First EC-JRC PAHs inter-laboratory comparison on PM10...

63
EUR 25170 EN -2012 First EC-JRC PAHs inter-laboratory comparison on PM10 quartz filters Emanuela Grandesso, Konrad Kowalewski, Pascual Pérez Ballesta In collaboration with: Annika Potter; Erika Rehngren; Daiva Pockeviciute; Paula Viana; João Matos; Eric Wauters; Peter Van Caeter; Roland De Fleurquin; Ulrich Pfeffer; Dieter Gladtke; Anja Olschewski; Robert Gehrig; Andreas Wyss; Nicole Imboden; Helena Placha; Jan Abraham; Eva Paznerova; Irina Nikolova; Jiri Novak; Toivo Truuts; Juhan Tamm; Rossana Bossi; Borislav Zdravkov;Ognian Georgiev; Valerie Hengesch; Alain Cadet; Muriel Lebrun; Barbara O'Leary; Lin Delaney; Simon O'Toole; Adolf Schinerl; Gregor Muri; Hannele Hakola; Mika Vestenius; Heidi Hellen; Christopher Connolly.

Transcript of First EC-JRC PAHs inter-laboratory comparison on PM10...

Page 1: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

EUR 25170 EN -2012

First EC-JRC PAHs inter-laboratory

comparison on PM10 quartz filters

Emanuela Grandesso Konrad Kowalewski Pascual Peacuterez Ballesta

In collaboration with Annika Potter Erika Rehngren Daiva Pockeviciute Paula Viana Joatildeo Matos Eric Wauters Peter Van Caeter Roland De Fleurquin Ulrich Pfeffer Dieter Gladtke Anja Olschewski Robert Gehrig Andreas Wyss Nicole Imboden Helena Placha Jan Abraham Eva Paznerova Irina Nikolova Jiri Novak Toivo Truuts Juhan Tamm Rossana Bossi Borislav ZdravkovOgnian Georgiev Valerie Hengesch Alain Cadet Muriel Lebrun Barbara OLeary Lin Delaney Simon OToole Adolf Schinerl Gregor Muri Hannele Hakola Mika Vestenius Heidi Hellen Christopher Connolly Shane OLeary Joanne Baker Rosaliacutea Fernandez Patier

2

The mission of the JRC-IES is to provide scientific-technical support to the European Unionrsquos policies for the protection and sustainable development of the European and global environment European Commission Joint Research Centre Institute for Environment and Sustainability Contact information Address TP-441 21027- Ispra (VA) Italy E-mail pascualballestajrcit Tel +39 0332 78 5322 Fax +39 0332 78 9364 httpiesjrceceuropaeu httpwwwjrceceuropaeu Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication

Europe Direct is a service to help you find answers

to your questions about the European Union

Freephone number ()

00 800 6 7 8 9 10 11

() Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed

A great deal of additional information on the European Union is available on the Internet It can be accessed through the Europa server httpeuropaeu JRC 67695 EUR 25170 EN ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) ISSN 1831-9494 ISSN 1018-5593 DOI 10278863064 Luxembourg Office for Official Publications of the European Communities copy European Communities 2012 Reproduction is authorised provided the source is acknowledged Printed in Italy

3

Executive Summary

This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Median benzo(a)pyrene overall uncertainty ranged between 30 and 50 increasing with the decrease of the concentration The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

4

Table of content

Introduction 9

Inter-laboratory comparison strategy 9

Participating laboratories 10

Sampling programme and schedule 11

Filter management characterisation and homogeneity 12

Filter stability 15

Analytical methods 16

Analytical uncertainties from participating laboratories 17

Analytical uncertainties from ERLAP 17

Reference values 18

Evaluation of the laboratory results 21

Results and discussion 21

Conclusions 37

Remarks 37

References 38

Annex I

Protocol for PAHs sampling in high volume samplers and inter-comparison

schedule

40

Guide to operation 44

Short description of the uncertainty evaluation reported by the participating

laboratories

47

Histogram of results by compounds 51

Comments from laboratories 59

5

List of Figures

Figure 1 ndash Mould and tools for the subdivision of the high volume sampled filter

