FIRST LEGO LEAGE Building Tutorial

download FIRST LEGO LEAGE Building Tutorial

of 91

Transcript of FIRST LEGO LEAGE Building Tutorial

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    1/91

    BuildingLEGORobotsFor

    FIRSTLEGOLeagueVersion:1.0

    Sept.23,2002

    ByDeanHystad

    www.hightechkids.org

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    2/91

    AbouttheAuthorandThisDocumentDeanHystadisafirstclassLEGOfanatic.DeanisanengineerforMTSSystemslocatedinEdenPrairie,Minnesota.MTSSystemsCorporationisoneoftheworldsleadingsuppliersofmechanicaltestingandsimulationequipment,makingeverythingfrom

    earthquakesimulatorstoamusementparkrides.AtMTS,Deanwritescontrolsoftwareforarangeoflargeroboticsystems.Asyoucanseeinthisbook,DeanbringsthatexpertisetohispassionforLEGO.DeanhasjudgedatFLLeventsforseveralyearsandiscurrentlyworkingasacontributingauthoronasoon-to-bepublishedbookonLEGOMindstorms.Deancanbereachedatdean.hystad@mts.com.

    Thisbookisasignificantpieceofwork,andfranklyisaweinspiringtome.Itisanexcellentmixoftheoryandpractice.Someofthetextmaybebeyondmiddleschoolyouth,buttheaccompanyinglabsandpresentationmaterialshouldhelpcoachesunderstandtheconceptsandpresentkeyideastotheirteams.ThebookcanalsoprovideausefultextforthoseofyouwantingtoincorporateFLLintohighschoolclasses.Ihope

    youfindituseful.

    ThisbookfitswellwithINSciTE'smissiontoadvanceinnovativeprogramsthatprovideanenvironmentwherekids,educators,andthetechnicalcommunitycometogethertocultivatelifelonglearninginscience,mathandtechnology.

    [email protected],2002

    CopyrightandTrademarkNotice2002INSciTEinagreementwith,andpermissionfromFIRSTandtheLEGOGroup.Thisdocumentis

    developedbyINSciTEandisnotanofficialFLLdocumentfromFIRSTandtheLEGOGroup.Thisdocumentmaybefreelycopiedanddistributed,electronicallyorotherwise,initsentiretyonly,andonlyifusedinconjunctionwithFIRSTLEGOLeague.Anyuse,reproduction,orduplicationofthismanual

    forpurposesotherthandirectlyrelatedtoFIRSTLEGOLeagueisstrictlyprohibitedwithoutspecificwrittenpermissionfromINSciTE.

    LEGO,ROBOLAB,andMINDSTORMSaretrademarksoftheLEGOGroupusedherewith

    specialpermission.FIRSTLEGOLeagueisatrademarkownedbyFIRST(ForInspirationandRecognitionofScienceandTechnology)andtheLEGOGroupusedherewithspecialpermission.INSciTEisatrademarkofInnovationsinScienceandTechnology

    Education.

    INSciTEPOBox41221

    Plymouth,MN55441

    www.hightechkids.org

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    3/91

    TableofContents1 Structures ................................................................................................................1-1

    1.1 Bricks,Plates,andBeams...............................................................................1-1

    1.1.1 Bricks......................................................................................................1-11.1.2 Plates.......................................................................................................1-21.1.3 Beams .....................................................................................................1-31.1.4 AxlesandPins.........................................................................................1-31.1.5 LEGOVocabulary ..................................................................................1-4

    1.2 BuildingaFrame ............................................................................................1-51.2.1 LEGOGeometry .....................................................................................1-7

    1.3 SNOT..............................................................................................................1-92 Gears.....................................................................................................................2-12

    2.1 Spur Gears ....................................................................................................2-122.1.1 Gear Spacing.........................................................................................2-12

    2.1.2 Gear Ratio.............................................................................................2-162.1.3 Torque...................................................................................................2-182.1.4 Speed.....................................................................................................2-202.1.5 Gear Trains............................................................................................2-212.1.6 ClutchGear ...........................................................................................2-23

    2.2 CrownGear...................................................................................................2-242.3 BevelGear ....................................................................................................2-242.4 WormGear ...................................................................................................2-25

    2.4.1 DirectionalTransmission ......................................................................2-272.5 Differential....................................................................................................2-27

    2.5.1 RatchetSplitter......................................................................................2-29

    2.6 Gear

    Rack .....................................................................................................2-302.7 Pulleys...........................................................................................................2-312.7.1 Torque...................................................................................................2-32

    2.8 Reinforcinggeartrains..................................................................................2-332.9 Backlash........................................................................................................2-34

    3 Wheels ..................................................................................................................3-373.1 Sizes..............................................................................................................3-37

    3.1.1 Speed.....................................................................................................3-373.1.2 Force .....................................................................................................3-39

    3.2 Treads ...........................................................................................................3-413.3 Balance .........................................................................................................3-42

    3.3.1 Finding

    the

    Center

    Of

    Gravity...............................................................3-423.3.2 Inertia ....................................................................................................3-433.4 WheelLoadingandFriction..........................................................................3-46

    4 LegoElectronics ...................................................................................................4-484.1 RCXBrick ....................................................................................................4-48

    4.1.1 Firmware...............................................................................................4-484.1.2 Programming ........................................................................................4-49

    4.2 Motors...........................................................................................................4-51

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    4/91

    4.2.1 Modes....................................................................................................4-524.2.2 Attaching...............................................................................................4-53

    4.3 TouchSensor ................................................................................................4-544.3.1 Bumpers................................................................................................4-554.3.2 LimitandPositionSwitches..................................................................4-57

    4.3.3 Rotation

    sensor......................................................................................4-574.4 LightSensor..................................................................................................4-584.4.1 Experiment#1,Color ............................................................................4-594.4.2 Experiment#2,AmbientLight..............................................................4-64

    4.5 RotationSensor.............................................................................................4-664.5.1 Resolution .............................................................................................4-664.5.2 Internals ................................................................................................4-674.5.3 CountingErrors.....................................................................................4-68

    4.6 Sensor Stacking.............................................................................................4-695 RobotDrives .........................................................................................................5-70

    5.1 DifferentialDrive..........................................................................................5-70

    5.1.1 Casters...................................................................................................5-715.1.2 WheelConfiguration.............................................................................5-735.1.3 Steering .................................................................................................5-745.1.4 SteeringMadeEasier ............................................................................5-765.1.5 StraightLineTravel ..............................................................................5-765.1.6 DifferentialSkid....................................................................................5-78

    5.2 Steeringdrive................................................................................................5-795.2.1 Turning..................................................................................................5-805.2.2 TricycleDrive .......................................................................................5-82

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    5/91

    FiguresFigure1-1. BasicLEGOBrick ......................................................................................1-1Figure1-2. BrickDimensions........................................................................................1-1Figure1-3. ThreePlates=OneBrickhigh ....................................................................1-2Figure1-4. SimpleGearboxUsingTechnicPlates ........................................................1-2

    Figure1-5. TechnicBeams............................................................................................1-3Figure1-6. PinsandAxles.............................................................................................1-3Figure1-7. StudsontheSideofaBeam?......................................................................1-4Figure1-8. ATypicalDrivenWheelAssembly.............................................................1-4Figure1-9. A16LTechnicPin ......................................................................................1-4Figure1-10. CommonTechnicPieces...........................................................................1-5Figure1-11. SimpleFrame ............................................................................................1-5Figure1-12. ImprovedFrame........................................................................................1-6Figure1-13. CrossBracedFrame ..................................................................................1-6Figure1-14. SnapOnConnectionsareWeakinTension ..............................................1-7Figure1-15. CrossBracing ............................................................................................1-7

    Figure1-16. TwoCrossBracingChoices ......................................................................1-8Figure1-17. ATallFrame .............................................................................................1-8Figure1-18. DiagonalCrossBracing.............................................................................1-9Figure1-19. OneofJenniferClark'sIncredibleCreations. YesitsLEGO. ...............1-10Figure1-20. Turning90degrees. StudsOut ...............................................................1-10Figure1-21. Turning90degrees. StudsIn..................................................................1-11Figure1-22. UpsideDown...........................................................................................1-11Figure1-23. ExtendingBeamsUsingPinsandPlates .................................................1-11Figure2-1 LegoSpurGears.........................................................................................2-12Figure2-2. StudGearSpacing.....................................................................................2-13Figure2-3. HalfStudSpacingUsing2Holed1x2Beam ..........................................2-14

    Figure

    2-4.

    Vertical

    Gear

    Spacing ...............................................................................2-14Figure2-5. CircumventingVerticalGearSpacingRestrictions...................................2-15Figure2-6. DiagonalGearSpacing..............................................................................2-15Figure2-7.CircumventingDiagonalGearSpacingRestrictions ..................................2-16Figure2-8. 3:1GearRatio ...........................................................................................2-17Figure2-9. Torque=ForcexDistance ........................................................................2-18Figure2-10. TheRatiooftheTorquesisEqualtotheRatiooftheRadii....................2-19Figure2-11. RatioofAngularVelocitiesisEqualtoInverseRatiooftheRadii .........2-20Figure2-12. Multi-stageGearTrain ............................................................................2-21Figure2-13. IdlerGear ................................................................................................2-23Figure2-14. UsingClutchGeartoLimitForces..........................................................2-23

    Figure

    2-15.

    Crown

    Gear.............................................................................................2-24Figure2-16. BevelGear...............................................................................................2-24Figure2-17. ASmallWheelBuiltfromTwo12tBevelGears....................................2-25Figure2-18. WormGear..............................................................................................2-25Figure2-19. UsingtheWormGear'sSelfLockingFeature.........................................2-26Figure2-20. LEGOLeadScrew ..................................................................................2-26Figure2-21. DirectionalTransmission.........................................................................2-27Figure2-22. LEGODifferential...................................................................................2-27

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    6/91

    Figure2-23. DuringTurnstheWheelsCoverDifferentDistances..............................2-28Figure2-24. UsingDifferentialtoCalculateAverageRotation...................................2-29Figure2-25. UsingaDifferentialtoCalculateDifferenceinRotation ........................2-29Figure2-26.RatchetSplitter.........................................................................................2-30Figure2-27. LEGOGearRackandPinion ..................................................................2-30

    Figure

    2-28.

    Pulleys

    and

    Belts .....................................................................................2-31Figure2-29. LegoPulleys............................................................................................2-31Figure2-30. TwowaystoIncreaseTorqueCapacity...................................................2-32Figure2-31. UsingPulleystoLimitTorque ................................................................2-33Figure2-32. Forcesongears........................................................................................2-33Figure2-33. GearboxesDontHavetobeBigtobeStrong ........................................2-34Figure2-34. Backlashiscausedbypoorgearmeshing ...............................................2-34Figure2-35. Preloadingageartrainwitharubberband..............................................2-35Figure2-36. SplitgearmadefromLEGO....................................................................2-36Figure3-1. LegoWheelsandTires..............................................................................3-37Figure3-2. AVeryFastTractor...................................................................................3-39

    Figure

    3-3.

