotspecifiedwillbepartofthesolution

    RotationalPeriodicity

    Simulatesrotationallyperiodicgeometries

    Beforeproceeding,youhavetocorrectlyentertherotationalaxisforthecorrespondingcellzoneintheBCpanel

    NonconformalInterfaces

    Introduction NonConformalInterfaces RotatingZones DynamicMesh Summary

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    7/37

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    8/37

    2011ANSYS,Inc. January19,20128 Release14.0

    x

    y

    MovingReferenceFramesvs.MeshMotion

    MovingReferenceFrame Domain moveswithcoordinatesystem

    Tofollowthemotionofthebody,topologyofthemeshdoesnotneedtobeupdated

    Rotation/TranslationoftheMovingdomain

    MeshMotion Domainchangesshapeasafunctionoftime

    Tofollowthemotionofthebody,topologyofthemeshneedtobeupdated

    Smoothing/Remeshing ofthedomain

    MovingZones

    Introduction NonConformalInterfaces RotatingZones DynamicMesh Summary

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    9/37

    2011ANSYS,Inc. January19,20129 Release14.0

    RotatingEquipment

    Whyusearotatingreferenceframe?

    Aflowfieldwhichisunsteadywhenviewedinastationaryframecanbecomesteadywhenviewedinarotatingframe

    Steadystateproblemsareeasiertosolve... Additionalaccelerationtermsareaddedtothemomentumequations

    SimplerBCs

    Lowcomputationalcost

    Easiertopostprocessandanalyze

    Limitation: Youmaystillhaveunsteadinessintherotatingframedueto

    turbulence,circumferentiallynonuniformvariationsinflow,separation,etc.

    Example:vortex

    shedding

    from

    fan

    blade

    trailing

    edge

    Rotationallyperiodicboundariescanbeemployedforefficiency(reduceddomainsize)

    Centrifugal

    Compressor

    (single blade passage)

    MovingZones

    Introduction NonConformalInterfaces RotatingZones DynamicMesh Summary

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    10/37

    2011ANSYS,Inc. January19,201210 Release14.0

    Singlevs.MultipleReferenceFrameModeling

    stationarywall

    MRFis necessarySRFis sufficient

    WhendomainsrotateatdifferentratesorwhenstationarywallsdonotformsurfacesofrevolutionMultipleReferenceFrames(MRF)areneeded

    stationary wall

    MRFis necessary

    stationarywall

    baffle

    MovingZones

    Introduction NonConformalInterfaces RotatingZones DynamicMesh Summary

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    11/37

    2011ANSYS,Inc. January19,201211 Release14.0

    DifferentApproaches:

    OverviewofModelingApproaches: SingleReferenceFrame(SRF)

    Entirecomputationaldomainisreferredtoamovingreferenceframe

    steadystate

    MultipleReferenceFrame(MRF) Selectedregionsofthedomainarereferredtomovingreferenceframes

    Interactioneffectsareignored

    steadystate

    Mixing

    Plane

    (MPM) Influenceofneighboringregionsaccountedforthroughuseofamixingplanemodelatrotating/stationarydomaininterfaces

    Circumferentialnonuniformitiesintheflowareignored

    steadystate

    SlidingMesh(SMM) Motionofspecificregionsaccountedforbyameshmotionalgorithm

    Flowvariablesinterpolatedacrossaslidinginterface

    Unsteadyproblemcancaptureallinteractioneffectswithcompletefidelity,but

    morecomputationallyexpensivethanSRF,MRF,orMPM

    MovingZones

    Introduction NonConformalInterfaces RotatingZones DynamicMesh Summary

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    12/37

    2011ANSYS,Inc. January19,201212 Release14.0

    DefiningaMRFZone

    ThesimplestapproachtosetupandsolveisusingaMovingReferenceFrame Solutionissteadystate

    Meshneveractuallymoves,localaccelerationsappliedtoeachgridcell

    This

    is

    applicable

    if

    there

    is

    a

    steady

    state

    solution

    to

    the

    problem,

    so: Exactrelativepositionsofmovingandstationary(rotor/stator)partsdoesnotmatter

    Novortexsheddingorothertransientphenomena

    Foreachcellzone,enable

    FrameMotionandsetthe

    detailsofthemotion.