Figure 2 ndash Relative standard deviation with respect to priority compounds

Figure 3 ndash PAHs air concentration levels during sampling

Figure 4 ndash Analysis of the filters before and after the exercise

Figure 5 ndash Percentage of laboratories reporting data for each compound

Figure 6 ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 ndash Blanks versus sampled Filters

Figure 8 ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9 ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

Figure 10 ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11 ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

Figure 12 ndash Repeatability of the inter-laboratory comparison exercise

Figure 13 ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15 ndash Median overall expanded uncertainty ndash excluding outliers

Figure 16 ndash Median of the absolute En values

6

List of Tables

Table 1 ndash List of participating laboratories

Table 2 ndash List of compounds to be quantified on the filter

Table 3 ndash Sampling variables for the PM10 collection

Table 4 ndash Analytical method used by the participating laboratories

Table 5 ndash Outliers versus reported data for all compounds and participating laboratory

Table 6 ndash Reference values and associated expanded uncertainties

Table 7 ndash Inter-laboratory median overall expanded uncertainties by compounds

Table 8 ndash Results of the concentrations analysed by each laboratory

Table 9 ndash Expanded uncertainties reported by each laboratory

Table 10 ndash Bias with respect to the reference value

Table 11 ndash En values

Table 12 ndash Overall expanded uncertainty

Table 13 ndash Evaluation of individual results

7

Nomenclature and abbreviations ABUM Amt der oberoumlsterreichischen Landesregierung AbteilungUmweltschutz

AEA AEA Technology

APA-LRA Agecircncia Portuguesa do Ambiente

AQUILA Air Quality Reference Laboratories

ASE accelerated solvent extraction

AWEL Gewaumlsserschutzlabor Kanton Zuumlrich

BaA benzo(a)anthracene

BaP benzo(a)Pyrene

BaP-D benzo(a)pyrene deuterated

BeP benzo(e)pyrene

DBahA dibenzo(ah)anthracene

DBahA-D dibenzo(ah)anthracene deuterated

BbjkFlu benzo(bjk)fluoranthene

BbFlu benzo(b)fluoranthene

BghiPe benzo(ghi)perylene

BghiPer-D benzo(ghi)perylene deuterated

BjFlu benzo(j)fluranthene

BkFlu benzo(k)fluoranthene

blanki is the system blank level associated with the analysis of the filter i (eq 2)

Chr chrysene

Ci concentration reported by laboratory i

iC robust concentration average (eq 3)

labC average concentration of the reported values by a laboratory (eq 10)

Cref reference concentration (eq 10)

EEA Executive Environmental Agency

EERC Estonian Environmental Research Centre

22

reflab

reflab

n

UU

CCE

eq (9)

EPA-ie Environmental Protection Agency Ireland

ERLAP European Reference Laboratory of Air Pollution

ESG Scientifics part of Environmental Scientifics Group

EU European Union

F21 code for PM10 Prague summer filter

F3 code for PM10 Madrid summer filter

F10 code for PM10 Madrid winter filter

F30 code for PM10 Prague winter filter

fij concentration calculated for the injection j of the filter i (eq 1)

jif is the average value of all injections and filters

FLD Fluorescence detector

Flu Fluoranthene

FMI Laboratory of Air Chemistry Finnish Meteorological Institute

8

GC-MS gas chromatography mass spectrometer

HPLC High Performance Liquid Chromatography

IndPy indeno(123-cd)pyrene

IndPy-D indeno(123-cd)pyrene deuterated

IS internal standard

ISCIII Instituto de Salud Carlos III

ISSeP Institut Scientifique de Service Public

IVL Swedish environmental institute

KAL Chemical Analytical Laboratory Slovenia Environment Agency

LANUV Landesamt fuumlr Natur Umwelt und Verbraucherschutz NRW

m number of filters (eq 2)

n number of injections (eq 1)

na non available

NERI National Environmental Research Institute

OEU overall expanded uncertainty (eq 10)

ou overall uncertainty (eq 1)

p number of input laboratories (eqs 3 4 6 7)

