Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus...

29
Flexibilisation of biogas plants and impact on the grid operation Jan Liebetrau, Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April 5th 2017 © Anklam Bioethanol GmbH

Transcript of Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus...

Page 1: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Flexibilisation of biogas plants and impact on

the grid operation

Jan Liebetrau,

Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer

Biogas Workshop, Vlijmen, April 5th 2017

© A

nk

lam

Bio

eth

an

ol G

mb

H

Page 2: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Electricity provision –

future scenarios

Agora Energiewende: 12 insights on Germany's Energiewende February 20132

Biogas is in comparison expensive

There will be times of excess energy and lack of

energy

Flexibility will be a must for Biogas

Page 3: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Conditions for flexible operation

3Barchmann et. al. 2016

Different market options with different requirements for

participation

Biogas plants have individual constructive and operational design

which define the limits of flexibility

Page 4: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Conditions for flexible operation

4

Barchmann et. al. 2016

[Fuchs 2012]

Page 5: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Conclusion - why do we need to operate

biogas plants flexible?

5

- provide energy when needed (electricity and heat)

- Market price oriented, increase utilization

- Grid stabilization oriented

- reduces losses at specific operational conditions

(e.g. maintenance shutdown, weather changes)

- respond to substrate changes in amount and quality

Page 6: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Flexibilisation

6

Basic principle for flexibilisation

Page 7: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Technical options for flexibility, services to

the grid and sector coupling on site

7

• Increase of CHP capacity (and grid access) - in case of constant

annual energy output

• Increase of gas storage capacity

• Control of biogas production rate

(controlled feeding, storage of intermediates)

• Power to heat

• Biomethane

• Power to gas

Page 8: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Financial support for flexible concepts

9

• EEG 2014:

• §54 Flexibility bonus for existing plants

• 130 €/kW/a (Allocation to produced electricity ) for 10 years

• Appendix 3 Number I:

• Direct marketing compulsory

• Paverage ≤ 0,2*Pinst

• Padded = max. 0,5*Pinst

• Registration and expert statement

• „Average capacitiy“ (§ 101 EEG 2014) limited

• EEG 2017:

• Obligation to have twice as much capacity installed in relation

to average capacity

• 40€/kW installed for existing plants

Page 9: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Motivation for flexible operation

11

• Financial motivation

1. Flexibility bonus

2. Efficiency increase (larger and newer CHP)

3. Additional income from direct marketing and services(EPEX)

• Costs for flexibilisation

1. Invest (CHP, Gas-, Heat storage, Infrastructure, Grid access, Transformer)

2. Planning, permission, e.g. StröfallVO

3. More maintenance, Wear out, Stand-by losses

Page 10: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Markets and prices

12

Spot market oriented operation

Pla

nt capa

city

utiliz

ation

(%)

Opera

ting R

eserv

es

Market

price

(Trommler et al 2016)

Time

Page 11: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Case study –

control of biogas production rate

14

Page 12: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Process control

15

(Mauky et al: Chem. Eng. Technol. 2016, 39, No. 4, 652–664., DOI: 10.1002/ceat.201500412

Set variable: substrate and feeding amount

Controlled process variable: gas storage filling level

Page 13: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Experimental setup

16

(Plant A) DBFZ - Research biogas plant

(Plant B) Biogas plant „Unterer Lindenhof“ (University of Hohenheim)

190 m3 (165 m3 active volume)

Used substrates:

• Maize silage,

• Cattle slurry,

• Sugar beet silage

923 m3 (800 m3 active volume)

Used substrates:

• Maize silage,

• Grass silage,

• Wheat meal Source: Novatech

Source: DBFZ

(Mauky et al: Chem. Eng. Technol. 2016, 39, No. 4, 652–664., DOI: 10.1002/ceat.201500412)

Page 14: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Model predictive feed control (Plant A - DBFZ Research biogas plant)

45% saving of gas

storage demand

(Mauky et al: Chem. Eng. Technol. 2016, 39, No. 4, 652–664., DOI: 10.1002/ceat.201500412)

Page 15: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Grid stabilization

19

Page 16: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Renewables feed-in into power grids

21

400 V

LOW

VOLTAGE

MAXIMUM

VOLTAGE

HIGH

VOLTAGE

110 kV

380 kV

MEDIUM

VOLTAGE

10 kV

Small consumer Small CHP

Small solar power

Electric cars

Commerce and

industry

Biogas plants,

small solar power

plants

Onshore-windparks,

Large solar power

plant

Large-scale

consumer

Large-scale

consumer

Large-scale power

plant,

Offshore-windparks

Source: own illustration after www.energie-lexikon.info

pirctures: Uwe Schlick/pixelio.de (Solar), Martin Dotzauer/DBFZ (Biogas and maps), Petra Bork/pixelio.de (Wind)

