FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity...

21
FloEFD Validation Examples Your Initials, Presentation Title, Month Year

Transcript of FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity...

Page 1: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

FloEFD Validation Examples

Your Initials, Presentation Title, Month Year

Page 2: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

FloEFD Validation and Software Test Matrix

Before the release of each version of FloEFD a suite of 300 test cases are run through the different CAD embedded versions of the software

The test matrix ranges from simple 2D tests to industrial scale 3D benchmarks (see the following slides for a sample set of FloEFD validations)

The validation suite includes many classical CFD benchmark cases including a wide range of flow turbulence scenarios and regimes suitable for a General Purpose CFD code

The following slides illustrate some of the benchmarks each FloEFD release has to meet.

Page 3: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

0

5

10

15

0 0,2 0,4 0,6 0,8 1

Y (mm)

X/LR

separationstreamlines,calculation

vortexcenter,calculation

Resistance

Velocity profiles

Recirculation zone

FloEFD Validation: Flow in 2D Channels with bilateral and unilateral expansions (Backward Facing Steps)

1

1Idelchik, I.E., Handbook of Hydraulic Resistance.

2nd ed., McGraw Hill, New York, 1979

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,0 0,2 0,4 0,6 0,8 1,0

zs

A0/A1

theory

EFD.Lab

1

2

2Yanshin, B.I.: Hydrodynamic Characteristics of Pipeline Valves and Elements.

Convergen Sections, Divergent Sections and Valves. “Mashinostroenie”, Moscow, 1965

FloEFD

Page 4: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

T VX VY Streamlines

Nusselt number vs. Rayleigh number

0

1

2

3

4

5

6

7

8

9

10

1,E+03 1,E+04 1,E+05 1,E+06

Nuav

Ra

Refs.10,11

Ref.12

EFD.Lab

FloEFD Validation: Natural Convection in a Square Cavity

Dimensionless Velocities vs. Rayleigh Number

References10 Davis, G. De Vahl; Jones, I.P.: Natural Convection in a Square Cavity: a Comparison Exercise. Int. J. for Num. Meth. In Fluids, v.3, pp. 227-248 (1983)11 Emery, A., Chu, T.Y.: Heat Transfer across Vertical Layers. J. Heat Transfer, v. 87, p. 110 (1965)12 Denham, M.K., Patrick M.A.: Laminar Flow over a Downstream Facing Step in a Two-Dimensional Flow Channel. Trans. Instn. Chem. Engrs., v. 52, pp. 361-367 (1974)

FloEFD

Page 5: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

FloEFD Validation: Couette Flow between Parallel Flat Plates at Re = 3.4 x 104

A classical plane flow is one between two parallel infinite flat plates spaced at a distance h from one another and moving at velocity U in opposite directions ,

Dimensionless velocity profiles for different meshes (10, 20, 40, 80 mesh cells across the channel) compare well with experimental data illustrating that with relatively coarse meshes good predictions can be expected when using FloEFD.

h

y

x

u(y)

U

-U

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

-1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0

u/U

y/(h/2)

experiment (Ref.9)

FloEFD, 10 cells

FloEFD, 20 cells

FloEFD, 40 cells

FloEFD, 80 cells

References

1. Schlichting, H. Boundary-Layer Theory. McGraw-Hill, New York, 1979.

1)

Page 6: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 Re

Sh

0.1

1

10

100

1000

1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

ReD

NuD Calculation, steady-state

Calculation, time-dependent

Flow Trajectories over and past a Circular Cylinder at Re=41:Qualitative Comparison with Experiment (Ref 9)

Strouhal Number vs. Reynolds Number (Ref 4) Drag Coefficient vs. Reynolds Number (Ref 3)

Nusselt Number vs. Reynolds Number(Ref 6)

FloEFD Validation: Flow and Heat Transfer over a Circular Cylinder for Low Reynolds Numbers

References3. Panton, R.L., Incompressible Flow. 2nd ed., John Wiley & Sons, Inc., 19964. White, F.M., Fluid Mechanics. 3rd ed., McGraw-Hill, New York, 19946. Holman, J.P., Heat Transfer. 8th ed., McGraw-Hill, New York, 19979. Davis, G. De Vahl: Natural Convection of Air in a Square Cavity: a Bench Mark Numerical Solution. Int. J. for Num. Meth. In Fluids, v. 3, pp. 249-264 (1983)

Page 7: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

FloEFD Validation: Unsteady Vortex Shedding Flow over a Circular Cylinder at Re=3.7x105

Mesh Density

(cells per cylinder

diameter)

Deviation from

experimental data

(%)

FloEFD, 20 cells per

diameter0.82 -18 650

FloEFD, 40 cells per

diameter0.95 -5 330

FloEFD, 80 cells per

diameter1.02 2 170

Experiment (Driver

and Seegmiller 1985)1.0 n/a n/a

a) b)

c) d)

dC

maxy

Driver, D.M. and Seegmiller, H.L. (1985).