    Force

    =

    Torque

    /

    Radius............................................................................3-40Figure3-4. TrackedRobot...........................................................................................3-41Figure3-5. MarioFerrari'sJohnny5............................................................................3-41Figure3-6. Wheelbase .................................................................................................3-42Figure3-7. FindingCGUsingBalanceMethod ..........................................................3-43Figure3-8. ModifiedBalanceMethod.........................................................................3-43Figure3-9. AnInclineMovestheEffectiveCG ..........................................................3-44Figure3-10. TurningGeneratesForcesandMoments.................................................3-45Figure3-11. FIRSTTeam254'sRobot"CheesyPoofs"DoesaVictoryWheelie .......3-45Figure3-12. CantileveredandFullySupportedWheels ..............................................3-46Figure3-13. WheelLoading ........................................................................................3-46Figure4-1. TheRCXProgrammableBrick .................................................................4-48Figure4-2. RCXCodeScreenshot...............................................................................4-50Figure4-3.ROBOLABScreenshot ..............................................................................4-50Figure4-4. 9VoltGearedMotor .................................................................................4-51Figure4-5. PWMDutyCycles ....................................................................................4-52Figure4-6. UsingaPulleytoIncreaseDrag ................................................................4-53Figure4-7. UsingColorCodingtoDocumentProperConnectorOrientation.............4-53Figure4-8. StrengtheningMotorMountswithCrossBracing.....................................4-53Figure4-9. MotorMountUsingRails..........................................................................4-54Figure4-10. WiringtheTouchSensor.........................................................................4-55Figure4-11. ASimpleBumper....................................................................................4-55Figure4-12. ABumperthatUsestheRotationSensor ................................................4-55Figure4-13. ANormallyClosedBumperDesign........................................................4-56Figure4-14. ImprovedNormallyOpenBumper..........................................................4-56Figure4-15. PositionandLimitSwitches....................................................................4-57Figure4-16. ATouchRotationSensor ........................................................................4-58Figure4-17. TheLightSensor .....................................................................................4-58Figure4-18. LightSensorColorExperiment...............................................................4-60Figure4-19. VisibleLightSpectrum ...........................................................................4-61

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    7/91

    Figure4-20.TheLightSensorSeesDifferentlythanOurEyes....................................4-61Figure4-21. LightColors ............................................................................................4-62Figure4-22. ColorExperimentSensorReadings.........................................................4-63Figure4-23. AmbientLightExperiment......................................................................4-64Figure4-24. LightSensorReadingsforGrayLEGOBrick.........................................4-65

    Figure

    4-25.

    Rotation

    Sensor .......................................................................................4-66Figure4-26. UsingGearReductiontoIncreaseResolution.........................................4-67Figure4-27. RotationSensorInternals. DON'TDOTHIS!!! .....................................4-67Figure4-28.HomemadeRotationSensorMadeFromLEGOParts.............................4-68Figure4-29. AHomingSwitchtoResettheRotationSensor......................................4-68Figure5-1. ADifferentialDriveRobot........................................................................5-71Figure5-2. SwivelCasters...........................................................................................5-71Figure5-3. SwivelCastersareSelfAligning...............................................................5-72Figure5-4. CastersGenerateSteeringForcesWhileAligning ....................................5-72Figure5-5. DiamondShapedWheelLayout................................................................5-73Figure5-6. TriangleShapedWheelLayout .................................................................5-74

    Figure

    5-7.

    Turning

    Radius

    is

    Determined

    Wheelbase

    and

    Relative

    Speed.................5-74Figure5-8. PivotingAboutaWheel ............................................................................5-76Figure5-9. SimpleLEGOSlipLimiter........................................................................5-77Figure5-10. ALockingDifferential ............................................................................5-78Figure5-11. APairofDifferentialSkidRobots ..........................................................5-79Figure5-12. Twosteeredwheelrobots........................................................................5-80Figure5-13. PathPlanningisHarderforNon-HolonomicRobots ..............................5-80Figure5-14. AckermanSteeringMinimizesGeometryInducedWheelSkid..............5-81Figure5-15. TurningRadiusisDeterminedbyWheelBaseandSteeringAngle ........5-81Figure5-16. TricycleDrive(Left)andSteeringDrive(Right)RobotsLookSimilar..5-82Figure5-17. AnySteerAngleisPossiblewithaTricycleDrive .................................5-83

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    8/91

    TablesTable1-1. CalculatingDiagonalLengths ......................................................................1-9Table2-1. SpurGearSizes ..........................................................................................2-13Table2-2. DiagonalGearSpacing...............................................................................2-16Table2-3. GearRatiosforLEGOSpurGears .............................................................2-18

    Table2-4. Measuredpulleydiameters .........................................................................2-31Table2-5.PulleyRatios................................................................................................2-32Table4-1. LightSensorReadingsforPeanutM&Ms ..................................................4-59Table4-2. LightSensorReadingsforColorExperiment.............................................4-60Table4-3. SensorReadingsforAmbientLightExperiment ........................................4-65Table4-4. SensorReadingsforTwoStackedSensors.................................................4-69

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    9/91

    1-1

    1 Structures1.1 Bricks,Plates,andBeamsBricks,plates,andbeamsarenotasglamorousastheRCXbrick,motors,andsensors.ButtheyarethefundamentalcomponentsthatareusedtobuildtheframethatsupportstheRCX,counteractsthemotorsforces,andholdsthesensorspreciselyinplace. MastersomeLEGObuildingfundamentalsfirst,andyourteamwillhavesuccess. Ignorethem,andyoullspendmoretimerepairingyourrobotthanyoudidbuildingit.

    1.1.1 BricksThisisaLEGObuildingbrick. Littlehaschangedsinceitsintroductionin1949.AccordingtoLEGO,theyhaveproduced320billionbricks1sincethattime. Thatsapproximately52bricksperpersonlivingtoday.

    Figure1-1. BasicLEGOBrickLEGObricksaremadeoutofABSplastic. Theyareinjectionmoldedtoveryexactingtolerances(0.002mm)2. Thetopofthebrickiscoveredwithcylindricalplasticbumpscalledstuds. Thebottomofthebrickhascylindricalholesortubes. Whenyousnaptwo

    brickstogether,thetubesdeformslightlyaroundthestuds,lockingthetwofirmlytogether.

    1.1.1.1DimensionsThecommonpracticeistorefertobricksusingtheirdimensions:width,length,andheight(thoughheightisoftenleftoffwhenreferringtostandardsizedbricks). Whendoingthis,thewidthandlengthdimensionsaregiveninstuds. Thepiecebelowisa2x4

    brick.

    Figure1-2. BrickDimensionsLEGObricksarebasedonthemetricsystem. The2x4brickaboveis16mmwide,32mmlong,and9.6mmhigh(ignoringthestudsontop). Thatworksoutto1stud=8mm.

    1Fromwww.lego.com/eng/info/history

    2FromJinSatosLegoMindstormsTheMastersTechnique

    24

    1

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    10/91

    1-2

    Italsomeansthatbricksare1.2studshigh. Thisasymmetrycanleadtodesignandbuildingdifficultiesaswillbediscussedlater.

    Question: What is the smallest sized cube that can be made out ofLEGO bricks?

    1.1.2 PlatesPlatesareessentiallyshortbricks. Theyare1/3theheightofstandardbricks--3.2mmor0.4studs. Platesusethesamenamingconventionasbricks.

    Figure1-3. ThreePlates=OneBrickhighSomeplateshavethroughholesalignedwiththebacksidetubes. TheyarereferredtoasTechnicplates,orlessobscurely,plateswithholes. Theholesacceptaxlesandconnector

    pinsandmaketheTechnicplatesmuchmoreuseful.

    Figure1-4. SimpleGearboxUsingTechnicPlatesConstruction Note: Use normal plates when you dont need the through

    holes. Save the Technic plates for where they are needed.

    Question: What is the smallest sized cube that can be made out ofbricks and plates?

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    11/91

    1-3

    1.1.3 BeamsIn1977,LEGOintroducedTechnic3,aseriesofcomplexmodelsforolderchildrento

    build. CentraltoTechnicarethenewbeamswhichare1xbrickswithholesintheirsides. Theholesarespacedatone-studintervalsandcenteredbetweenthestudsonthetopofthebeam. Thebeamscanbestackedontopofeachotherjustlikebricks. In

    addition,connectorpinscanbeplacedinthesideholesallowingthebeamstobeassembledsidebyside. Thenumberofassemblytechniquesavailableusingthenew

    partsisstaggering.

    Figure1-5. TechnicBeams1.1.4 AxlesandPinsTheRISkitcomessuppliedwithawidevarietyofpinsandaxlesforconnectingTechnic

    beamstogether. ThemostcommonlyusedoftheseistheblackTechnicpinwithfriction,orfrictionpin. Thefrictionpinhassmall,raisedridgesthatmakeitlocktightlyintheholesofaTechnicbeamprovidingaverystrongconnection. Alongversionofthefrictionpincanbeusedtopinthreebeamstogether. ThedoublepinworkswellwiththegoofytransparentblueconnectorblockthatcomesinthenewerRISsetsandhasanaxleholethatcansometimesbeuseful.

    Figure1-6. PinsandAxlesSlightlylesscommonisthegrayTechnicpin. Similarinappearancetothefrictionpin,itlackstheridgesandhasaslightlyloosefit. TheTechnicpinisagoodchoiceforpivotsorhinges. Theshortpostofthe TechnicpinfitsnicelyinthehalfdeepholesinthesideoftheRCX,anditisoftenusedtoattachbeamstothesideoftheprogrammable

    3Fromwww.lego.com/eng/info/history

    A

    B

    C

    D

    E

    F

    G

    H

    I

    J

    K

    L

    A. PinwithFriction G. AxlePinB. 3LDoublePin H. 6LAxleC. LongPinwithFriction I. 3LPinwithStudD. TechnicPin J. FullBushingE. HalfPin K. HalfBushing

    F.

    Pin L. Long

    Pin

    with

    Stop

    Bushing

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    12/91

    1-4

    brick. Theshortpostofthe TechnicpinisactuallythesamesizeasaLEGOstudandcanbeusedtomimicstudscomingoutofthesideofabeam.

    Figure1-7. StudsontheSideofaBeam?Axlesarelongrodsthathavea + shapedcrosssection. TheyslideeasilythroughtheholesinTechnicbeams,buttheyfittightlyinthecross-holesfoundinwheels,gears,

    bushings,andotherTechnicelements. Axlesareavailableinevenstudlengthsstartingat2andgoingupto12. Therearealso3and5studlongaxles. Itiscommontouseshorthandwhenreferringtoaxles,describingtheaxleusingitslengthfollowedby L .

    Thus

    a

    four

    stud

    long

    axle

    is

    a

    4L

    axle.

    Figure1-8. ATypicalDrivenWheelAssemblyThereareafewoddballpartsthatdontreallyfitintheaxleorpincategory. ThefirstistheaptlynamedaxlepinwhichishalfTechnicpinandhalfaxle. Itismostcommonlyusedtoattachgearstothesidesofbeams. Anotheristhe3Laxlewithstud,whichisathreestudlongTechnicaxlewithastudononeend. TrystickingthestudintheholeofaTechnicbeam. Theconnectionissurprisinglystrong. ThelongTechnicpinwithstop

    bushingismyfavoritepart. IuseitwheneverIneedaremovablepinconnectionbecausethebushingontheendiseasytograsp. Thecross-holeinthestopbushingacceptsanaxleandcanbeusedtomakesomeinterestingparts.

