First-order lin. regressions: DRP = a 0 + b 0 . X Multiple linear regression: no improvement

1
www.ilvo.vlaanderen.be Contact: [email protected] First-order lin. regressions: DRP = a 0 + b 0 .X Multiple linear regression: no improvement Drift from boom sprayers 4. Comparison between direct and indirect drift assessment means Comparing the results of the three different drift assessment means to evaluate the potential of the indirect (PDPA laser and wind tunnel measurements) and direct (field drift measurements) drift assessment means. D NUYTTENS 1 , K BAETENS 2 , M DE SCHAMPHELEIRE 3 & B SONCK 1 1 Institute for Agricultural and Fisheries Research (ILVO), Technology & Food, Agricultural Engineering, Belgium 2 Department of Crop Protection, University Ghent, Belgium 3 MeBioS, Department Biosystems, Catholic University of Leuven, Belgium Objective Materials and Methods Results Nuyttens D. 2007. Drift from field crop sprayers: The influence of spray application technology determined using indirect and direct drift assessment means. PhD thesis nr. 772, Katholieke Universiteit Leuven. 293 pp. ISBN 978-90-8826-039-1. available at: http://hdl.handle.net/1979/1047 Nuyttens D, De Schampheleire M, Baetens K, Sonck B. 2008. Comparison of different drift risk assessment means. Aspects of Applied Biology. 84: 35-42. Wind tunnel ( DPRP ) & field drift experiments ( DRP ) Fairly good correlation between field drift DRP and wind tunnel DPRP values DPRP H (R²= 0.88) > DPRP V2 (R²=0.81) > DPRP V1 (R²=0.66) Calculating the surface under the measured fallout deposit = best wind tunnel approach Investigating the effect of nozzle type & size, similar trends can be found from the DPRP and DRP results Droplet size as well as droplet velocity characteristics are related with DRP & DPRP values V 200 : best indicator for the amount of sedimenting spray drift, explains about 90% of the total variation in DRP values Strong intercorrelation between droplet sizes and velocities → simple first-order linear regressions were the best choice to predict DRP The indirect drift risk assessment method measuring V 200 is at least as well suited to represent drift characteristics as the wind tunnel approach using fallout deposits and better suited than the wind tunnel approaches using airborne deposits Based on DPRP H or V 200, the DRP of a particular technique can be determined to come to a realistic estimate of field drift data (using the drift prediction equation) References Conclusions Droplet characteristics Drift potential Drift values PDPA Laser measurements Wind tunnel measurements Field drift experiments 0,1 0,2 0,3 0,4 0,5 0 100 200 300 400 500 600 700 800 900 1000 Airborne depositie (µL. L ) H oogte boven de grond (m ) ... F 110 02 F 110 03 (referentie) F 110 04 F 110 06 LD 110 02 LD 110 03 LD 110 04 Injet02 Injet03 Injet04 -1 