Features of a Reattaching Turbulent Shear

Layer in Divergent Channel Flow. AIAA Journal,

Vol. 23, p. 163.

Predicted turbulent transient flow

velocity fields over a circular

cylinder calculated with FloEFD

for different computational

meshes having:

a) 20 quad cells per diameter, b) 40 quad cells per diameter,c) 80 quad cells per diameter, &d) Similar real flow shadowgraph from

Driver and Seegmiller (1985)

Circular cylinder drag coefficients

calculated with FloEFD in

comparison with experimental

data (Driver and Seegmiller

1985).

Page 8: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

Mach number distribution

Classical benchmark of air flow at inlet M=3 in a 2D (planar) convergent-divergent channel

FloEFD Validation: Supersonic Flow in a 2-D Convergent-Divergent Channel

ReferencePoint

1 2 3 4 5

X ordinate (m) 0.0042 0.047 0.1094 0.155 0.1648

Y ordinate (m) 0.0175 0.0157 0.026 0.026 0.0157

Mach Number (Theory)

3.000 2.427 1.957 2.089 2.365

Mach Number(FloEFD)

3.000 2.429 1.965 2.106 2.380

Difference (%) 0.0 0.1 0.4 0.8 0.6

Page 9: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ )

References2. Panton, R.L., Incompressible Flow. 2nd ed., John Wiley & Sons, Inc., 1996

Page 10: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

Flow Streamlines: Smoke Visualisation, left (Ref 19), FloEFD result, right

𝑅𝑗𝑎 = ൗ𝑇𝑚𝑎𝑥 − 𝑇𝑎𝑚𝑏

𝑄𝑅𝑗𝑎𝑒𝑥𝑝 = 43𝑜𝐶/𝑊 (Ref 14)

𝑅𝑗𝑎𝑐𝑎𝑙𝑐 = 41𝑜𝐶/𝑊

FloEFD Validation: Cooling a Pin-Fin Heat Sink Due to Natural Convection

References14. Enchao Yu, Yogendra Yoshi: Heat Transfer Enhancement from Enclosed Discrete Components using Pin-Fin Heat Sinks Int. J. of Heat & Mass Transfer, v. 45, pp. 4957-4966 (2002)19. Jyotsna, R., Vanka, S.P.: Multigrid Calculation of Steady, Viscous Flow in a Triangular Cavity. J. Comput. Phsy., v. 122, pp. 107-117 (1995)

Page 11: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

Caviatition on a Hydrofoil (1); QuantitativeComparison

Cavitation Number, 𝜎 =𝑃∞−𝑃𝑣1

2𝜌𝑈2

Pressure Coefficient vs. Cavitation NumberCavitation Length vs. Cavitation Number

Page 12: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

V=8 m/s, Chord length = 0.305 m

Angle of attack () – 3.5о

Cavitation number,

Caviatition on a Hydrofoil (2); QualitativeComparison

Reference

24. Wesley, H.B., Spyros, A.K.: Experimental & Computational Investigation of Sheet Cavitationon a Hydrofoil. Presented at 2nd Joint ASME/JSME Fluid Engineering Conference & ASME/EALA 6th

International Conference on Laser Anemometry. The Westin Resort, Hilton Head Island, SC, USA August 13-18, 1995

Page 13: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

Component Mass Fraction, %

Fuel (Methane) 3.29

Oxidizer (Air) 96.71

0

400

800

1200

1600

0 0.2 0.4 0.6 0.8 1

R/D

Tem

pera

ture

(K

)

Calculation

Experimental measurement 1

Experimental measurement 2

0

400

800

1200

1600

0 0.2 0.4 0.6 0.8 1

R/D

Tem

pera

ture

(K

)

Calculation

Experimental measurement 1

Experimental measurement 2

Reference

27. Nandula, S.P., Pitz, R.W., Barlow, R.S., Fiechtner, G.J., Rayleigh/Raman/LIF Measurements in a Turbulent Lean Premixed Combustor” AIAA 96-0937, 34th Aerospace Sciences Meeting & Exhibit, Reno, NV, January 15-18, 1996

Combustion of a Premixed Methane/Air Mixture

Page 14: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

FloEFD Validation: Flow in a 90o-bend of a 3D square duct

Velocity profiles at different cross sections in different longitudinal planes

AA1

AA1

Reference8. Van Dyke, Milton, An Album of Fluid Motion. The Parabolic Press, Stanford, California, 1982.

Page 15: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

Hydraulic resistance coefficient Torque coefficient

Flow through a Cone Valve

Reference13. Yanshin, B.I.: Hydrodynamic Characteristics of Pipeline Valves and Elements.Convergent Sections, Divergent Sections, and Valves. “Mashinostroenie”, Moscow,1965.