    Figure1-9. A16LTechnicPin1.1.5 LEGOVocabularyTheRISkitisfilledwithallkindsofinterestingplasticpartsthatdontlookmuchlikeanythingwithwhichyouareusedtobuilding. Lookhardandyoullnotfindonescrew,

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    13/91

    1-5

    nut,bolt,ornail. Instead,youhavetheblueholey-thingandthelittlegraywhatchamabobwiththeaxleinit.Toaidincommunicationandfacilitatetheexchangeofideas,theLEGOcommunityhascomeupwithnamesforeachthingamajiganddoohickey. Mostofthenameswere

    providedbyLEGO--extractedfrommarketingorpackagingliterature. Butmanypart

    monikers

    originated

    in

    the

    user

    community.

    Figure

    1-10

    lists

    the

    names

    of

    some

    of

    theTechnicpartsincludedintheRISkit.

    Figure1-10. CommonTechnicPiecesLinks: Jim Hughes maintains Technica, a beautiful website that has acomplete Technic parts registry with pictures and an interesting history of

    LEGO. His URL is w3.one.net/~hughesj/technica/technica.html.

    1.2 BuildingaFrameArobotneedssomesortofframe. Theframegivestherobotitsshape. Itprovides

    mountingpointsforsensorsandreactstheforcesgeneratedbymotorsandgears. Itislikeourskeleton,whichgivesusourshape,supportsourorgans,andreactstheforcesgeneratedbyourmuscles. Agoodframeisstrong,lightweight,andholdstogetherevenaftermuchuse.

    Figure1-11. SimpleFrameFigure1-11showsasimpleframemadeoutofbeamsand1x8plates. Itsstrong,lightweight,andthedimensionsareappropriateforthebaseofarobotplatform. Butitis

    A

    B

    C

    D

    E

    F

    G

    H

    I

    A. AxleJointerPerpendicular F. Beam1x2withAxleholeB. AngleConnector#1 G. AxleJoinerC. ConnectorwithAxlehole H. Liftarm1x3D. PoleReverserHandle I. Liftarm1x6E. ConnectorBlock3x2x2

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    14/91

    1-6

    notveryrigid. Agentlepushonopposingcornerscausestheframetotwistoutofshape.Eventuallythecornerconnectionsworkloose,andtheframefallsapart.

    Theproblemisthattheplatesdonotlockthecornersatrightangles. Thereisasmallamountofclearancebetweentheendsofthe1x6beamsandthesidesofthe1x12

    beams.

    This

    allows

    the

    studs

    to

    act

    as

    hinges.

    Replacing

    one

    or

    more

    of

    the

    1

    x

    8

    plateswith2x8platesmakestheframemuchmorerigid.

    Figure1-12. ImprovedFrameTheimprovedframeismuchstiffer. Pushingonthecornerscausesittoflexhardlyatall.The2x8platefirmlylockstheshortandlongbeamstogetheratrightangles. Thisframeisadequateformanyapplications,butitcanbemadeevenstronger.

    Figure1-13. CrossBracedFrameTheframeinFigure1-13usescrossbracingtoholdittogether. The1x3liftarms

    preventtheframefrombeingpulledapart. CrossbracingisausefultechniqueforbuildingverystrongLEGOstructures. TheconnectionsbetweenLEGObricksareverystrongincompression(aforcepushingthebrickstogether),andinshear(asideways

    forcetryingtoslidethebricksacrosseachother),buttheyarerelativelyweakintension(aforcepullingthebricksapart). Whencrossbracing,wereinforceaconnectionwhichisweakintensionbyaddingcomponentsthatwillbeinshear. Inthiscase,the1x3liftarmsandaxlepinsareinshearwhentryingtopullthebeamsapart.

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    15/91

    1-7

    Figure1-14. SnapOnConnectionsareWeakinTension1.2.1 LEGOGeometryA1x6Technicbeamis1studwide,6studslong,and1.2studshigh. Bricksandbeamsnotbeinganintegernumberofstudshighcausesproblemswhentryingtodocross

    bracing. ThiscanbeseenintheleftassemblyinFigure1-15. Thesecondholeinthe

    verticalbeamdoesnotlineupwiththeholeinthehorizontalbeam.

    Figure1-15. CrossBracingIntheassemblyontheright,thethirdholeintheverticalbeamalignsperfectlywiththeholeinthehorizontalbeam. Thisisbecausethebeamandthetwoplatesadduptoexactlytwostudstall(1.2+2*0.4=2). Youwillfindthatcrossbracingonlyworksoutwhentheverticalholespacingisdivisiblebytwo.

    Question: What is the shortest stack of beams (no plates allowed)that will align with holes in a vertical beam?

    Construction Note: The two assemblies below are the same height, but the

    one on the right allows for locking the beam at an intermediate point and has

    better spacing for vertical meshing of LEGO gears.

    Compression Shear Tension

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    16/91

    1-8

    Figure1-16. TwoCrossBracingChoicesThissametechniquecanbeusedtobuildtallframesthatarelightweightandstrong.Figure1-17showsatallframethatusesfrictionpinsatthecornerstoattachtheverticalandhorizontalmembers.Noticethatthe1-2-1(1Beam-2Plates-1Beam)techniqueisusedtogettheproperspacing.

    Figure1-17. ATallFrame1.2.1.1DiagonalBracingItsveryeasytogetlockedintothemindsetthathorizontalandverticalaretheonlywaystobuild. Thegrid-likenatureoftheLEGOpiecesreinforcesthisthinking. Butdiagonalconnectionsarepossibleaswell.

    Diagonalbracingistrickiertoimplementthanperpendicularcrossbracing. Crossbracingcanbeusedonanyassemblywherethedimensionisevenlydivisiblebytwostuds,butitcantbeusedanywhereelse. Withdiagonalbracingtherearemoresolutions,

    buttheirderivationsarenotasobvious.

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    17/91

    1-9

    Figure1-18. DiagonalCrossBracingYoucanfinddiagonalbracingsolutionsthroughexperimentation. Laythediagonal

    braceonthepart,andmoveitaboutuntilyoufindaplacewheretheholeslineup. Itcan

    alsobedoneanalyticallyusingthePythagoreanTheoremforrighttriangles.Thesumofthesquaresofthelegsofarighttriangleequalsthesquareofthehypotenuse. Thisisoftenwrittenas 22 BAC += . Thetwolegsarethebase(widthacrossthebottom)andtheheight. Thehypotenuseisthediagonalbeam. Diagonalbracingispossibleifthehypotenuseisclosetoanintegernumber(lessthan0.05studsdifference).

    Table1-1. CalculatingDiagonalLengthsBase(A) Height(B) Hypotenuse Comments4 4 5.65 Doesntfit3 4 5 Perfectfit1.5 4.8 5.03 Fits,butalittletight

    6 8 10 Perfectfit

    1.3 SNOTSNOTisalltherageintheLEGObuildingcommunitytoday. SNOT,standingforStuds

    NotOnTop,isawayofbuildingwithLEGOthatdoesnotalwaysutilizethetraditionalclick-fitassemblytechniques. Thiscanbeverytrickyandrequiresgreatimagination,buttheresultingmodelsareverybeautifulandquiterealistic.

    3

    4

    1.5

    4.8 58

    6

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    18/91

    1-10

    Figure1-19. OneofJenniferClark'sIncredibleCreations. YesitsLEGO.Luckily,TechnicismoreflexibletobuildwiththanotherLEGO. Butitisstilldifficultsometimestofigureoutawaytoattachthemotorwhereyouwantitortopositionthesensorinjusttherightplace. TryingtodiscovernewwaystoputLEGOtogetherisachallengingactivitythatcanbealotoffun. Herearesomeideastogetthecreativejuicesflowing.

    Figure1-20. Turning90degrees. StudsOut

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    19/91

    1-11

    Figure1-21. Turning90degrees. StudsIn

    Figure1-22. UpsideDown

    Figure1-23. ExtendingBeamsUsingPinsandPlates

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    20/91

    2-12

    2 GearsEventuallyyouwillwanttomakeyourrobotmove. Afterall,thisisnottheFLLSculptureCompetition! The9voltmotorsprovidethemotivepower,buttheymaynotrunattherightspeedorbepowerfulenough. Itmayalsobetoodifficulttopositionthe

    motorswheretheycanbedirectlyattachedtothewheels. Alltheseproblemscanbesolvedusinggears.

    Gearsaregenerallyusedforoneofthefollowingreasons:1. Totransmittorquefromoneaxletoanother2. Toincreaseordecreasethespeedofrotation3. Toreversethedirectionofrotation4. Tomoverotationalmotiontoadifferentaxis5. Tochangerotarymotiontolinearmotion6. Tokeeptherotationoftwoaxlessynchronized

    2.1 SpurGearsAspurgearisusedwhenshaftsmustrotateinthesameplane.Inaspurgeartheteetharestraightandparalleltotheshaft.Theyarebyfarthemostcommontypeofgears,andtheyarewhatmostpeoplepicturewhenyoumentiongears. LEGOincludesfourdifferentsizedspurgearsintheRoboticsInventionSystem.

    Figure2-1 LegoSpurGearsGearsarenormallyreferredtobytheirtypeandthenumberofteeth. Take,forexample,an8toothspurgear. Sometimesakindofshorthandnotationisusedwhere tooth isreplacedwith t andthetypeisnotspecifiedforspurgears(becausetheyaresocommon). Forexample,a40toothspurgearwouldbereferredtoasa40tgear.

    2.1.1 GearSpacingSizesofLEGOspurgearsareshowninTable2-1. Itisinterestingtonotethattheratiooftheradiiisequaltotheratioofthetoothcount(8/24=0.5/1.5=1/3). Thisisbecauseallthedifferentsizedspurgearshavethesamesizedteeth--eventhelittle8tgearwithitsinvoluteprofilegearteeth. Havingthesamesizedteethallowsthegearstomesh

    properly.

    24 40168

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    21/91

    2-13

    Table2-1. SpurGearSizesTeeth 8 16 24 40Radius(studs) 0.5 1 1.5 2.5

    Knowingtheradiusofagearandthenumberofteeth,wecancalculatethesizeofeach

    tooth. Thisinformationcanbeusefultoknowwhenusingaspurgearwithagearrack.

    Circumference =2xPixRadiusCircumference =ToothSizexToothCountSizexCount =2xPixRadiusSize =2xPixRadius/Count16tooth =2xPix1/16

    =Pi/8studs=0.392studsor3.14mm

    Checkitoutforyourself. Theteethforeachspurgearreallydoevaluatetothesame

    size!

    2.1.1.1HorizontalGearSpacingUsingtheinformationfromFigure2-2,wecancalculatethegearspacingrequiredfor

    propermeshing. Thedistancebetweenthetwoaxlesisequaltothesumofthetworadii.

    8t 16t 24t 40t

    8t 1.0studs 1.5studs 2.0studs 3.0studs

    16t 1.5studs 2.0studs 2.5studs 3.5studs24t 2.0studs 2.5studs 3.0studs 4.0studs

    40t 3.0studs 3.5studs 4.0studs 5.0studs

    Figure2-2. StudGearSpacingCombinationsusingeight,twenty-four,andfortytoothgearsarestraightforwardtosetup. Sixteentoothgearsareeasytousewithothersixteentoothgears,butrequirehalfstudspacingtomeshwith8t,24t,or40tgears. Atwoholed1x2Technicbrickcanbeusedtogethalfstudspacing.

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    22/91

    2-14

    Figure2-3. HalfStudSpacingUsing2Holed1x2BeamConstruction Notes: Gear spacing of two or three studs provides the

    maximum number of gear combinations. Two stud spacing also works well in

    vertical layouts.