indirect drift measurements Indirect drift measurements Drift potential reduction % (DPRP) Drift reduction % (DRP) Reference spraying Drift assessment means Spray application techniques Direct drift measurements Reference spraying N um berofrepetititons N ozzle* Flow rate (L.m in -1 ) PD PA laserm easurem ents a W ind tunnelm easurem ents b Field driftm easurem ents c F 110 02 0.80 9 1 3 F 110 03 $ 1.20 9 18 32 F 110 04 1.60 9 3 4 F 110 06 2.40 9 2 3 LD 110 02 0.80 9 4 3 LD 110 03 1.20 9 3 3 LD 110 04 1.60 9 3 3 Injet110 02 0.80 9 5 3 Injet110 03 1.20 9 3 3 Injet110 04 1.60 9 3 4 T otal 90 45 61 *H ardi ISO nozzles; $ R eference spray application;F,Standard flatfan nozzles;LD ,low -driftflatfan nozzles;Injet,Airinclusion flatfan nozzle a 3.0 barpressure,0.50 m nozzle height; b 3.0 barpressure,0.50 m nozzle height,2 m .s -1 w ind speed c 3.0 barpressure,0.50 m nozzle heightand distance,8 km .h -1 driving speed PDPA laser (≠ droplet characteristics) & field drift experiments ( DRP ) ≠ Droplet characteristics DRP = 100.7 - 4.24.V 200 (R² = 0.90) PDPA laser (≠ droplet characteristics) & field drift experiments ( DRP ) First-order lin. regressions: 200 . 24 . 4 2 . 105 V DPRP H 10 1 . 3 . 115 1 . 126 vol V v DPRP VSF DPRP V . 2 . 96 2 . 206 2 R 2 = 0,91 R 2 = 0,86 R 2 = 0,90 -100 -80 -60 -40 -20 0 20 40 60 80 100 -100 -80 -60 -40 -20 0 20 40 60 80 100 DPRP (%) Predicted DPRP (%) DPRP DPRP DPRP X = Y V1 V2 H F 110 02 LD 110 02 F 110 06 F 110 04 LD 110 03 LD 110 04 Injet110 02 Injet110 04 Injet110 03 F 110 03 at2.0 bar F 110 03 Airborne depositie(µL.L ) H oogte boven de grond (m)... y = 0,73x + 19,20 R 2 = 0,81 y = 0,76x + 20,01 R 2 = 0,88 y = 0,70x + 13,98 R 2 = 0,66 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 DRP t (%) DPRP (%) DPRP DPRP DPRP X = Y V1 V2 H F 110 02 Injet110 03 Injet110 04 Injet110 02 LD 110 04 LD 110 03 F 110 04 F 110 06 LD 110 02 F 110 03 ‘ideal’bisector ‘ideal’bisector Leverageeffect Leverageeffect C orrelation between DRP & DPRP : DPRP H > DPRP V2 > DPRP V1 Standard flatfan nozzles: - DPRP > DRP - DPRP V1 > DPRP V2 > DPRP H DPRP H Low driftflatfan nozzles: - DPRP < DRP - DPRP V1 < DPRP V2 < DPRP H DPRP H A irborne depositie (µL.L ) H oogte boven de grond (m) ... y = 0,82x + 9,53 R 2 = 0,90 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 DRP t (%) Predicted DRP t based on V 200 (%) F 110 02 LD 110 02 F 110 03 F 110 06 F 110 04 LD 110 03 LD 110 04 Injet110 02 Injet110 04 Injet110 03 X = Y + DRP = 100.7 - 4.24.V 200 Symbols V 200 Proportion of total volume of droplets smaller than 200 µm in diameter (%) v vol10 Droplet velocity below which slower droplets constitute 10% of the spray volume (m.s -1 ) VSF Velocity span factor, a dimensionless parameter indicative of the uniformity of the drop size velocity distribution (-) 10 200 . 4 . 40 . 94 . 2 0 . 31 vol H v V DPRP R²= 0.96