Per perylene

Per-D perylene deuterated

PM Particular matter

PM10 particular matter under 10 μm

PM25 particular matter under 25 μm

PM1 particular matter under 1 μm

PAHs polycyclic aromatic hydrocarbons

Phe phenanthrene

Phe-D phenanthrene deuterated

Phe-D phenanthrene deuterated

Py-D pyrene deuterated

Py pyrene

QAQC quality assurance quality control

TPhe triphenylene

stdev() standard deviation

s standard deviation of the robust concentration average (eq 3)

ubias standard uncertainty of the bias (eq 7)

uci uncertainty of the reported value from laboratory I (eq 7)

ucl uncertainty of the calibration and the reference value (eq 1)

Ulab expanded uncertainty for the reported value (eq 9)

Uref expanded uncertainty for the reference value (eq 9)

VMM Vlaamse Milieumaatschappij

Z random variable of two tails statistic for normal distribution (eq 8)

9

Introduction

The pollution caused by particulate matter (PM) is one of the critical issues of the current

air quality policy Numerous studies relate mortality and morbidity with the pollution

levels of particulate matter in air In this context an appropriated characterization of the

particulate is of importance to provide a better health indicator for air quality than PM10

PM25 or PM1 Furthermore this could help in the identification and quantification of the

compounds responsible for health disorders

At EU level the Directive 2004107EC already focuses on the analysis of heavy metals

and polycyclic aromatic hydrocarbons (PAHs) as compounds to be analysed in PM10 as

responsible for PM toxicity and carcinogenic characteristics In the case of the PAHs an

annual limit value has been established for benzo(a)pyrene (BaP) (carcinogenic to

humans according to the last upgrade of the IARC) as a marker for PAH in particles

Furthermore other PAHs are recommended to be measured benzo(a)anthracene

benzo(b)fluoranthene benzo(j)fluranthene benzo(k)fluoranthene indeno(123-

cd)pyrene and dibenzo(ah)anthracene

The tedious methodologies linked to the quantification of PAHs imply relatively high

uncertainties in the reported analytical results This is reflected in the level of expanded

uncertainty defined in the afore-mentioned Directive being for BaP in PM10 or in total

deposition 50 and 70 respectively Furthermore the minimum time coverage for

these measurements is reduced up to 14 -33 for fixed measurements

The implementation of analytical methods that are traceable and QAQC tested becomes

an asset for this sort of analysis Furthermore the execution of inter-laboratory

comparisons represents an important tool for the demonstration of laboratory traceability

showing competence and identifying weak points in their analytical methods

This report shows the results of the first inter-laboratory comparison of PAHs on PM10

filters carried out at European level among the Air Quality Reference Laboratories in

Europe (AQUILA)

Inter-laboratory comparison strategy

This inter-laboratory comparison focussed on the evaluation of the analytical

performance of participating laboratories Any consideration regarding sampling

technique or monitoring strategic approach is out of the discussion in this report Instead

uncertainties biases or inaccuracies should be linked to analytical issues and to the

traceability of the measurements

Although the testing of laboratory traceability and analytical performance could easily be

carried out by means of reference material (ie NIST-16492 or CRM-ERMCZ-100)

this may not reflect the response of a laboratory to real samples collected on PM10 filters

For this reason this exercise was performed on the basis of real samples on PM10 quartz

filters

10

Participating laboratories

Sixteen laboratories from AQUILA have participated in this inter-laboratory comparison