    2.1.1.2VerticalSpacingItisdifficulttomeshgearslaidoutonaverticalaxis. Thegearspacingtableshowsthat

    propergearmeshingisachievedathalfstudintervalsstartingat1studandgoingupto5

    studs. Forgoodverticalgearmeshing,weneedtobuildastructureusing1.2studhighbeamsand0.4studhighplatesthatprovidesthecorrectspacing. Itworksoutthat2and4studsspacingaretheonlysolutions.

    8t 16t 24t 40t8t 2.0studs

    16t 2.0studs24t 2.0studs 4.0studs40t 4.0studs

    Figure2-4. VerticalGearSpacingThespacingdoesnthavetobeperfectforthegearstomesh. Anythingwithin0.08studsworksfairlywell. The8toothand16toothgearsalmostfitat1.6studspacing(idealis

    1.5studs),buttheydontmeshsecurely,anditispossibleforthegearstoslip.

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    23/91

    2-15

    Figure2-5. CircumventingVerticalGearSpacingRestrictionsFigure2-5showsonewaytogetaroundverticalgearspacingrestrictions. Themiddlegearisheldinplacebyanaxlepinintheverticalbeam. Thetopandbottomgearsare

    spacedsixstudsapartallowingthemtofitnicelyonaxlespassingthroughthehorizontalbeams.

    2.1.1.3DiagonalgearspacingDiagonalgearspacingistrickiertocalculatethanperpendicularorverticalgearspacing.Aswasdonetocalculatediagonalcrossbracingsolutions,Pythagorasstheoremforrighttrianglesisusedtocomputethediagonal(hypotenuse). ThisvalueisthencomparedtotheidealgearspacinginformationfromthetableinFigure2-2.

    Figure2-6. DiagonalGearSpacingTable2-2showsthepossiblelayoutsfor8,16,24,and40toothspurgears. Verticaldimensionsaredisplayedinthelefthandcolumn,horizontaldimensionsinthetoprow.Attheintersectionofeachrowandcolumnisthecalculateddiagonalgearspacing. Theentryisleftblankifthisdistancedoesnotmatchthespacingofanyoftheavailablegearcombinations. Acceptablegearmeshesmustbewithin0.08studsoftheidealvalue.Excessivebindingofthegearsoccursifthespacingistoosmall. Ifthespacingistoogreat,thegeartrainwillhavelargeamountsofbacklash,andslippagemayoccur.

    2.8

    2

    3.44

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    24/91

    2-16

    Table2-2. DiagonalGearSpacing

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    0 1 1.5 2 2.5 3 3.5 4 5

    1.2 1.56 1.921.6 2.56 2.97

    2 2 2.06 2.5 4.03 4.92

    2.4 2.45 3.47

    2.8 2.97 3.44

    3.2 3.53 4.06

    3.6 5.02

    4 4 4.03 5.00

    4.4 5.06

    4.8 5.03

    Figure2-7.CircumventingDiagonalGearSpacingRestrictionsFigure2-7showsonewaytogetarounddiagonalgearspacingrestrictions. Three

    perpendicularaxlejoinersareusedtoholdthegearsinplace. Themiddle24toothgearisattachedusinganaxlepin. Thetwo8toothgearsarespaced4.1studsaparttofitonaxlespassingthroughthehorizontalbeams. Theextra0.1studsspaceisdividedevenly

    betweenthetwogearmeshes.

    2.1.2 GearRatioGearratioishowmuchtheoutputshaftofagearboxturnsforagivenrotationofthe

    inputshaft. InFigure2-8,wehaveagearboxconsistingoftwogears:an8tgearontheinputshaftanda24tgearontheoutputshaft. Ifthe8tgearrotatesonefullrevolutiontheneightofitsteethwouldpassthroughthestartingline. Becausethetwogearsaremeshed,eightofthe24tgearsteethwouldalsopassthestartingline.Sincetheteethareevenlydistributedaroundthecircumferenceofthegear,the24tgearturns8/24thsor1/3ofarevolution.

    HorizontalSpacing

    VerticalSpacing

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    25/91

    2-17

    Figure2-8. 3:1GearRatioUsingtherotationinformationwecancalculatethegearratio. Followingpopularconvention,itisexpressedasaratioofwholenumbers.

    GearRatio =1:1/3=3:1

    The3:1gearratiotellsusthattheinputshaft(attachedtothe8tgear)hastocompletethreefullrevolutionsfortheoutputshaft(attachedtothe24tgear)torotateallthewayaroundjustonce. Usinggearstoslowdownrateofrotationordecreasetheamountofrotationiscalledgearingdown. Ifweweretoswitchthe8tand24tgearsaround,theoutputshaftwouldspinthreerevolutionsforeachrevolutionoftheinputshaft. Thisisgearingup,andthegearratiowouldbe1:3.

    Youmayhavenoticedthatthegearratioistheinverseoftheratioofthenumberofgearteeth. Thereasonforthisiseasiertoseeifwerecalculatethegearratiousinganinputshaftrotationofonly1tooth. Inthecaseofthe8tgeardrivingthe24tgear,theinputshaftwouldturn1/8ofarevolutionandtheoutputshaft1/24ofarevolution.

    GearRatio =1/8:1/24=24:8=3:1

    Usinggeartoothcountstodirectlycalculategearratiosiseasierandfasterthancalculatingtherotationsfirstandthenusingthesevaluestoderivethegearratio.

    1rev8teeth

    1/3rev8teeth

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    26/91

    2-18

    Table2-3. GearRatiosforLEGOSpurGears

    8t 16t 24t 40t

    8t 1:1 2:1 3:1 5:116t 1:2 1:1 3:2 5:2

    24t 1:3 2:3 1:1 5:340t 1:5 2:5 3:5 1:1

    Links: Ted Cochran has a nice treatment of gear ratios with Minnesota FLLexamples at www.hightechkids.org/fll/coaching/Gears/gears.htm.

    2.1.3 TorqueTorqueisaforcethattendstorotateorturnthings. Yougenerateatorqueanytimeyouapplyaforcetothehandleofawrench.Thisforcecreatesatorqueonthenut,whichtendstoturnthenut. Ifthenutistootight,youeitherpullharder(moreforce),orgeta

    longerhandledwrench(moredistance).

    Figure2-9. Torque=ForcexDistanceFromthewrenchexample,weseethattorqueisaproductofforceanddistance. Theunitsusedwhenmeasuringtorquereflectthis. IntheU.S.wemeasuretorqueinfoot-

    pounds(ft-lbs).Newton-meters(Nm)istheunitoftorqueinthemetricsystem.

    Distance

    TorqueForce

    16:8or

    2:124:8

    or3:1

    40:8or

    5:1

    OutputShaftorDrivenGear

    Inpu

    tShaftor

    DrivingGear

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    27/91

    2-19

    Gearsoperatebytransmittingforcesattheteethofthegear. InFigure2-10,the24tgearisgeneratingaforceagainsttheteethofthe40tgear. Theforce(f)isequaltothetorque(t1)appliedtothe24tgeardividedbytheradius(r1). Theforcetransmittedbyagearisinverselyproportionaltothegearsradius.Thelargertheradiusofthegear,thelessforceitwillgenerateforagiventorque.

    Theforceagainsttheteethofthe40tgearcreatesatorque(t2)equaltotheforce(f)timestheradius(r2). Thetorquecreatedbyapplyingaforcetoagearisproportionaltothegearsradius. Applyingaforcetoalargegearwillcreatemoretorquethanapplyingthesameforcetoasmallgear.

    Figure2-10. TheRatiooftheTorquesisEqualtotheRatiooftheRadiiThetorqueavailableattheaxleofdrivengear(40t)canbeexpressedasafunctionofthetorqueturningthedrivinggear(24t)andthetworadii;t2=t1xr2/r1. Asmallgeardrivingalargergearwillamplifytorque. Therewillbemoretorqueavailableattheshaftofthelargergearthanissuppliedtotheshaftofthesmallergear.

    Fromthediscussionearlier,weknowthatthegearratioistheinverseoftheratioofthegearsradii. Thisallowsustousethegearratiotocalculatethetorqueamplificationofagearsystem. Usingthegearratiofortheexampleabove:

    GearRatio=r2:r1=r2/r1=5/3

    t2 =t1xr2/r1=t1xGearRatio=t1x5/3

    TheTechnicgearmotorsuppliedwiththeRISkitcangenerateatorqueofabout9Ncm

    withfreshbatteries. Intheexampleabove,howmuchtorquewouldbeavailableattheshaftofthe40tgearifweattachedthemotordirectlytotheshaftofthe24tgear?

    t2 =t1x5/3=9Ncmx5/3=15Ncm

    r1

    r2

    t2

    t1

    f

    f =t1/r1t2 =fxr2t2 =(t1/r1)xr2t2/t1=r2/r1

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    28/91

    2-20

    2.1.4 SpeedWhenusingsimplemachineslikegears(oranykindofmachineforthatmatter)younevergetsomethingfornothing. Inourpriorexample,weusedgearstoincreasetorque.Whatwetradedtogetthetorqueincreasewasspeed. Theoutputshaftmayturnstronger,

    butitalsoturnsslower.

    Ifwemeasuretheanglesinradians(1radian=180degrees/Pi=1revolution/(2xPi)),thetoothvelocityofagear(v)isequaltotheangularvelocity()timestheradius(r).Thereisaproportionalrelationshipbetweentheradiusandthetoothvelocity. Atagivenangularvelocity,theteethofalargergearwilltravelfasterthantheteethofasmallergear.

    Figure2-11. RatioofAngularVelocitiesisEqualtoInverseRatiooftheRadiiWhentwogearsaremeshed,thetoothvelocityforeachgearisthesame. Intheexampleabove,whatistheangularvelocityofthe40tgearifthe24tgearisspinningat180rpm?

    r1 =1.5studs=12mmr2 =2.5studs=20mm1 =180rpm

    =180revolutions/minutex1minute/60seconds=3revolutions/second=3revolutions/secondx2Piradians/revolution=6Piradians/second

    =18.85radians/secondv =1xr1

    =18.85radians/secondx12mm/radian=226.19mm/second

    2 =v/r2=(226.19mm/second)/(20mm/radian)=11.31radians/second=1.8revolutions/second=108rpm

    Thelargergearspinsmoreslowlythanthesmallergear. Theratiooftheangularvelocitiesisequaltotheinverseoftheratiooftheradii. Knowingthiswecancalculatetheangularvelocityusingtheradiusratiodirectly.

    r2

    r1

    1

    2

    v

    v =1xr12 =v/r22 =(1xr1)/r2

    =1xr1/r22/1=r1/r2

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    29/91

    2-21

    2 =1xr1/r2=180rpmx1.5studs/2.5studs=108rpm

    Just

    as

    with

    torque,

    the

    gear

    ratio

    can

    be

    used

    in

    place

    of

    the

    ratio

    of

    the

    radii.

    GearRatio=r2:r1=r2/r1=5/3

    2 =1xr1/r2=1x(1/GearRatio)=1/GearRatio=180rpm/(5/3)=180rpmx3/5=108rpm

    Links: How Stuff Works, one of the best sites on the web, has a wonderfularticle about gears, gear ratios, torque, and speed. Check it out at

    www.howstuffworks.lycozone.com.

    2.1.5 GearTrainsIfanumberofgearsarecascadedsothatseveralmeshesrelateaninputtoanoutput,ageartrainisformed.Usingfour40tandfour8tgears,itispossibletocreateagearratioof625:1.