    This

    motion

    can

    be

    defined

    relative

    to

    another

    zone,

    it

    doesnt

    have

    to

    be

    set

    to

    absolute

    coordinates

    MovingZones

    Introduction NonConformalInterfaces RotatingZones DynamicMesh Summary

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    13/37

    2011ANSYS,Inc. January19,201213 Release14.0

    DefiningaSlidingMeshproblem

    Inotherproblems,onemustactuallymovethemeshcomponents. Thesolutionisthereforetransient.

    DefinethelinearorrotationalmotionofeachzonetouseaslidingzonebysettingMeshMotion

    Rememberthatinthiscasethedifferentcellzonesareactuallymovedateachtimestep. Makesurethemodelisalwayssavedbeforetestingthemotion! Otherusefultipsaboutrunningatransientsimulation(likegeneratingimagesontheflywillbegivenin

    alaterlecture.

    MovingZones

    Introduction NonConformalInterfaces RotatingZones DynamicMesh Summary

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    14/37

    2011ANSYS,Inc. January19,201214 Release14.0

    MeshDeformation

    MeshDeformationcanbeappliedinsimulationswhereboundariesorobjects

    aremoved Thesolvercalculatesnodaldisplacementsoftheseregions

    andadjuststhesurroundingmeshtoaccommodatethem

    Examplesofdeformingmeshesinclude Automotivepistonmovinginsideacylinder

    Aflapmovingonanairplanewing

    Avalveopeningandclosing

    Anarteryexpandingandcontracting

    MovingZones

    Introduction NonConformalInterfaces RotatingZones DynamicMesh Summary

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    15/37

    2011ANSYS,Inc. January19,201215 Release14.0

    DynamicMesh(DM)Methods

    Internalnodepositionsareautomaticallycalculatedbasedonuserspecifiedboundary/objectmotion,celltype,andmeshingschemes

    BasicSchemes Springanalogy(smoothing)

    Localremeshing

    Layering

    OtherMethods 2.5D

    Userdefinedmeshmotion

    Incylindermotion(RPM,strokelength,crankangle,)

    PrescribedmotionviaprofilesorUDF

    Coupledmotionbasedonhydrodynamicforcesfromtheflowsolution,viaFLUENTssixdegreeoffreedom(6DOF)solver

    MovingZones

    Introduction NonConformalInterfaces RotatingZones DynamicMesh Summary

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    16/37

    2011ANSYS,Inc. January19,201216 Release14.0

    DynamicMeshMethods

    LayeringLayersofcellsaregeneratedand

    collapsedasthey

    are

    overrun

    by

    themovingboundary. Layeringis

    appropriateforquad/hex/prism

    mesheswithlinearorrotational

    motionandcantoleratesmallor

    largeboundarydeflections

    LocalRemeshingInlocalremeshing,ascellsbecome

    skewedduetomovingboundaries,cellsarecollapsedandtheskewed

    regionisremeshed. Localremeshing

    isappropriatefortri/tet mesheswith

    largerangeofboundarymotion

    SpringAnalogySpringanalogyisusefulwhenthere

    aresmallboundarydeformations.Theconnectivityandcellcountis

    unchangedduringmotion. Spring

    analogyisappropriatefortri/tet

    mesheswithsmalldeformations

    MovingZones

    Introduction NonConformalInterfaces RotatingZones DynamicMesh Summary

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    17/37

    2011ANSYS,Inc. January19,201217 Release14.0

    TheDynamicMesh(DM)Model

    Combinationofapproaches:

    Initialmeshneedsproperdecomposition

    Layering: Valvetravelregion

    Lowercylinderregion

    Remeshing: Uppercylinderregion

    Nonconformalinterface

    betweenzones

    AnadvancedtrainingcourseonDynamicMeshisavailable

    MovingZones

    Introduction NonConformalInterfaces RotatingZones DynamicMesh Summary

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    18/37

    2011ANSYS,Inc. January19,201218 Release14.0

    6DOFCoupledMotion

    Objectsmoveasaresultof aerodynamicforcesandmomentsactingtogetherwith

    otherforces,suchasthegravityforce,

    thrustforces,orejectorforces

    Insuchcases,themotionandtheflowfieldarethuscoupled,andwecallthiscoupled

    motion

    FLUENTprovidesthe6DOFModel Thetrajectoryofanobjectiscomputedbased

    ontheaerodynamicforces/moments,

    gravitationalforce,

    and

    ejector

    forces

    The6DOFUDFisfullyparallelized

    MovingZones

    Introduction NonConformalInterfaces RotatingZones DynamicMesh Summary

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    19/37

    2011ANSYS,Inc. January19,201219 Release14.0

    Summary

    Fivedifferentapproachesmaybeusedtomodelflowsovermovingparts Single(Rotating)ReferenceFrameModel

    MultipleReferenceFrameModel

    MixingPlane

    Model

    SlidingMeshModel

    DynamicMeshModel(ConsiderourAdvancedTrainings)

    Thefirstthreemethodsareprimarilysteadystateapproacheswhilesliding

    meshis

    inherently

    unsteady

    Enablingthesemodelsinvolvesinpart,changingthestationaryfluidzonestoeitherMovingReferenceFrameorMovingMesh

    Mostphysicalmodelsarecompatiblewithmovingreferenceframesormovingmeshes(e.g.multiphase,combustion,heattransfer,etc.)

    MovingZones

    Introduction NonConformalInterfaces RotatingZones DynamicMesh Summary

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    20/37

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    21/37

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    22/37

    2011ANSYS,Inc. January19,201222 Release14.0

    ES SThU

    t

    h

    )()(

    MotioninSolidZones

    Insolidzones,theconservationoftheenergyequationcanaccountforheattransportduetomotionofthesolid,conduction

    and volumetricheatsources

    Notethatthesolidisneverphysicallymovedwhenusingthisapproach,thereisonlyanadditionaladvectiontermaddedtotheenergyequation

    Solid Velocity

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    23/37

    2011ANSYS,Inc. January19,201223 Release14.0

    MotioninSolidZones

    Solidzonemotioncanbeclassifiedintotwoareas:

    TranslationalMotion Forexample,aprocesswherea

    solidmovescontinuouslyinalinear

    directionwhilecooling

    Thesolidmustextendcompletely

    throughthedomain

    RotationalMotion

    Forexample,abrakerotorwhichisheatedbybrakepads

    q

    q=0

    q=0

    q=0

    Tin= Tspec

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    24/37

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    25/37

    2011ANSYS,Inc. January19,201225 Release14.0

    NavierStokesEquations:RotatingReference

    Frames Equationscanbesolvedinabsoluteorrotating(relative)

    referenceframe

    RelativeVelocityFormulation ObtainedbytransformingthestationaryframeNSequationstoarotating

    referenceframe

    Usestherelativevelocityasthedependentvariable

    CanbeselectedundertheGeneraltabinProblemSetup

    AbsoluteVelocityFormulation Derivedfromtherelativevelocityformulation

    Usestheabsolute

    velocity

    asthedependentvariable

    DefaultformulationforrotatingzonesinFLUENT

    Rotationalsourcetermsappearinmomentumequations

    x

    y

    z

    z

    y

    x

    stationary

    frame

    rotating

    frame

    axis of

    rotation

    r

    CFD domain

    or R

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    26/37

    2011ANSYS,Inc. January19,201226 Release14.0

    TheVelocityTriangle

    Therelationshipbetweentheabsoluteandrelativevelocitiesisgivenby

    Inturbomachinery,thisrelationshipcanbeillustratedusingthelawsofvectoraddition.ThisisknownastheVelocityTriangle