Page 17: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Structure of Power Grid Infrastructure SD in medium voltage as subject matter

Source: Own diagram based on www.energie-lexikon.info

Picture credits: Uwe Schlick/pixelio.de (Solar), Martin Dotzauer/DBFZ (Biogas and maps), Petra Bork/pixelio.de (Wind)

400 V

LOW

VOLTAGE

MAXIMUM

VOLTAGE

HIGH

VOLTAGE

110 kV

380 kV

MEDIUM

VOLTAGE

10 kV

Solar

Biogas

Majority of power

generated from biogas is

fed into medium voltage

grids

Wind

22

Page 18: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Flexible Bioenergy as a regional balancing

option for power distribution grids

24

Project: RegioBalance

Partner:

DBFZ

Energy2markets

50Hertz GmbH

Uniper Technologies GmbH (formerly E.ON Technologies GmbH)

Supported by:

Federal Ministry for Economic Affairs and Energy

Funding Agency: Projekträger Jülich

Page 19: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Project RegioBalance at a glance

Aim:

Can Biogas plants support balancing of distribution grids?

Show the ability of biogas plants to balance the operation of

power distribution grids.

Approach:

Scenario calculation for 2020 and 2025 based on real grid data

for 2 grid parts, one in North on in East Germany

Results: significant improvements for grid related parameter

Voltage band, Cable loading, Transformer station utilization

rate, Losses, Backfeeding of active Power

25

Page 20: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Modelled Load Profile (EPEX-optimised)Flexible operation without consideration of grid restrictions (A)

26

Source: modified based on Trommler et al. 2017: Can Biogas Plants Contribute to Lower the Demand for Power Grid Expansion?, Chem. Eng. Technol.

2017, 40, No. 2, 359–366 , DOI: 10.1002/ceat.201600230

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

0 2 4 6 8 10 12 14 16 18 20 22

Pow

er P

in k

W

PV Wind Biogas flexible PV+Wind+Biogas

A

Time t in h

24

(cumulated)

Page 21: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Modelled Load Profile (EPEX-optimised)Flexible operation with consideration of grid restrictions (B)

27

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

0 2 4 6 8 10 12 14 16 18 20 22

Pow

er P

in k

W

PV Wind Biogas flexible PV+Wind+Biogas

B

Time t in h

24

(cumulated)

~30%

Source: modified based on Trommler et al. 2017: Can Biogas Plants Contribute to Lower the Demand for Power Grid Expansion?, Chem. Eng. Technol.

2017, 40, No. 2, 359–366 , DOI: 10.1002/ceat.201600230

Page 22: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Methodological ProcedureStructure of grid areas

28

Parameter Substation district East Germany Substation district North Germany

Grid type Multiple ring networks Radial network with rings

Total cable length 17 km 83 km

Connected load Photovoltaics 29 MW Photovoltaics 12 MW

Wind O MW Wind 42 MW

Biogas 6.7 MW Biogas 16 MW

Other renewable

energies

7 MW Other renewable

energies

O MW

Conventional

energies

12 MW Conventional energies O MW

Maximal demand

30% of max.

= minimum demand

14 MW

4.2 MW

46 MW

14 MW

Transformers 2 x 31.5 MVA 1x 63 MVA, 1 x 50 MVA, 1 x 40 MVA

Source: Trommler et al, 2017: Can Biogas Plants Contribute to Lower the Demand for Power Grid Expansion?, Chem. Eng. Technol. 2017, 40, No. 2, 359–

366 , DOI: 10.1002/ceat.201600230

Page 23: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Research Results – Substation district North

Germany

29Trommler et al, 2016, subm.

Scenarios for a substation

district in North-East

Germany

Voltage band Cable loading

- utilization

rate (current)

Transformer stations (three)

– utilization rate

(apparent power)

Losses (of

power P)

Backfeeding of active

power P into the

110 kV grid

Unit [p.u.] [p.u.] [%] [%] [%] [%] [MW] [MW]

I 2015 Status quo 0.99 1.05 87 39 70 53 1.78 75

II 2020 Biogas unchanged

compared to Scenario I0.99 1.08 105 56 71 80 2.85 97

IIIa 2020 Biogas 100 %

load0.97 1.07 130 72 72 99 3.82 112

IIIb 2020 Biogas 25 % load 0.98 1.07 99 50 71 73 2.65 90

IVa 2025 Biogas 100 %

load0.97 1.09 145 86 73 122 5.49 130

IVb 2025 Biogas 25 % load 0.98 1.09 120 65 71 99 4.07 107

Va 2025 Biogas 100 %

load incl. PtG0.97 1.09 145 86 60 122 5.49 123

Vb 2025 Biogas 25 %

flexible incl. PtG0.98 1.09 120 65 59 99 4.07 101

Page 24: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Research Results – Substation district East

Germany

30Trommler et al, 2016, subm.