    Figure2-12. Multi-stageGearTrainThegeartrainaboveconsistsoffourstages,eachhavinga5:1gearratio.Tocalculatetheoverallgearreduction,westartwiththegearratiobetweenAandB,multiplythattimestheratiobetweenBandC,andsoonuntilwegettoE.

    A C E DB

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    30/91

    2-22

    AB =5:1BC =5:1CD =5:1DE =5:1AE =ABxBCxCDxDE

    =5:1

    x5:1

    x5:1

    x5:1=5x5x5x5:1x1x1x1

    =625:1The9vgearedmotorcangenerateabout0.06ft-lbsoftorquewithfreshbatteries. IfwehookedoneuptoshaftAandturnediton,thetorqueamplificationsshouldproduce37.5ft-lbsoftorqueatshaftE. Thatsenoughtorquetotightenthelugnutsonmycarswheels.Duetofrictioninthegeartrain,theactualavailabletorquewillbemuchlessthan37.5ft-lbs,butitwillbestrongenoughtosnapaxlesandbreakgearteeth. Becarefulwhenusinglotsofgearreduction.

    As

    mentioned

    before,

    any

    increase

    in

    torque

    is

    accompanied

    by

    a

    corresponding

    decreaseinrotationspeed.Ifwetookourmotor,hookedituptoshaftAandgotitspinningat200revolutionsperminute(rpm),shaftEwouldspinat0.32rpmorabout1revolutionevery3minutes. Ifinstead,weattachedthemotortoshaftE,thenshaftAshouldspinat125,000rpm. Thatwouldhavetheteethofthelast40tgeartravelingat585mph!Fortunately,thelargeamountoffrictioninthegeartrainpreventstheweak9vmotorfromgeneratingsuchdangerousspeeds. Whengearinguptoincreasespeed,torqueamplificationmagnifiesthefrictionforcesofthelaterstages. Withagearratioof1:625,itisunlikelythatthemotorispowerfulenoughtospinthegearsatall.

    Question: For the example above, what would the gear ratio be if the

    8 tooth gears were replaced with 24 tooth gears?

    2.1.5.1IdlerGearThe24toothgearinFigure2-13isanidlergear. Anidlergeardoesnotaffectthegearratioofageartrain. ThegearratioforACisthesameasitwouldbeifthe24toothgearwereleftout. Idlergearsarequitecommoninmachineswheretheyareusedtoconnectdistantaxles. Theyarealsousedtochangethedirectionofrotationoftheoutputshaft.

    AB =3:1BC =1:3AC =ABxBC

    =3:1x1:3=3x1:1x3=1:1

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    31/91

    2-23

    Figure2-13. IdlerGear2.1.6 ClutchGearThefunnylookingwhite24toothspurgearwiththewritingonitsfaceistheclutchgear.Theclutchgearisspecialinthatthegearteethareabletorotateabouttheshaft. Ithasaninternalclutchmechanismthatstartstoslipwhenitsmaximumratedtorqueisexceeded.Theclutchgearisusedtolimitthetorqueofagearedsystem,savingmotorsand

    preventingyourrobotfromtearingitselfapart.

    Theclutchgearhas2.5.5Ncm stampedonitsface. Thisisthetorqueratingoftheclutch.NcmstandsforNewtonCentimeter,aunitoftorque(torqueisaproductofforceanddistance,centimeterisaunitofdistance,andNewtonisaunitofforce). Theclutchgearcantransmitamaximumtorqueoffrom2.5to5Ncm(0.018to0.037ftlbsor0.22to0.44inlbs).

    Figure2-14. UsingClutchGeartoLimitForcesInFigure2-14,theclutchgearisusedtolimittheforceoftheliftarmpressingagainsttheconnectorpegstops. Withouttheclutchgear,wewouldruntheriskofstallingamotorordamagingtheassembly. Usingtheinformationwehaveabouttheclutchgear,

    gearratios,anddistance,itspossibletocalculatethemaximumforcetheliftarmcangeneratetopushagainsttheconnectorpeg.

    Amaxtorque =5NcmGearratioA:B =5:3Bmaxtorque =AtorquexGearRatio

    =5Ncmx5/3=8.33Ncm

    24mmBA

    B

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    32/91

    2-24

    DistanceBtoPin=3studs=24mmor2.4cm

    MaxforceatPin =Btorque/Distance=8.33Ncm/2.4cm=3.47Nor0.78lbs

    2.2 CrownGearThecrowngearhasteeththatareraisedononesideandroundedoffontheother.Thisgivesitacrown-likeappearance. Thecrowngearisusedwhentheshaftstobeturnedmeetatanangle--usuallyarightangle. Thecrowngearcanbemeshedtospurgearsandwormgears,butitdoesntmeshwellwithothercrowngears. Thecrowngearcanalsobeusedinplaceofa24toothspurgear.

    Figure2-15. CrownGearTreatthecrowngearjustlikethe24tspurgearwhencomputinggearreduction. Forthegearboxabove,ifthe8tgearisattachedtotheinputshaft,andthe24tspurgeartotheoutputshaft,thegearratiois:

    GearRatio =24:8x24:24=

    3:1

    x1:1=3:1

    2.3 BevelGearThebevelgearhasteeththatslopealongonesurfaceofthedisc.Itisusedwhentheshaftstobeturnedmeetatanangle--usuallyarightangle. Ithaslessfrictionthanthecrowngear,butitcanonlymeshwithanotherbevelgear. LEGOproduces12tooth,14tooth,and20toothbevelgears. Unfortunately,onlythe12toothbevelgearisincludedintheRISkit.

    Figure2-16. BevelGear

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    33/91

    2-25

    Theold14toothbevelgearshaveaproblemwiththeirthinfacetedteethbreaking.The12toothbevelgearhasacircularbackingplatethatstrengthensthegearteethtopreventthisfromhappening. Thebackingplategivesthegearasmoothcircularoutlineandallowsittobeusedasaverysmallwheel.

    Figure2-17. ASmallWheelBuiltfromTwo12tBevelGearsQuestion: A wheel made out of bevel gears would not have muchtraction. For what applications could this be a benefit?

    2.4 WormGearAwormgearisascrewthatusuallyturnsalongaspurgear.Motionistransmitted

    betweenshaftsthatareatrightangles.Ifyouwanttocreateahighgearratio,nothingbeatsawormgear.Eachtimetheshaftspinsonerevolution,thespurgearmovesonetoothforward.Ifthespurgearhas24teeth,youhavea24:1gearratioinaverysmall

    package.

    Figure2-18. WormGearTheefficiencyofawormgearsystemismuchlowerthanthatofnormalmeshesbecausethewormworksprimarilybysliding,thusincreasingfrictionallosses. Thishasan

    unusualsideeffectinthatthewormgearisasymmetricandself-locking. Youcanturntheinputshafttodrivetheoutputshaft,butyoucannotturntheoutputshafttodrivetheinputshaft.

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    34/91

    2-26

    Figure2-19. UsingtheWormGear'sSelfLockingFeatureThemechanisminFigure2-19makesuseofthewormgearsself-lockingfeaturetoholdthebucketinplace. Theaxlethroughthewormgearcanbeturnedtoraiseorlowerthe

    bucket. Onceinplace,notorqueisrequiredtomaintaintheposition.

    Thewormgearcanalsobeusedtoimplementaleadscrew. Leadscrewsconvertrotarymotiontolinearmotion. Aleadscrewconsistsofathreadedrodandacapturednut.Spinningtherodcausesthenuttomovealongthelengthoftherod. Leadscrewsareusedinmanydevices. OneofthemostvisibleexamplesistheGeniegaragedooropener.

    Figure2-20. LEGOLeadScrewFigure2-20isaLEGOimplementationofaleadscrew. Thethreadedrodisconstructedofmultiplewormgearsonthecenteraxle. Thehalfbushingsontheouteraxlesmakeupthecapturednut. Spinningthecenteraxlecausestheouteraxlestomoveinorout.

    Construction Note: Be careful when constructing a threaded rod out of

    worm gears. You can put two worm gears on an axle in four different ways,

    but only one results in a continuous thread.

    Good Bad

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    35/91

    2-27

    2.4.1 DirectionalTransmissionOneofthecleverestusesIhaveseenforawormgearisthedirectionaltransmission. Adirectionaltransmissionletsyouuseoneoutputporttoperformtwofunctions. Ithasoneinputshaftandtwooutputshafts. Awormgearslidesalongtheinputshaftandengagesspurgearsontheoutputshafts. Whichgearisengagedisdependentupontherotation

    directionoftheinputshaft.

    Figure2-21. DirectionalTransmissionThe

    directional

    transmission

    works

    because

    of

    friction.

    When

    you

    spin

    the

    input

    shaft,thewormgearexertsaforceagainstoneofthespurgears. Thespurgearresiststurningbecauseoffrictionandpushesbackagainstthewormgear. Iffreetodoso,thewormgearslidesalongtheinputshaft,engagingtheotherspurgearandeventuallyrunningintothesupportbeam.Nowtheforcerequiredtoslidethewormgearexceedstheforcerequiredtoturnthespurgear,andthespurgearbeginsturning. Reversingrotationoftheinputshaftcausesthewholesequencetooccuragainbutintheoppositedirection.

    2.5 DifferentialAdifferentialisadevicethattakesatorqueappliedtoitshousingandevenlydistributesittotwooutputshafts,allowingeachoutputtospinatadifferentspeed. Differentialsare

    foundonallmoderncarsandtrucks. All-wheeldrivecarsliketheAudiQuattrocanhavethreedifferentials;onebetweenthefronttires,onebetweenthereartires,andonebetweenthefrontandreardifferentials. LEGOprovidesadifferentialwiththeRISkit.

    Figure2-22. LEGODifferentialCarwheelsspinatdifferentspeedswhenturning.Eachwheeltravelsadifferentdistancethroughtheturnwiththeinsidewheelstravelingashorterdistancethantheoutsidewheels.Sincespeed=distance/time,thewheelsthattravelashorterdistancetravelatalowerspeed.

    Thisisnotaproblemforwheelsthatcanspinindependently.Butinmostvehicles,thedrivenwheelsarelinkedtogethersothattheycanbepoweredbyasinglemotor.Without

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    36/91

    2-28

    adifferential,thewheelswouldbelockedtogether,forcedtospinatthesamespeed.Thiswouldmaketurningdifficult.Forthecartobeabletoturn,onewheelwouldhavetoslip,whichcanrequiregreatforce.

    Figure2-23. DuringTurnstheWheelsCoverDifferentDistancesThedifferentialisamechanicalcalculator. Itcomputestheaveragerotationspeedofthetwoinputaxlesandspinsthedifferentialhousingatthisrate. Thisisaninteresting

    propertythatcanbeusedinmanyways. InFigure2-24,thedifferentialisusedto

    calculatetheaveragerotationspeedofthetwowheels. Attachingarotationsensortothedifferentialhousingwouldprovideanaccuratemeasureoftraveldistance.

    Wheel1 Wheel2 Housing100rpm 100rpm (100+100)/2=100rpm70rpm 50rpm (70+50)/2=60rpm

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    37/91

    2-29

    80rpm -80rpm (8080)/2=0rpm

    Figure2-24. UsingDifferentialtoCalculateAverageRotationTheplatformbelowusesthedifferentialtomeasurethedifferenceinrotationspeed

    betweenthetwoaxles.Noticetheextragearbetweenthedifferentialandthewheelon

    the

    right

    side.