    V

    W

    U

    VelocityRelative

    VelocityAbsolute

    W

    V

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    27/37

    2011ANSYS,Inc. January19,201227 Release14.0

    ComparisonofFormulations

    2 rWx

    p

    wWt

    w

    vrxx

    x

    Relative Velocity Formulation: x-momentum equation

    Vx

    pvW

    t

    vvxx

    x

    Absolute Velocity Formulation: x-momentum equation

    Coriolis acceleration Centripetal acceleration

    Coriolis + Centripetal accelerations

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    28/37

    2011ANSYS,Inc. January19,201228 Release14.0

    IntroductiontotheMRFModel

    Thedomainissubdividedintostationaryandrotatingfluidzones Morethanonerotatingzoneispermitted

    Zonescanrotateatdifferentspeeds

    Governingequationsaresolvedineachfluidzone SRFequationsusedinrotatingzones

    Attheinterfacesbetweentherotatingandstationaryzones,appropriatetransformationsofthevelocityvectorandvelocitygradientsareperformedto

    computefluxesofmass,momentum,energy,andotherscalars

    Flowisassumedtobesteadyineachzone(clearlyanapproximation)

    MRFignorestherelativemotionsofthezoneswithrespecttoeachother Doesnotaccountforfluiddynamicinteractionbetweenstationaryandrotating

    components

    ForthisreasonMRFisoftenreferredtoasthefrozenrotorapproach

    Ideally,theflowattheMRFinterfacesshouldberelativelyuniformormixedout

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    29/37

    2011ANSYS,Inc. January19,201229 Release14.0

    TheMixingPlaneModel(MPM)

    TheMPMisatechniquewhichpermitssteadystatesolutionsformultistageaxialandcentrifugalturbomachines whereupstreamanddownstreamperiodicdomainsdonotmatchattheconnection

    Advantage:

    MPMrequiresonlyasinglebladepassageperbladerowregardlessofthenumberofblades,becauseofcircumferentialaveragingnonuniformitiesintheflowatthemixingplaneinterface

    MPMcanhandledifferentnumbersofbladesatbothsidesofmixingplane

    Mixing plane interface

    Fan (9 blades) Vane (12 blades)

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    30/37

    2011ANSYS,Inc. January19,201230 Release14.0

    MPMvs.MRF

    MRFcanbeusedonlyifwehaveequalperiodicanglesforeachrow

    Formultistageturbomachinery problems Thestageboundaryconditionsareoftenknown(e.g.inlettotalpressureandtemperatureandstageoutletstaticpressure)butnottheinterstageconditions

    Bladecountswillgenerallynotbethesame fromonerowtothenext

    TheMPMrequiresonlyasinglebladepassageperbladerowregardlessofthenumberofblades

    Thisisaccomplishedbymixingout(averaging)the

    circumferentialnonuniformitiesintheflowattheinterstage(mixingplane)interface

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    31/37

    2011ANSYS,Inc. January19,201231 Release14.0

    Axialvs.RadialMixingPlanes

    SRFsolutionsareobtainedineachdomain,withthedomainslinkedbypassing

    boundaryconditionsfromonezonetoanother

    Theinlet/outletboundariesmustbeassignedBCtypesinoneofthefollowingcombinations:

    Pressureoutlet/Pressureinlet

    Pressureoutlet/Velocityinlet

    Pressureoutlet/Massflowinlet

    Axial machines Radial machines

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    32/37

    2011ANSYS,Inc. January19,201232 Release14.0

    MixingPlane SetUp

    MixingPlaneModel

    GUI:Define MixingPlanes

    p

    drrpz

    ),(1

    )(

    p

    dzzp

    r),(

    1)(

    MixingPlaneGeometrydeterminesmethodofcircumferentialaveragingChooseRadialforaxialflowmachinesChooseAxialforradialflowmachines