Names of the laboratories and people involved are listed in Table 1

Table 1ndash List of participating laboratories

Laboratory name Acronym Country ContactAnalytical responsible

IVL Swedish environmental institute IVL Sweden Annika Potter

Erika Rehngren

Environmental Research Department of Environmental Protection Agency EPA

EPA-lt Lithuania Daiva Pockeviciute

Agecircncia Portuguesa do Ambiente APA-LRA Portugal Paula Viana Joatildeo Matos

Vlaamse Milieumaatschappij - Labo Gent VMM - Labo Gent

VMM Belgium Eric Wauters

Peter Van Caeter

Roland De Fleurquin

Landesamt fuumlr Natur Umwelt und Verbraucherschutz NRW

LANUV Germany Ulrich Pfeffer

Dieter Gladtke

Anja Olschewski

AWEL Gewaumlsserschutzlabor Kanton Zuumlrich AWEL Switzerland Robert Gehrig

Andreas Wyss

Nicole Imboden

Cesky hydrometeorologicky ustav CHMU Czech Republic Helena Placha

Jan Abraham

Eva Paznerova Irina Nikolova Jiri Novak

Estonian Environmental Research Centre EERC Estonia Toivo Truuts

Juhan Tamm

National Environmental Research Institute Aarhus University

NERI Denmark Rossana Bossi

Executive Environmental Agency EEA Bulgaria Borislav Zdravkov

Ognian Georgiev

Institut Scientifique de Service Public ISSeP Belgium HENGESCH Valerie

CADET Alain

LEBRUN Muriel

Environmental Protection Agency EPA

EPA-ie Ireland Barbara OLeary

Lin Delaney

Simon OToole

Amt der oberoumlsterreichischen Landesregierung AbteilungUmweltschutz

ABUM Austria Adolf Schinerl

Chemical Analytical Laboratory Slovenian Environment Agency

KAL Slovenia Gregor Muri

Laboratory of Air Chemistry Finnish Meteorological Institute

FMI Finland Hannele Hakola

Mika Vestenius

Heidi Hellen

AEA Technology Scientifics part of Environmental Scientifics Group

AEA ESG

UK

Christopher Connolly Shane OLeary Joanne Baker

Instituto de Salud Carlos III ISCIII Spain Rosaliacutea Fernandez Patier

Joint Research Centre European Reference Laboratory for Air Pollution

ERLAP EC E Grandesso K Kowalewski P Peacuterez Ballesta

11

Sampling programme and schedule

The need for real PM10 samples to carry out this exercise was discussed inside the

AQUILA The sampling of PM10 should represent typical operational network

monitoring conditions Two Laboratories Instituto de Salud Carlos III from Spain and the

ldquoCesky hydrometeorologicky ustavrdquo from the Czech Republic voluntarily offered to act

as sampling laboratories and were finally responsible for the PM10 sampling

The sampling was performed according to a defined protocol (see Annex I) by means of

Andersen high volume PM10 samplers on quartz filters (Whatman QM-A) Filters were

heat-treated prior to sampling and each seasonal batch of samples was sent to the JRC for

characterisation

The sampling was performed during two different seasonal periods covering the possible

range of concentrations that characterised the sampling locations summer (June-August

2009) and winter (November-January 2010) The corresponding samplers were sited in

background monitoring stations of ldquoSinesio Delgadordquo (Madrid) and ldquoLibusrdquo (Prague)

Sections of the filters were distributed among participants during the second week of

May 2010 with a data collection deadline beginning of September 2010 The package

contained one filter for each season and location and two blanks (one from each

sampling location)

The comparison was based on the amount of compound quantified on the filter which

should be expected to be equivalent to typical amounts found in low volume sampler

filters

Participating laboratories received the filters together with a ldquoGuide to operationrdquo

(included in Annex I) They were requested to provide information concerning the

analytical method and the uncertainty evaluation of the measurements Laboratories were

requested to report a minimum of 3 replicate injections for each sample

A list of fifteen different PAHs was provided from which seven of them were marked as

priority (See table 2)

12

Table 2ndash List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno(123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene+triphenylene

C Benzo(bjk)fluoranthene In highlighted print priority compounds for the inter-laboratory comparison

Filters management characterisation and homogeneity

Whatman QM-A Quartz microfiber filter [203x 254 cm (8x 10 in) Cat No 1851 865]

were used for sampling in the Andersen high volume PM10 samplers These filters

provide a sampling area of circa 406 cm2 to be subdivided into smaller filter sections

corresponding to low volume filter samples of diameter 4 cm

The high volume sampled filters that arrived directly from the sampling site were kept in

a freezer (at -16 ordmC) until the preparation for distribution among participating

laboratories Twenty filter samples of 4 cm diameter were available from each high

volume sampled filter They were systematically cut by means of a mould specifically

designed for this purpose (See Figure 1)