    It

    reverses

    the

    direction

    of

    rotation

    for

    the

    right

    differential

    shaft.

    Arotationsensorcouldbeusedheretomeasureturning.

    Wheel1 Wheel2 Housing100rpm 100rpm (100-100)/2=0rpm70rpm 50rpm (70-50)/2=10rpm80rpm -80rpm (80+80)/2=80rpm

    Figure2-25. UsingaDifferentialtoCalculateDifferenceinRotation

    2.5.1 RatchetSplitterAnintriguinguseforthedifferentialisaspartofaratchetsplitter. Aratchetsplitterletsyouperformtwodifferentfunctionswithasinglemotor,justlikethedirectionaltransmission. Butinsteadofusingfrictiontoswitchgears,theratchetsplitterusesaratchetingmechanismtopreventanaxlefromspinninginbothdirections.

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    38/91

    2-30

    Figure2-26.RatchetSplitterTheassemblyinFigure2-26ispartofadifferentialdrivecarIbuiltthatusedasinglemotortoprovidebothlocomotionandsteering. Theperpendicularaxlejoinerand24tgearisaratchetingmechanismthatpreventstherightaxlefromrotatingcounterclockwise. Whenthemotorturnsclockwise,theleftandrightaxlesturninthesamedirectionandpropelthevehicleforward. Whenthemotorturnscounterclockwise,theratchetlockstherightwheel,andthevehicleturnstotherightasitbacksup.

    Question: What would happen if a second ratchet was added toprevent the left axle from turning clockwise?

    2.6 GearRackThegearracklookslikeaspurgearlaidoutflat. Itisusuallyusedinconjunctionwitha

    spurgear(whichisreferredtoasthepinion). Rackandpiniongearsareusedtoconvertrotationintolinearmotion.Anexampleofthisisthesteeringsystemonmanycars.Thesteeringwheelrotatesagearthatengagestherack.Asthegearturns,itslidestherackeithertotherightorleftdependingonwhichwayyouturnthesteeringwheel. Themotionistransmittedvialinkagestothefrontwheelscausingthemtopivot.

    Figure2-27. LEGOGearRackandPinionOneofthetrickierproblemsencounteredwhenusingthegearrackishowtoprovideasmoothsurfaceuponwhichtherackcanslide. MostLEGOcarmodelssolvethis

    problemwithtiles,whichareplateswithoutstudsontop. Figure2-27usestwo1x5liftarmstoprovideasmoothsurface. AnupsidedownTechnicbeamisanothercommonlyusedsolution.

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    39/91

    2-31

    2.7 PulleysApulleyisawheelwithagrooveaboutitsdiameter. Thegroove,calledtherace,acceptsabeltwhichattachesthepulleytootherpulleys. Asthepulleyrotates,frictionforcespullonthebeltputtingitintension. Thebelttransmitstheforcetotheotherpulleycausingittorotate.

    Figure2-28. PulleysandBeltsLEGOincludesfoursizesofpulleysintheRIS--thehalfbushing,thesmallpulley,the

    pulleywheel,andthelargepulley.Pulleysareconnectedusingbeltsthatrestinthepulleysraces. LEGObeltsarecolorcoded:small(white),medium(blue),andlarge(yellow). Theblackrubberbandscanbeusedasbelts,buttheyaremoreelasticthantheLEGObelts,andtheirrectangularcrosssectiondoesntfitwellinapulleysrace.

    Figure2-29. LegoPulleysWithfourdifferentsizedpulleys,itispossibleto gear upand gear down. Thereductionratiowithpulleysisdeterminedbytheratiobetweentheirdiameters. Thetrickisdeterminingexactlywheretomeasurethediameter. Table2-4showspulleydiametersmeasuredatthebottomoftherace. Theresultingreductionratiosareclosetothevalues

    determinedexperimentallyinTable2-5.

    Table2-4. Measuredpulleydiameters

    DiameterHalfBushing

    SmallPulley

    MediumPulley

    LargePulley

    Millimeters 5.7 8.7 22 34.5Studs 0.71 1.09 2.75 4.3

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    40/91

    2-32

    Table2-5.PulleyRatiosHalfBushing

    SmallPulley

    MediumPulley

    LargePulley

    HalfBushing 1:1 3:2 7:2 6:1SmallPulley 2:3 1:1 7:3 4:1MediumPulley 2:7 3:7 1:1 5:3LargePulley 1:6 1:4 3:5 1:1

    2.7.1 TorquePulleysmaybeusedinplaceofgearsinmanyapplications. Sincetherearenoteethtomesh,placementismuchmoreforgiving. Butbecauseithasnoteeth,apulleycannotbeusedtotransmithightorques. Thebeltwillslipfirst. Determiningwhenandhowmuchthebeltwillslipisdifficult. Itdependsonmanyfactorssuchasthesizeofthepulleys,thetensionofthebelt,andthefrictionbetweenthepulleyandthebelt.

    Youcanincreasethetorquecapacityofapulleysystembyincreasingthereductionratioorbyincreasingthefrictionbetweenthepulleysandthebelt. Increasingthereductionratiomaynotbedesirablebecauseithasanassociateddecreaseinspeed. Frictioncanbeincreasedeitherbyusingatighterbeltorbyincreasingthecontactareabetweenthe

    pulleysandthebelt.

    Figure2-30. TwowaystoIncreaseTorqueCapacityQuestion: How else can we increase the friction between the pulleysand the belt?

    Someenterprisingrobotdesignersusebeltslippageasatorquelimitingdevice,similartotheclutchgear. Becauseslippageisdifficulttopredict,itisbesttouseexperimentationtofindthebeltandpulleycombinationthatwillslipatthedesiredtorque.

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    41/91

    2-33

    Figure2-31. UsingPulleystoLimitTorqueConstruction Notes: The tank tread and sprocket can be used like a pulley

    and belt system. The treads teeth prevent slipping even if a large torque is

    applied to the sprocket.

    2.8 ReinforcinggeartrainsThecomponentsofthegeartrainarelikelytoexperiencethelargestforcesofanythinginyourrobot. Themotorwillstallandwheelswillslipbeforeforcesgettoooutofhand.Butwithenoughgearreduction,itiseasytogenerateforcesthatwilltearagearboxapart.

    Figure2-32. ForcesongearsDifferenttypesofgearsrequiredifferentkindsofsupport. Inspurgears,forcesareappliedperpendiculartotheaxles. Unlesstheaxlesareproperlysupported,theywillbe

    pushedapartwhenhightorquesareapplied. Supportingtheaxlesisnotaprobleminhorizontallayouts,butverticalanddiagonallayoutsmayrequireadditionalbracing.

    Crown

    and

    bevel

    gears

    have

    forces

    directed

    perpendicular

    and

    parallel

    to

    their

    axles.

    Aswithspurgears,thesupportingstructurewillprobablyrequirebracingtoholdtheaxlesinplace. Thiscanbedifficultattimesbecausethesupportsareperpendiculartoeachother.Crownandbevelgearsalsorequireasolidbackingtopreventthemfromslidingontheiraxles.

    Themostdifficultproblemwiththewormgearislockingthewormscrewinplaceonitsaxle. Thisisexacerbatedbythegearsoddlength(its15.5mmlonginsteadofthe16mm

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    42/91

    2-34

    requiredforaperfectfit). Whenthewormgearisusedwithaspurgear,thespurgearsaxlemustbewellsupported.

    Figure2-33. GearboxesDontHavetobeBigtobeStrong

    2.9 BacklashThebacklashofageartrainistheamounttheinputshaftcanrotatewithoutmovingtheoutputshaft. Backlashiscausedbythegearsnotmeshingperfectly(seeFigure2-34). Inthisexample,whengearAreversesrotation,thetoothongearBgoesfrombeingloadedontheleftsidetobeingloadedontherightside. Becauseofthegapbetweentheteeth,AwillbeabletorotateasmallamountbeforeBnoticesthechangeindirection.

    Figure2-34. BacklashiscausedbypoorgearmeshingBacklashintroducesdiscontinuity,uncertainty,andimpactinmechanicalsystems. Thismakesaccuratecontroldifficult. Positioningaccuracyisalsocompromiseddueto

    backlash. Alargeamountofbacklashmakesarobotfeelsloppyandgivesanoverallimpressionofpoorengineering(youwanttoimpressthosejudges).

    Inindustry,backlashisreducedbyusingspeciallymatedgearsthataredesignedtomeshperfectly. LEGOgearsaredesignedtoworkwithawidevarietyofgearsofdifferentsizesanddesigns. Thislimitshowperfectlytheycanfittogether. Luckily,thereareotherwaystominimizebacklashanditseffects.

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    43/91

    2-35

    ReducingBacklash:1. Placerotationsensorsneartheoutputshaft. Thisminimizestheeffectbacklash

    hasonthesensorreadings. Unfortunately,italsolimitsyourabilitytoincreasesensorresolutionbygearingup.

    2. Uselargegears. Backlashislessnoticeableinlargergears.3.

    Minimize

    the

    number

    of

    gears

    in

    a

    gear

    train.

    The

    larger

    the

    number

    of

    meshes,thegreaterthebacklash.4. Backlashincreaseswhenyougearupanddecreaseswhenyougeardown.5. Whenlayingoutgearsdiagonally,keepgearspacingneartheidealvalues.

    Backlashincreasesifthegearsaretoofarapart.6. Becarefulwhenusingthewormgear. Thewormgearsoddsize(1.94studs

    long)makesitdifficulttosupport. Multiplehalfbushingscanbeusedtoholdthewormgearinplaceforlightlyloadedapplications.

    Aninterestingalternativeistopreventbacklashfromoccurring. Youcantaketheplayoutofageartrainbyapplyingatorquetotheoutputshaft,tradingsomeinputtorquefor

    more

    precision.

    If

    the

    torque

    is

    great

    enough,

    it

    prevents

    backlash

    from

    happening

    whenchangingdirection. InFigure2-35,therubberbandissupplyingtheforceusedtopreloadthegeartrain.

    Figure2-35. PreloadingageartrainwitharubberbandSomehighprecisionmachinesuseasplitgeartominimizebacklash. Asplitgearlookslikeaspurgearthathasbeencutthroughthemiddleaboutitscircumference.Springsare

    placedinchannelsbetweentwogears.Thespringspushthegearsapartradially. Whenmeshedtoanothergear,thespringiscompressedprovidingapreloadforce.

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    44/91

    2-36

    Figure2-36. SplitgearmadefromLEGOFigure2-36showsasplitgearmadeoutofLEGOparts. Itusestheaxlesinsteadof

    springs

    to

    provide

    the

    preload

    force.

    When

    assembling,

    the

    40t

    gears

    are

    twisted

    onetoothrelativetoeachotherbeforemeshingthemtothe8tgears.

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    45/91

    3-37

    3 WheelsFLLchallengesinvolvedmovingaroundandpickingupthings,movingaroundanddroppingthings,movingaroundandtriggeringthings. Allthismovingaroundrequiressomesortofmobileplatform,andmostofthemobileplatformsusewheels.

    Wheelssupporttheweightoftherobotandtransmitthepowerofthemotorstotheground.Whatwheelsyouusewillaffectyourrobotsspeed,power,accuracy,andabilitytohandlevariationsinterrain.Wheelchoiceswillhaveaprofoundeffectonyourrobotssuccessorfailure.