Page 16: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 30 60 90 120 150 180

Ct, Cn

Attack angle, degree

Ct, experimet

Ct, EFD.Lab

Cn, experiment

Cn, EFD.Lab

-0,04

-0,02

0

0,02

0,04

0,06

0,08

0 30 60 90 120 150 180

mz

Attack angle (degree)

Experiment

Calculation

Aerodynamic drag coefficient vs. attack angleAerodynamic torque coefficient vs. attack angle

Supersonic air flow at incident M=1.3 over a segmental conic body at different attack angles in the 0…180° range.

Supersonic Flow over a Segmental Conic Body

Reference5. Artonkin, V.G., Petrov, K.P., Investigations of aerodynamic characteristics ofsegmental conic bodies. TsAGI Proceedings, No. 1361, Moscow, 1971 (in Russian).

Page 17: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

Flow Around the Ahmed Car Body

Slant angle = 35°

0

100

200

300

400

500

600

700

800

-1600 -1400 -1200 -1000 -800 -600 -400 -200 0 200 400 600 800

x, mm

z, m

m

Reference

Lienhart, H., Stoots, C., Becker, S. Flow and turbulence structures in the wake of a

simplified car model (Ahmed model). DGLR Fach Symp. der AG STAB, Stuttgart University,

2000.

AhmedBody Slant Angle

𝑪𝒅𝒆𝒙𝒑 𝑪𝒅𝑭𝒍𝒐𝑬𝑭𝑫Absolute

Difference%

Difference

25° 0.298 0.284 -0.014 -4.8

35° 0.257 0.274 0.017 6.6

Page 18: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

Injection of a particle into a uniform fluid flow field:

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0 0,05 0,1 0,15 0,2 0,25

y, m

x, m

EFD.Lab

analytical solution

Re = 0.1

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,10

0,00 0,05 0,10 0,15 0,20 X, m

Vp = 1 m/s,analytical solution

Vp = 1 m/s,EFD.Lab

Vp = 2 m/s,analytical solution

Vp = 2 m/s,EFD.Lab

Vp = 3 m/s,analytical solution

Vp = 3 m/s,EFD.Lab

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,00 0,03 0,06 0,09 0,12 0,15 X, m

EFD.Lab

Re = 105

Particle trajectory in the Y-direction gravity

Dispersed-phase flows (droplets and solid particles’ trajectories)

Reference18. Henderson, C.B. Drag Coefficients of Spheres in Continuum and Rarefied Flows.AIAA Journal, v.14, No.6, 1976.

Page 19: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

Comparison of predicted and measured total pressure

drop for a Stairmand HE cyclone

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30

U inlet, m/s

dP

, P

a

Experiment

EFD calculations

Time evolution of the total pressure drop of a Stairmand HE

cyclone at 10 m/s gas inlet velocity

0

100

200

300

400

0.3 0.7 1.1 1.5 1.9

Time, s

dP

, P

aExperiment

EFD calculation

Stairmand High Efficiency Gas Cyclone (Non-isotropic swirling Flows)

Reference Griffiths, W.D., Boysan, F., 1996, “Computational fluid dynamics (CFD) and empirical modellingof the performance of a number of cyclone samplers”, J. Aerosol Sci, Vol 27, №2, 281-304

Page 20: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

Reference

Winklhofer, E., Kull, E., Kelz, E., and Morozov, A., 2001, “Comprehensive Hydraulic and Flow Field Documentation in Model Throttle Experiments Under Cavitation Conditions.”

ILASS Europe 2001.

L=0.001 m, H=0.000299 m,

W=0.0003 m, Rin=0.00002 m

100 bar

33 bar

100 bar

100 bar

25 bar

15 bar

Mass flow rate through the injector versus pressure drop

0.004

0.005

0.006

0.007

0.008

0.009

20 30 40 50 60 70 80 90 100

(Pin - Pb), bar

G, k

g/s

calculation

experiment

Fuel Injector Cavitation

Inlet

Outlet

Nozzle Wall

Page 21: FloEFD Validation Examples - smart-fem.de · FloEFD Validation: Smoothing step-shaped velocity profile by a porous screen of different drag coefficient ( ζ ) References 2. Panton,

© 2010 Mentor Graphics Corp. Company Confidential

www.mentor.com

Modified equilibrium combustion model approach in FloEFD:— Combustion starts upon mixing (no pre-mixing)— “Limited Combustion Rate” option when

premixed. Requires the separate simulation of an igniter to start the combustion simulation

FloEFD Validation: Vortex Combustor Benchmark

BERL Combustor

600

800

1000

1200

1400

1600

1800

2000

0 0.1 0.2 0.3 0.4 0.5 0.6

Position [m]

Tem

per

atu

re o

f F

luid

[K

]

X=0.027

ReferenceSayre A, N. Lallemant, J. Dugue, R. Weber, 1994, Scaling Characteristics of Aerodynamics and Low-NOx Properties of Industrial Natural Gas Burners, The Scaling 400 Study, Part IV: The 300 kW BERL Test Results, IFRF Doc No F40/y/11, The Netherlands.