13

Figure 1ndash Mould and tools for the subdivision of the high volume sampled filter

The low volume dimension filters were carefully prepared for mailing according to a

particular procedure that considered the individual packing and sealing of each sample

(Detail of this packing can be observed in Annex I - Guide to operation)

The filters selected for the inter-laboratory comparison were previously tested for

homogeneity by means of a thermal desorption methodology which allowed the

quantification of small sections of filters with diameters from 25 to 6 mm (Van Drooge

et al)

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 2ndash Relative standard deviation with respect to priority compounds

The random analysis of a minimum four small filter sections by thermal desorption

shows content relative standard deviations compatible with the needs for the comparison

exercise The relative standard deviations associated with the sum of the priority

000

500

1000

1500

2000

2500

3000

1000 10000 100000 1000000 10000000

Σ(priority PAHs) pg

RS

DE

V

B3

B2

F30F21

F10

F3

14

compound concentrations for the sampled filters ranged between 32 and 65 This is in

agreement with previous studies of homogeneity on Andersen high volume sampled

filters (A Baeza et al)

Table 3 shows sampling parameters and average values for the main ambient variables

registered during the sampling of the PM10 in the corresponding locations As expected

PM10 and PM25 winter concentrations were higher than those for summer whilst the

highest levels were found in Prague during winter

Table 3ndash Sampling variables for the PM10 collection

Filter code F3 F21 F10 F30 B2 B3

Location Madrid Prague Madrid Prague Madrid Prague

Sampling Period 6-872009 27-2882009 25-27112009 21-22112009 - -

Sampling volume m3 3090 1590 3190 1708 - -

Temperature ordmC 249 228 92 728 - -

Relative Humidity 32 63 90 87 - -

PM10 microgm3 30 243 21 89 - -

PM25 microgm3 11 167 na 64 - -

O3 ppb 37 70 na 5 - -

na non available

With the exception of the winter Prague filter where the concentration of PAHs were

significantly high with concentrations of benzo(a)pyrene of about 75 ngm3 other filters

were much lower 02 ngm3 for the winter filter in Madrid and around 50 pgm

3 of BaP

for the summer period in both locations Graphs from Figure 3 show the estimated PAH

air concentration levels during the corresponding sampling days and locations

Figure 3ndash PAHs air concentration levels during sampling

249

41

000

10000

20000

30000

40000

50000

60000

70000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Madrid winter

Madrid Summer

7469

62

000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Prague winter

Prague summer

15

Filter stability

JRC retained three 4 cm diameter filters for analysis from each sampling batch One set

of filters was sent abroad and return to JRC by courier simultaneously to the filters of the

other participants The other two filters from the same sampling batch were analysed one

month before and one month after the circulating filters Those filters were stored in

freezer

The analysis of these filters showed variation within plusmn 10 of the average value

therefore validating the stability of the filters for the exercise The sum of the priority

PAHs quantified on the filters are shown in Figure 4 It is noted the lower uncertainty

associated with filters from Prague when compared to those from Madrid Similar

behaviour was also noted during the homogeneity tests which could be due to a more

volatile composition of the Madrid filters in comparison to Prague or a breakthrough on

the Madrid filters caused by the sampling volume being double that of Prague

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 4ndash Analysis of the filters before and after the exercise

100

110

120

130

140

150

160

170

180

190

F10

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

57

+10

-10

1500

1600

1700

1800

1900

2000

2100

2200

F30

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

33

+10

-10

14

16

18

20

22

24

F3

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

51

+10

- 10

16

17

18

19

20

21

22

23

24

F21

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

41

+10

-10

16

Analytical Methods

Each participant was free to choose the analytical method according to their own

experience As a consequence there were multiple combinations of different separation

techniques detectors extraction systems solvents extraction time clean up and other

analytical parameters No statistical differences could be associated with a specific

technique for extraction or analysis Table 4 shows the different techniques and relevant