    3.1 SizesLEGOhassuppliedawidevarietyofwheelsandtiresintheRISkit. Therearethreesizesofsolidrubbertireswhichallfitonthesameplasticwheelandthreesizesof

    balloontiresthatfitondifferentlysizedhubs. Dimensionsinmillimetersarestampedonthesidewalloftheballoontires. Dimensionsforthesolidtiresarenotavailable,

    therefore,approximatedimensionsaresuppliedinthefigurebelow.

    Figure3-1. LegoWheelsandTires

    The

    diameter

    of

    the

    wheels

    chosen

    will,

    in

    a

    large

    part,

    determine

    how

    fast

    and

    powerfulyourrobotis. Largewheelswillmakearobotrunfasterbutdecreaseitstowingcapacity.Smallwheelswillgiveyoumorepowerbutwithacorrespondingdecreaseinspeed.

    3.1.1 SpeedAsyoudrivedownthehighwaythespeedyourcartravelsisdependentupontherotationalspeedoftheengine,thegearratioofthetransmission,andthediameterofthetires. Theenginespeedandgearratiodefinehowfastthedrivewheelsarespinning

    SmallSolid24mmx7mm

    MediumSolid30mmx10.7mm LargeSolid

    43mmx10.7mm

    LargeBalloon81.6mmx15mm

    SmallBalloon30.4mmx14

    MediumBalloon49.6mmx28mm

    PulleyWheel30mmx4mm

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    46/91

    3-38

    (theirangularvelocity). Theangularvelocitycanthenbeconvertedtolinearvelocityusingtheequationforthecircumferenceofacircle(distancearoundthecircle).

    IamdrivingdownthehighwayinmytrustyCamrywiththebrokenspeedometercablewhenIseeapolicecarwithitslightson. Aquicklookattheinstrumentsshowstheengineisat800rpmandthatIaminthirdgear. AmIgoingtogetaticket?

    Iknow(becauseIdiligentlyreadtheownersmanual)thatthegearratioformyautomatictransmissionis1:1inthirdgear. Ialsoknowthatthetiresare24.6 indiameter. Sowhatisthespeed?

    =EngineRPMxGearRatio

    =800rpmx1:1=800rpm

    v =xPixd=800rpmx3.14x24.6inches=61826inchesperminute

    =58.5mph!I think Im OK

    Thesameequationscanbeusedtocalculatetheexpectedtravelspeedofyourrobot.Forexample,letsusetherobotshowninFigure3-2. Ithasone9vmotorthatisgearedupby

    a

    factor

    of

    3:1

    (a

    24

    tooth

    crown

    gear

    driving

    an

    8

    tooth

    spur

    gear).

    It

    uses

    the

    big

    81.6

    x15balloontirestomakeitgoreallyfast. Themotorshouldbeabletoreach300rpmforalightlyloadedstructurelikethis. Whatistheexpectedspeed?

    =MotorRPMxGearRatio=300rpmx3:1=900rpm

    v =xPixd

    vd

    v=xPi x d

    Circumference

    Diameter 1Revolution

    Circumference=PixDiameter

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    47/91

    3-39

    =900rpmx3.14x81.6mm

    =230,601mmperminuteor8.7mph!Wow!!!

    Figure3-2. AVeryFastTractorQuestion: For the example above, what would the travel speed be ifwe changed the gear ratio by putting the 8 tooth gear on the motor and

    the 24 tooth crown gear on the axle?

    3.1.2 ForceInourdiscussionofgears,wesawthatthereisarelationshipbetweenforce,torque,and

    radius--thesamerelationshipsholdtrueforwheels.Whenyouusebigwheelstoincreasespeed,youhavetogiveupsomething,andthatsomethingisforce. Arobotwithbigwheelscannotpullasmuchasarobotwithsmallwheels.

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    48/91

    3-40

    Figure3-3. Force=Torque/RadiusTherelationshipbetweenforce,distance,andtorqueworksagainstuswhenitcomestowheels. Largewheelshaveabiggerradius(leverlength)andwillgeneratelessforceforagiventorquethansmallwheelswould. Lessforcemeanslessacceleration. Thecarwillgofaster,butitwilltakelongertoreachthatspeed. Using9Ncmasanestimatefortheavailablemotortorque,letsdeterminethewheelforcesforthevehicleinFigure3-2.

    Torque =MotorTorquexGearRatio=9Ncmx1:3=3Ncm

    Radius =Diameter/2=81.6mm/2=

    40.8

    mm

    or

    4.08

    cmForce =WheelTorque/Radius

    =3Ncm/4.08cm=0.735N=0.1653lbsor2.64oz!Weak!!!

    Forcomparison,ifweusedthesmallsolidwheels(24mm),thetractorwouldtravelat2.5mphwiththewheelssupplyingupto9ozofforce. Switchingthegearratiofrom3:1to1:3wouldhavethetractorgoingonly mph,butitwouldbecapableofdeliveringawhopping5lbsofforce.Itsunlikelythatthetireswouldhaveenoughtractiontotransmitthismuchforcetotheground,consequently,someslippingwouldresult.

    Question: If big wheels are less efficient for towing, why do tractorshave big wheels?

    Force

    Torque

    Radius

    Radius

    Torque

    Force

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    49/91

    3-41

    3.2 TreadsTrackedrobotshavebeenverypopularinFLLcompetitions. Theyareeasytobuild,andthekidsthinktheylookcool. TheRISkitcomeswithtwotanktreadsandfoursprocketwheels. Thesprocketwheelshavearoundaxleholeallowingthemtospinfreely.Drivingthetreadrequiressomeadditionalmechanismtolockthesprocketwheelstotheir

    axle. Thisisusuallydonewitha16toothspurgear.

    Figure3-4. TrackedRobotTreadshavegoodtractioninroughterrainand,ifwellsupported,cancrosssmallravinesthatwouldstopawheeledvehicle. Trackedrobotstendtobewideandlowtotheground,givingthemexcellentstability. Theyarealsoveryagile. Atrackedrobotcanturninplacebyspinningitstreadsinoppositedirections.

    Unfortunately,treadshaveanumberofdisadvantages. Theyhavefairlypoortractiononsmoothsurfaces. Theslippingtreadsmakeitdifficulttousedeadreckoningnavigation.

    Also

    there

    is

    a

    lot

    of

    power

    loss

    due

    to

    the

    continuous

    bending

    and

    straightening

    of

    thetreadsastheyrollaroundthesprocketwheels.

    Figure3-5. MarioFerrari'sJohnny54

    4Fromwww.marioferrari.org/lego.html

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    50/91

    3-42

    OnlyonesizetrackisincludedintheRISkit. Forthetracknottoslip,thespacingbetweenthesprocketsmustbelargeenoughtomaintainalighttension(about12studs).Thewheelbasecanbeshortenedifadditionalsprocketsareusedtochangetheshapeofthetrack. Intheexampleabove,twopulleywheelsmakeuptheadditionalsprocketthatgivesJohnny5hisdistinctivedrivetrain.

    3.3 BalanceProperbalanceisveryimportantinrobotdesign. Foryourrobottomoveinapredictableandrepeatablemanner,allwheelsmustbeincontactwiththegroundatalltimes,andtheweightcarriedbyeachwheelmustbeconsistent. Improperbalancewillresultinarobotthattipsovereasilyorliftsitswheelswhenacceleratingorturning.

    Balanceisdependentupontwofactors:wheelbaseandcenterofgravity. Centerofgravity(CG)isthepointwithinyourrobotwherethereareequalamountsofmassaboveandbelow,equalamountstotheleftandright,andequalamountsforeandaft. Forstabilitycalculations,wepretendthatallthemassofyourrobotisconcentratedinthis

    tinyspot. Thewheelbaseistheregionoutlinedwhenyouplayconnectthedotswiththepointswhereyourrobotswheelstouchtheground.

    Figure3-6. WheelbaseTomaintainbalance,theCGmustremainwellinsidethewheelbase. Ifitisoutsidethewheelbase,therobotwilltipover. TheclosertheCGistothecenterofthewheelbase,themorestabletherobotbecomes.

    3.3.1 FindingtheCenterOfGravityDeterminingyourrobotsCGisaninformativeandeducationalactivity. Therearemanywaysthiscanbedone,rangingfromthedryandboring(summingthemomentofinertiaforeachcomponentanddividingbythetotalmass)totheslightlyfrightening(hangingtherobotfromastring). AfairlysafeandeasywaytolocatetheCGisthebalancemethod.

    TodeterminetheCGusingthebalancemethodyouneedtolocatethebalancepointonthelateral,longitudinal,andverticalaxes. EachbalancepointdefinesaplaneuponwhichtheCGresides. TheCGislocatedattheintersectionofthethreeplanes.

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    51/91

    3-43

    Figure3-7. FindingCGUsingBalanceMethodTofindthebalancepoints,youneedafulcrumthatwillsupporttheweightoftherobotwhilestillallowingittotipeasily. A2x4curvedtopbrickisthefulcrumintheexample

    above.

    Place

    the

    robot

    on

    the

    fulcrum

    such

    that

    the

    fulcrum

    is

    parallel

    to

    the

    balanceplaneyouaretryingtolocate. Slowlyadjustthepositionofthefulcrumuntiltherobotbalances. Thisisthebalancepoint. RepeatfortheothertwoaxestofindtheCG.

    FindingtheverticalcomponentoftheCGcanbedonethesameway,butsometimesyourrobotsdesignwillallowthis. IfIcantbalancethefront,rear,orsidesoftherobotonafulcrum,Imodifythebalancemethodtouseapartoftherobotasthefulcrum. Carefullytilttherobotupuntilitfeelslikeitisbalanced.Nowuseacarpenterssquare(abookortissueboxwillworkaswell)toprojectaplaneupverticallyfromthefulcrum. TheCGisthepointwherethisplaneintersectsthelateralandlongitudinalbalanceplanes.

    Figure3-8. ModifiedBalanceMethod3.3.2 InertiaDeterminingtheverticalcomponentofthecenterofgravityismoredifficultthanfindingtheleft/rightcenterorthefore/aftcenter. Sowhybotherdoingit? Afterall,ifyouknow

    LongitudinalBalancePlane

    CGisonthislineLateralBalancePlane

    CenterofGravity

    LateralandLongitudinalBalancePlanesIntersection

    VerticalLine

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    52/91

    3-44

    thattheCGisnearthecenterofthewheelbase,thentherobotisguaranteedtobestable,right? Well,notalways. Figure3-9showshowclimbinganinclinemovestheeffectiveCG. TherobotwiththelowerCGisstillstable,butclimbingtheinclinemovestheCG

    behindtherearwheelsontherobotwiththehigherCG,causingittotipoverbackwards.

    Figure3-9. AnInclineMovestheEffectiveCGAmoreimportantreasonforknowingtheverticalCGistobeabletopredicttheeffectsthataccelerationwillhaveonyourrobot. Thewidelypublicized(andoverhyped)

    problemswiththeSuzukiSidekickandothersmallSUVshavemadethepublicawarethatsmallwheelbasevehicleswithhighcentersofgravityaremoresusceptibletoroll-oversthanvehicleswithlargewheelbasesandlowcentersofgravity. Figure3-9showshowthismayoccuronanincline,buthowdoesithappenonaflatsurfacewhenturning?