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    33/37

    2011ANSYS,Inc. January19,201233 Release14.0

    TheSlidingMeshModel(SMM)

    Therelativemotionofstationaryandrotatingcomponentsinaturbomachinewillgiverisetounsteadyinteractions

    Theseinteractionsaregenerallyclassifiedasfollows: Potentialinteractions

    (pressurewaveinteractions)

    Wakeinteractions

    Shockinteractions

    BothMRFandMPMneglectunsteadyinteractionentirelyandthusarelimitedtoflowswheretheseeffectsareweak

    Ifunsteadyinteractioncannotbeneglected,wecanemploytheSlidingMeshmodel(SMM)toaccountfortherelativemotionbetweenthestationaryandrotatingcomponents

    wake interaction

    Shock

    interactionpotential

    interaction

    StatorRotor

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    34/37

    2011ANSYS,Inc. January19,201234 Release14.0

    HowtheSlidingMeshModelWorks

    LiketheMRFmodel,thedomainisdividedintomovingandstationaryzones,separatedbynonconformalinterfaces

    UnliketheMRFmodel,eachmovingzonesmeshwillbeupdatedasafunction

    of

    time,

    thus

    making

    the

    mathematical

    problem

    inherently

    unsteady.

    AnotherdifferencewithMRFisthatthegoverningequationshaveanewmovingmeshform,andaresolvedinthestationaryreferenceframeforabsolutequantities

    MovingreferenceframeformulationisNOTusedhere(i.e.noadditionalaccelerationsactingassourcestermsinthemomentumequations)

    Equationsareaspecialcaseofthegeneralmoving/deformingmeshformulation Assumesrigidmeshmotionandsliding,nonconformalinterfaces

    cells at time t cells at time t + t

    moving mesh zone

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    35/37

    2011ANSYS,Inc. January19,201235 Release14.0

    NSEquations:SlidingMesh

    SdqvvvSdpeUVedt

    d

    SdkpvUVdVvdt

    d

    SdSdjpvUVdVvdt

    d

    SdSdipvUVdVvdt

    d

    UVdVdt

    d

    S

    zvzyvyxvx

    S

    t

    V

    t

    S

    vz

    S

    z

    V

    z

    S

    vy

    S

    y

    V

    y

    S

    vx

    S

    x

    V

    x

    SV

    0)( (continuity)

    (x momentum)

    (y momentum)

    (z momentum)

    (energy)

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    36/37

    2011ANSYS,Inc. January19,201236 Release14.0

    SMMSetup

    Enabletheunsteadysolver

    DefineslidingzonesasInterfaceBCtypes

    Foreachinterfacezonepair,createanonconformalinterface

    EnablePeriodicoptionifsliding/rotatingmotionisperiodic.

    EnableCoupledforconjugateheattransfer

    Formovingzones,selectMoving MeshasMotionTypeinFluid BCpanel

    OtherBCsaresameasSRF,MRFmodels

  • 7/24/2019 FLUENT-Intro 14.0 L08 MovingZones

    37/37

    2011ANSYS,Inc. January19,201237 Release14.0

    ChooseappropriateTime Step SizeandMax Iterationsper Time Steptoensuregoodconvergencewitheachtimestep

    Time Step Sizeshouldbenolargerthanthetimeittakesfora

    movingcelltoadvancepastastationarypoint:

    Advancethesolutionuntiltheflowbecomestimeperiodic(pressures,velocities,etc.,oscillatewitharepeatingtimevariation).

    Usuallyrequiresseveralrevolutionsofthegrid.

    Goodinitialconditionscanreducethetimeneededtoachievetimeperiodicity`

    SolvingSMMProblems

    R

    st

    s = Average cell size R = Translational speed