analytical conditions used by the participating laboratories

Table 4ndash Analytical method used by the participating laboratories

LABORATORY ANALYTICAL

METHOD COLUMN EXTRACTION SOLVENT TIME CLEANUP

CORRELAT

ION

INTERNAL

STANDARD

IVL HPLC FLD CHROMSPHERE

PAH (VARIAN) SOXLHET PENTANE-ACETONE 24 H

SILICA GEL

MERK

Multipoint-

Linear bb-binapthyl

EPA-LT HPLC FLD SUPELCOSILlTM

LC-PAH SOXLHET HEXANE-ACETONE 4 H

SPE

CARTRIGE

Multipoint-

Linear external extandard

APA-LRA HPLC FLD C18 REVERSE

PHASE SOXLHET ACETONITRILE 16 H -

Multipoint-

Linear external extandard

VMM HPLC FLD ZORBAX ECLIPSE

PAH ASE DICHLOROMETHANE 35 MIN -

Multipoint-

Linear external extandard

LANUV HPLC FLD ZORBAX ECLIPSE

PAH ULTRASONIC TOLUENE 24 H

CHROMAB

ON

Multipoint-

Linear

through

origin

external extandard

AWEL GC-MS DB5-30 M SOXLHET

CYCLOHEXANE-

ISOOCTANE-

ACETONE

4 H - Multipoint-

Linear 111 dibromodecane

CHMU GC-MS DB5-30 M SOXLHET METHANOL-

DICHLOROMETHANE 1 H

SILICA GEL

SUPELCO

Multipoint-

Linear

through

origin

Phe-D Chry-D Per-D

EERC GC-MS DB5-30 M SOXLHET CYLCOHEXANE 16 h - Multipoint-

Linear Py-D Per-D

NERI GC-MS DB5-30 M na DICHLOROMETHANE na - Multipoint-

Linear

BaA-D Chry-D BaP-D

Per-D BghiPer-D

DBahA-D

EEA GC-MS DB-XLD- 30 M ULTRASONIC DICHLOROMETHANE 1 H SILICA GEL Multipoint-

Linear Phe-D Chry-D Per-D

ISSeP GC-MS DB-17 SOXHLET CYCLOHEXANE-

DIETHYLETHER 16 H -

Multipoint-

Linear Phe-D Chry-D BaP-D

EPA-ie GC-MS DB5-30 M ULTRASONIC DICHLOROMETHANE na FLORASIL Multipoint-

Linear Chry-D

ABUM GC-MS DB5-60 M ASE CYCLOHEXANE 30 MIN SILICA GEL Multipoint-

Linear corresponding deuterated

KAL GC-MS DB5-30 M MICROWAVE HEXANE-ACETONE 45 MIN SILICA Multipoint-

Linear

Phe-D Py-D BahA-D

BaP-D IndPy-D

FMI GC-MS DB5-50 M SOXLHET DICHLOROMETHANE 8 H FLORISIL Multipoint

Quadratic

Phe-D Chry-D DBahA-

D Per-D

AEAESG GC-MS ZB-5 30M ASE na na SPE

CARTRIGE

Multipoint-

Linear IS non expecified

ERLAP GC-MS DB-17 30 M MICROWAVE ACETANE-HEXANE 30 MIN

SPE

CARTRIGE

CUPS

Multipoint-

Linear corresponding deuterated

ERLAPT GC-MS DB-17 30 M THERMAL DESORPTION Multipoint-

Linear corresponding deuterated

17

25 of the participating laboratories used liquid chromatography and FLD detection

whilst the rest of the laboratories used gas chromatography separation and mass

spectrometry For gas chromatography separation a 30 m DB5 was the most frequently

used column other phases such as DB17 or longer lengths were rare Soxhlet was the

most common method for extraction used by 8 laboratories three laboratories used

ultrasonic extraction and another three accelerated soxhlet extraction 2 laboratories

extracted the filter by microwave whilst only one laboratory used thermal desorption