description

Drift from boom sprayers 4. Comparison between direct and indirect drift assessment means. D NUYTTENS 1 , K BAETENS 2 , M DE SCHAMPHELEIRE 3 & B SONCK 1 1 Institute for Agricultural and Fisheries Research (ILVO), Technology & Food, Agricultural Engineering, Belgium - PowerPoint PPT Presentation

Transcript of First-order lin. regressions: DRP = a 0 + b 0 . X Multiple linear regression: no improvement

Page 1: First-order lin. regressions:  DRP  =  a 0  +  b 0 . X Multiple linear regression: no improvement

www.ilvo.vlaanderen.beContact: [email protected]

First-order lin. regressions: DRP = a0 + b0.X

Multiple linear regression: no improvement

Drift from boom sprayers4. Comparison between direct and indirect drift assessment means

Comparing the results of the three different drift assessment means to evaluate the potential of the indirect (PDPA laser and wind tunnel measurements) and direct (field drift measurements) drift assessment means.

D NUYTTENS1, K BAETENS2, M DE SCHAMPHELEIRE3 & B SONCK1 1 Institute for Agricultural and Fisheries Research (ILVO), Technology & Food, Agricultural Engineering, Belgium

2 Department of Crop Protection, University Ghent, Belgium3 MeBioS, Department Biosystems, Catholic University of Leuven, Belgium

Objective

Materials and Methods

Results

Nuyttens D. 2007. Drift from field crop sprayers: The influence of spray application technology determined using indirect and direct drift assessment means. PhD thesis nr. 772, Katholieke Universiteit Leuven. 293 pp. ISBN 978-90-8826-039-1. available at: http://hdl.handle.net/1979/1047

Nuyttens D, De Schampheleire M, Baetens K, Sonck B. 2008. Comparison of different drift risk assessment means. Aspects of Applied Biology. 84: 35-42.

Wind tunnel (DPRP) & field drift experiments (DRP)

Fairly good correlation between field drift DRP and wind tunnel DPRP values DPRPH (R²= 0.88) > DPRPV2(R²=0.81) > DPRPV1 (R²=0.66) Calculating the surface under the measured fallout deposit = best wind tunnel approach Investigating the effect of nozzle type & size, similar trends can be found from the DPRP and DRP results

Droplet size as well as droplet velocity characteristics are related with DRP & DPRP values V200: best indicator for the amount of sedimenting spray drift, explains about 90% of the total variation in DRP values Strong intercorrelation between droplet sizes and velocities → simple first-order linear regressions were the best choice to predict DRP

The indirect drift risk assessment method measuring V200 is at least as well suited to represent drift characteristics as the wind tunnel approach using fallout deposits and better suited than the wind tunnel approaches using airborne deposits

Based on DPRPH or V200, the DRP of a particular technique can be determined to come to a realistic estimate of field drift data (using the drift prediction equation)

References

Conclusions

Droplet characteristics Drift potential Drift values

PDPA Laser measurements Wind tunnel measurements Field drift experiments

0,1

0,2

0,3

0,4

0,5

0 100 200 300 400 500 600 700 800 900 1000

Airborne depositie (µL.L )

Hoo

gte

bove

n de

gro

nd (

m)..

.

F 110 02 F 110 03 (referentie) F 110 04 F 110 06

LD 110 02 LD 110 03 LD 110 04 .

Injet 02 Injet 03 Injet 04

-1

indirect drift measurements

Indirect drift measurements

Drift potential reduction % (DPRP) Drift reduction % (DRP)

Reference spraying

Drift assessment means Spray application techniques

Direct drift measurements

Reference spraying

Number of repetititons

Nozzle* Flow rate (L.min-1) PDPA laser measurementsa Wind tunnel measurementsb Field drift measurementsc

F 110 02 0.80 9 1 3 F 110 03$ 1.20 9 18 32

F 110 04 1.60 9 3 4

F 110 06 2.40 9 2 3

LD 110 02 0.80 9 4 3

LD 110 03 1.20 9 3 3

LD 110 04 1.60 9 3 3

Injet 110 02 0.80 9 5 3

Injet 110 03 1.20 9 3 3

Injet 110 04 1.60 9 3 4

Total 90 45 61

*Hardi ISO nozzles; $ Reference spray application; F, Standard flat fan nozzles; LD, low-drift flat fan nozzles; Injet, Air inclusion flat fan nozzle a 3.0 bar pressure, 0.50 m nozzle height; b 3.0 bar pressure, 0.50 m nozzle height, 2 m.s-1 wind speed c 3.0 bar pressure, 0.50 m nozzle height and distance, 8 km.h-1 driving speed

PDPA laser (≠ droplet characteristics) & field drift experiments (DRP)

≠ Droplet characteristics

DRP = 100.7 - 4.24.V200

(R² = 0.90)