    InhisPrincipia,SirIsaacNewtonwasamongthefirsttodocumentobservationsofapropertycommontoallmatterwhichwenowcallInertia. Hestatedthatbodiesatrestliketostayatrest,andbodiesinmotionliketostayinmotiongoingthesamerateinastraightline. Tomovearestingbodyoralterabodysmotionrequirestheapplicationof

    anexternalforce. ThisissummedupnicelyintheequationForce=massxacceleration,orF=ma.

    Whenyouaredrivingdowntheroadandturnthesteeringwheel,thedirectionyourcaristravelingchanges. Theroadpushesagainstthetiresofyourcarcausingittoacceleratesideways. Inertiadictatesthatyourcarandeverythinginsideitresistthisaccelerationwithaforceequaltotheirmasstimestheacceleration. TheinertialforceislocatedatthecarsCGandispointinginthedirectionoppositetheacceleration. BecauseCGisnotdownontheroadwherethewheelforceisapplied,thisinertialforcecreatesatorque(ormoment)whichtriestotipthecarover.

    Luckily,theweightofthecarisgeneratinganopposingmomentthatworkstopreventitfromtippingover. Alliswellaslongasthemomentduetogravityisgreaterthanthemomentduetotheinertialforce. Widewheelbasecarswithlowercentersofgravityaresaferbecausetheinertialforcesrequiredtorollthecaroveraremuchgreater. Thetiresareincapableofgeneratingsuchlargeforces,therefore,thecarskidsinsteadofrollingover.

    CG

    CG

    BalancedOK OhOh!TipsOver

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    53/91

    3-45

    Figure3-10. TurningGeneratesForcesandMomentsInertialforcesarealsothecauseofthe wheelies towhichsomanyFLLrobotsare

    prone. Whenyourrobotisstoppedandyouturnonthemotors,theyinitiallygeneratetheirmaximumtorque. Iftheresultingaccelerationislargeenough,theinertiageneratedmomentwilltiptherobotbackwards,pullingthefrontwheelsofftheground.Luckilythetorqueoutputfromthemotordropsoffsignificantlyoncethewheelsstartturning,stoppingthewheeliealmostasquicklyasitstarted.

    Figure3-11. FIRSTTeam254'sRobot"CheesyPoofs"DoesaVictoryWheelieWheeliesshouldbeavoidedbecauseitisdifficulttocontrolarobotpredictablywithoutallofitswheelsontheground. Fromtheturningdiscussion,wesawthatthelikelihoodoftippingisreducedbyhavingalowercenterofgravityorawiderwheelbase. Thisis

    also

    true

    for

    wheelies,

    which

    are

    less

    likely

    to

    happen

    if

    the

    center

    of

    gravity

    is

    low

    andwellaheadofthedrivenwheels. YoucanmovetheCGforwardbyrepositioningcomponentsorbyaddingextraweighttothefrontoftherobot. Asimilareffectisachievedbymovingthedrivenwheelstowardstheback.

    Question: What else can be done to prevent wheelies besides movingthe CG or the wheels?

    a

    WeightD2

    CGF2=mxa=F

    F

    M1=WeightxD1M2=ForcexD2

    RolloveroccurswhenM2>M1

    D1

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    54/91

    3-46

    3.4 WheelLoadingandFrictionTheweightoftheRCXbrick,batteries,threemotors,alightsensor,andarotationsensoriscloseto1pound. Addtothisaframe,motorsupports,gears,andsomesortofmanipulator,andatypicalFLLrobot(ifthereissuchathing)issupporting1.5to2

    poundsonitswheels. Dependingontherelativeplacementofthewheelsandsupporting

    framecomponents,theforceontheaxlesmaybemanytimesgreater. Thesehighforcescancausemuchofthemotorpowertobewastedtryingtoovercometheresultingfriction. Whatisgeneratingtheseforces,andhowcantheybeminimized?

    Figure3-12. CantileveredandFullySupportedWheelsMostwheeledvehiclesusesomesortofcantileveredassemblytoattachthewheelstothevehicle. Supportedononlyoneside,theaxleactslikealever,generatingamomentthathastobereactedtobytheframe. Amomentistheproductofaforce(theweightbeingcarriedbythewheel)anditsperpendiculardistancefromitsaxis(theplacewheretheaxleissupportedbytheframe). Thefartherthewheelisfromtheframe,thelargerthemoment.

    Thewaythattheframereactsthemomenthasagreateffectontheamountoffriction.

    Where

    the

    axle

    passes

    through

    the

    frame

    it

    does

    not

    rest

    against

    the

    top

    of

    the

    channel,butinsteaditistilted,contactingtheframeatonlytwopoints. Thefartherapartthetwocontactpointsare,thelowertheforcesexertedagainsteach.

    Figure3-13. WheelLoadingDistancea Distance b ForceA ForceB FrictionForces1stud 2.5studs 2.5W -3.5W 6W1stud 1.5studs 1.5W -2.5W 4W4studs 1.5studs 0.375W -1.375W 1.75W

    W

    A A A

    B B B

    aa a b b b

    W W

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    55/91

    3-47

    Figure3-13andthecorrespondingtabledemonstratetherelationshipbetweenwheelplacementandloading. W istheweightofthemodelsupportedbythewheel. A and B areforcesexertedagainsttheaxlebytheframe. a isthedistancebetweenthetwocontactpointsontheframe. b isthedistancefromtheframetothewheel.

    To

    calculate

    the

    values

    of

    forces

    A

    and

    B

    we

    need

    to

    use

    what

    we

    have

    learned

    aboutforcesandmoments. FromNewtonsequation,F=ma,weknowthatabodywillaccelerateifacteduponbyaforce. Sinceourwheelisnotacceleratingupordown,wecandeducethattheforcesA,B,andWmustallcancelout;theirsumisequaltozero.Forourpurposeshere,wewillsayforcespushinguparepositiveandforcespushingdownarenegative.

    A-B+W=0B=A+W

    Amomentisjusttheproductofaforceactingatadistance,anditfollowsthesamerules

    as

    regular

    forces.

    A

    body

    acted

    on

    by

    a

    moment

    will

    experience

    an

    angular

    acceleration.Iftheangularaccelerationofabodyiszero,thesumofthemomentsaboutanypointonthatbodymustalsobezero. Tomaketheequationseasiertoworkwith,Iamgoingto

    pickthepointwhereforceBisapplied. Here,wewillusetheconventionthatamomentthatwantstocauseaclockwiserotationispositive,andacounterclockwiserotationisnegative.

    Axa+Bx0Wxb=0Axa=WxbA=b/axW

    Nowwecanstuffinsomenumbers. ThevaluesbelowarefromtheleftmostexampleinFigure3-13.

    a =1studb =2.5studsA =b/axW

    =2.5xWB =A+W

    =2.5xW+W=3.5xW

    Theimportantthingtotakeawayfromthisdiscussionisthatyoucanreducefrictionby:

    1. Placingthewheelsclosetotheframe2. Spreadingouttheaxlesupportstoreducetheforcesrequiredtoreactthemoment

    fromthewheel.

    Question: What would the table entry look like for the fullysupported wheel assembly shown in Figure 3- 1 2?

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    56/91

    4-48

    4 LegoElectronics4.1 RCXBrickTheRCXisyourrobotsbrain,atinycomputershapedlikeaLEGObrick. AtthecoreoftheRCXisaHitachiH88bitmicrocontrollerrunningat5to20MHzwith32KofRAM.Thismayseemanemicwhencomparedtomoderndesktopcomputerswith2GHz32bit

    processorsand512Mbytesofmemory,butitsaspowerfulastheAppleIIcomputerIlearnedtoprogramonandsignificantlymorepowerfulthanthecomputersthatsentmentothemoon.

    Themicrocontrollerisusedtocontrolthreevoltageoutputs,threesensorinputs,andaninfraredserialcommunicationsport. Snap-onwireleadsareusedtoconnecttheRCXtomotors,lamps,touchsensors,lightsensors,rotationsensors,etc TheserialcommunicationportisusedtodownloadprogramsfromaPCandcanbeusedtocommunicatebetweentwoRCXs.

    TheRCXispoweredby6AAbatteries. OlderversionsoftheRCXalsohada9VDCinputplugforusewithanoptionalACadapter. IfyouhavethismodelofRCX,thetransformerwillpayforitselfinsavedbatterycosts. Havingtwoorthreesetsofgoodqualityrechargeablebatteriesisalsoagoodidea. TherechargeablealkalinebatteriesseemtoworkbestwiththeRCX.

    Construction Note: When building your robot, remember that you will have

    to occasionally remove the RCX to replace the batteries. Design accordingly.

    Figure4-1. TheRCXProgrammableBrick4.1.1 FirmwareTheRCXcontains32Kofbattery-backedRAM. Mostofthisisusedupbythefirmwarethatyouhavetoinstallpriortoloadingyourownrobotprograms. Anadditional6Kisreservedtostoreuptofiveuserprograms. Thismaynotseemlikemuchspace,butmost

  • 8/8/2019 FIRST LEGO LEAGE Building Tutorial

    57/91

    4-49

    RCXprogramsareonlyafewhundredbyteslong. Theremainingmemoryisusedforrunningprograms.

    WhenaprogramiswrittenfortheRCX,itdoesnotcontainnativecodefortheCPU.Instead,itismadeupofspecialbytecodeswhichareinterpretedbythefirmware. ThisissimilartothewayJavaprogramsonthewebareinterpretedbytheJavaVirtualMachinerunninginyourbrowser. UsingabytecodeinterpreterallowstheRCXtomaintainareliableenvironmentforexecutinguserprograms. Yourprogrammaynotdowhatyouwant,butitwontcrashtheRCX.

    BecausethefirmwareisstoredinRAM,itiserasedifyourRCXremainswithoutpowerformorethanafewseconds. AcapacitorintheRCXpowersthememorylongenoughforyoutochangethebatteries(15-30seconds). IfafterchangingbatteriesyourRCXnolongerfunctionsproperly,youmayhavelostyourfirmware. YoucantellifthefirmwareisloadedbylookingattheLCDdisplay. Ifallyoucanseeistheprogramnumberandtheminifigicon(eitherstandingorwalkingasinFigure4-1),thenthefirmwareisnotloaded. ThiswillbetheconditionofyourRCXbrickwhenyoureceiveyourkit.

    Construction Note: Whenever it is turned on, the RCX is receptive to

    messages coming in on its infrared serial port. With all the activity and

    congestion at competitions, it is quite possible that another team could

    unintentionally overwrite the programs stored in your RCX. Care should be

    taken to block the IR port when not in use.

    4.1.2 ProgrammingTheRCXisprogrammedusingspecialsoftwarethatresidesonyourPC. Theprogramis

    translated

    into

    bytecodes

    and

    transferred

    to

    the

    RCX

    via

    an

    infrared

    serial

    link

    (using

    theIRtower). Thismethodofprogramming--writingcodeononetypeofcomputertoberunonanothertypeofcomputer--iscalledcrossdevelopment. Acomputerwithoutakeyboardandmonitor,liketheRCX,iscalledanembeddedsystem. ThatmeansallFLLersareembeddedsystemsdevelopers,familiarwithcrossdevelopmenttools. Thisisimpressivestufftoputonyourresume.

    UserprogramscanbewritteneitherinRCXCodeorROBOLAB. RCXCodeisthegraphicalprogrammingtoolthatLEGOsuppliestoprogramtheRCX. Itistargetedto

    peoplewithnoprogrammingexperience. Programsarewrittenbypickinginstructionblocksandsnappingthemtogether,muchlikeu