Scenarios for a substation

district in East Germany

Cable loading –

utilization rate

(current)

Transformer stations (two) –

utilization rate (apparent

power)

Losses (of

power P)

Backfeeding of active

power P into the

110 kV grid

Unit [%] [%] [%] [MW] [MW]

I 2015 Status quo 72 94 68 0.88 47

II 2020 Biogas unchanged

compared to Scenario I94 111 84 1.33 58

IIIa 2020 Biogas 100 % load 99 120 102 1.65 65

IIIb 2020 Biogas 25 % load 91 107 76 1.22 54

IVa 2025 Biogas 100 % load 120 133 117 2.15 75

IVb 2025 Biogas 25 % load 113 121 92 1.71 63

Va 2025 Biogas 100 % load

incl. PtG119 113 116 2.07 68

Vb 2025 Biogas 25 % load

incl. PtG113 101 92 1.63 57

Page 25: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Concept of a pro-active Feed-in Management

(paFeedMan)

31

• Conventional feed-in management: The grid operators will reduce the

performance of generating plants if limit value violations for grid

operating equipment are expected

• Concept paFeedMan: Controllable generating plants (here: flexible AD

plants) are able to avoid limit value violations (e.g. voltage band)

already day-ahead (24 h in advance) by taking grid restrictions into

consideration in their schedule design of the CHPs.

Especially flexible producers can “compensate” load peaks caused by

simultaneous high feed-in of wind and photovoltaics to reduce the

maximal cumulated load of renewable energies

Benefit of paFeedMan in grid planning: calculation with a lower

maximal feed-in power required grid expansion can be reduced

Page 26: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Economic Evaluation Approaches

32

• The core of the economic evaluation approach is a calculation of

opportunity costs. These costs as well as lost profits of an AD plant that is

operated beneficially to the grid and the expenses for implementing and

realising of paFeedMan are compared to the savings potential of future grid

expansions.

• The results show that in many investigated cases opportunity costs

including costs for implementation and operation of paFeedMan for flexible

AD plants are significantly lower (at least by a factor of 5) than the costs for

grid expansion.

Considerable savings at grid expansion can be generated

Options for smart grid planning and grid management can be economically

reasonable and should be considered in the course of legal revisions in the

future (e.g. in the Ordinance on Incentive Regulation (ARegV))

Page 27: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Cost Savings for grid expansionwithin the frame of a paFeedMan-concept for SD North

33

:

0

1

2

3

4

5

6

Szenario III 2020 Szenario IV 2025 Szenario V 2025 (inkl. PtG)Scenario III 2020 Scenario IV 2025 Scenario V 2025 (incl. PtG)

Savings

absolute: 2.7 million €

relative: 57 %

Savings

absolute: 2.7 million €

relative: 57 %

Savings

absolute: 1.3 million €

relative: 49 %

Investment needs: 100% of biogas injection Investment needs: 25% of biogas injection

Inve

stm

en

t n

ee

ds

for

gri

d e

xpa

nsi

on

cu

mu

late

d f

or

20

ye

ars

in

mil

lion

SD= substation districtSource: DBFZ, 2016

Page 28: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

Conclusion

35

Flexible Operation of biogas plants is possible

(and compulsory in the future)

Control of biogas production offers more flexibility

On the basis of real power grids it has been shown that flexible biogas plants are

able to reduce power grid operation concerning several parameters:

• Reduction of cable and transformer load, reduced grid losses, less reduction of

renewable energy plant performances (conventional feed-in management) as

well as reduced back-feeding in the higher grid level (110 kV)

• The use of flexibility options (such as biogas) shows significant cost

advantages in comparison with conventional grid expansion in the investigated

grids

• Biogas plants can make a difference

Page 29: Flexibilisation of biogas plants and impact on the grid operation · 2017. 4. 18. · Marcus Trommler, Eric Mauky, Tino Barchmann, Martin Dotzauer Biogas Workshop, Vlijmen, April

DBFZ Deutsches

Biomasseforschungszentrum

gemeinnützige GmbH

Torgauer Straße 116

D-04347 Leipzig

Phone: +49 (0)341 2434 – 112

E-Mail: [email protected]

www.dbfz.de

Smart Bioenergy – innovations for a sustainable future

Come and join us!

Contacts

Prof. Dr. mont. Michael Nelles

Daniel Mayer

Prof. Dr.-Ing. Daniela Thrän

Dr.-Ing. Jan Liebetrau

Dr.-Ing. Volker Lenz

Dr.-Ing. Franziska Müller-Langer

Dr. rer. nat. Ingo Hartmann