PDPA laser (≠ droplet characteristics) & field drift experiments (DRP) First-order lin. regressions:

200.24.42.105 VDPRPH 101 .3.1151.126 volV vDPRP VSFDPRPV .2.962.2062

R2 = 0,91

R2 = 0,86

R2 = 0,90

-100

-80

-60

-40

-20

0

20

40

60

80

100

-100 -80 -60 -40 -20 0 20 40 60 80 100

DPRP (%)

Pred

icte

d DPRP

(%

)

DPRP

DPRP

DPRP

X = Y

V1

V2

H

F 110 02

LD 110 02

F 110 06

F 110 04

LD 110 03LD 110 04

Injet 110 02

Injet 110 04

Injet 110 03

F 110 03 at 2.0 bar

F 110 03

0,1

0,2

0,3

0,4

0,5

0 100 200 300 400 500 600 700 800 900 1000

Airborne depositie (µL. L )

Hoo

gte

bove

n de

gro

nd (

m)..

.

F 110 02 F 110 03 (referentie) F 110 04 F 110 06

LD 110 02 LD 110 03 LD 110 04 .

Injet 02 Injet 03 Injet 04

-1

y = 0,73x + 19,20

R2 = 0,81

y = 0,76x + 20,01

R2 = 0,88

y = 0,70x + 13,98

R2 = 0,66

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

-140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100

DRP t (%)

DPRP

(%

)

DPRP

DPRP

DPRP

X = Y

V1

V2

H

F 1

10 0

2

Inje

t 11

0 03

Inje

t 11

0 04

Inje

t 11

0 02

LD

110

04

LD

110

03F

110

04

F 1

10 0

6

LD

110

02 F 1

10 0

3

‘ideal’ bisector‘ideal’ bisector

Leverage effectLeverage effect

Correlation between DRP & DPRP:

DPRPH > DPRPV2 > DPRPV1

Correlation between DRP & DPRP:

DPRPH > DPRPV2 > DPRPV1

Standard flat fan nozzles:

-DPRP > DRP

-DPRPV1 > DPRPV2 > DPRPH

DPRPH

Standard flat fan nozzles:

-DPRP > DRP

-DPRPV1 > DPRPV2 > DPRPH

DPRPH

Standard flat fan nozzles:

-DPRP > DRP

-DPRPV1 > DPRPV2 > DPRPH

DPRPH

Low drift flat fan nozzles:

-DPRP < DRP

-DPRPV1 < DPRPV2 < DPRPH

DPRPH

Low drift flat fan nozzles:

-DPRP < DRP

-DPRPV1 < DPRPV2 < DPRPH

DPRPH

0,1

0,2

0,3

0,4

0,5

010

020

030

040

050

060

070

080

090

010

00

Air

born

e de

posi

tie (

µL.L

)

Hoogte boven de grond (m)...

F 11

0 02

F 11

0 03

(re

fere

ntie

)F

110

04F

110

06

LD

110

02

LD

110

03

LD

110

04

.

Inje

t 02

Inje

t 03

Inje

t 04

-1

y = 0,82x + 9,53

R2 = 0,90

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

-140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100

DRP t (%)

Pre

dict

ed DRPt

base

d on

V200 (

%)

F 11

0 02

LD

110

02

F 1

10 0

3

F 11

0 06

F 11

0 04

LD

110

03

LD

110

04

Inje

t 110

02

Inje

t 110

04

Inje

t 110

03

X = Y

+ D

RP

=

100.

7 -

4.24

.V2

00

Symbols• V200 Proportion of total volume of droplets smaller than 200 µm in diameter

(%)

• vvol10 Droplet velocity below which slower droplets constitute 10% of the spray volume (m.s-1)

• VSF Velocity span factor, a dimensionless parameter indicative of the uniformity of the drop size velocity distribution (-)

10200 .4.40.94.20.31 volH vVDPRP

R²= 0.96