There was no agreement in the solvent or time for extraction (acetonitrile pentane

acetone cyclohexane isooctane dichloromethane toluene and mixtures of these solvents

were used by laboratories even with the same extraction technique) with times from

minutes to 24 hours Clean-up was applied by most of the laboratories All analysis were

performed by multipoint calibration Internal standard method was applied to all GC-MS

analysis while only one laboratory used internal standard for HPLC

Analytical uncertainties from participating laboratories

Participating laboratories were requested to estimate the associated expanded

uncertainties of their analytical results These values are given in Table 12 Description of

the uncertainty evaluation provided by each laboratory is given in annex I

Several laboratories provided uncertainties on the basis of data from method validations

and analysis of reference material including the bias as an additional source of

uncertainty On the other hand the 3 analyses per sample requested can only provide an

idea about the analytical repeatability but other sources of uncertainty should be

considered in the calculations such as calibration and standard preparation blank level

reproducibility desorption efficiencies known biases etc Furthermore as the exercise

contains different filters with different concentration levels it is expected that the

analytical uncertainty will depend on the concentration level The lower the analysed

concentration the higher the uncertainty associated with the quantified value Similarly

the analytical uncertainty will be different from compound to compound depending on

its analytical reproducibility and response volatility desorption efficiency etc

Nevertheless these aspects not always considered in the reported uncertainties

Analytical uncertainties from the ERLAP

ERLAP participated in the exercise by analysing the filters using two different

techniques solvent extraction with GC-MS and thermal desorption with GC-MS

analysis

The evaluation of the concentration and the associated budget uncertainty reported by

JRC was based on the results of the averaging of three filter samples analysed in

triplicate by liquid extraction and gas chromatography The reproducibility uncertainties

of these analyses were combined with others sources of uncertainties derived from the

standards calibration and system blank In a similar way uncertainty for the thermal

desorption analyses was based on the reproducibility analysis of a number of cuts

18

randomly distributed around the whole high volume filter plus the corresponding sources

of uncertainties related to standards calibration and system blank This uncertainty

evaluation did not consider uncertainties attributed to biases with respect to the analysis

of reference materials

The overall uncertainty ou was calculated as follows

22

1

2

)(blankcl

m

i

jiuu

n

fstdevou

(1)

Where

jicl fu 0250 as an approach value for the uncertainty of the calibration and the

reference standard (see referencies BL Vand Drooge et al J Chromatogr A 1216

(2009) 4030-4039)

2

2)(

iblank

m

blankstdevu i

blank

(2)

fij is the concentration calculated for the injection j of the filter i

n is the number of injections (j= 1 to n)

m is the number of filters (i=1 to m)

jif is the average value of all injections and filters

blanki is the system blank level associated with the analysis of the filter i

Reference values

Due to the nature of this kind of inter-laboratory comparisons the reference value was

determined on the basis of the robust average results from the best performance

laboratories The selection of a best performance laboratory was based on the number of

outliers reported by each laboratory with respect to a robust average calculated on the

basis of the ISO-13528 Therefore robust average

iC and standard deviation s of the

p input laboratories are derived from a convergence process of the following equation

(3)

(4)

p

CC

i

i

)1(

)(1341

2

p

CCs

ii

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 2: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

2

The mission of the JRC-IES is to provide scientific-technical support to the European Unionrsquos policies for the protection and sustainable development of the European and global environment European Commission Joint Research Centre Institute for Environment and Sustainability Contact information Address TP-441 21027- Ispra (VA) Italy E-mail pascualballestajrcit Tel +39 0332 78 5322 Fax +39 0332 78 9364 httpiesjrceceuropaeu httpwwwjrceceuropaeu Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication

Europe Direct is a service to help you find answers

to your questions about the European Union

Freephone number ()

00 800 6 7 8 9 10 11

() Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed

A great deal of additional information on the European Union is available on the Internet It can be accessed through the Europa server httpeuropaeu JRC 67695 EUR 25170 EN ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) ISSN 1831-9494 ISSN 1018-5593 DOI 10278863064 Luxembourg Office for Official Publications of the European Communities copy European Communities 2012 Reproduction is authorised provided the source is acknowledged Printed in Italy

3

Executive Summary

This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Median benzo(a)pyrene overall uncertainty ranged between 30 and 50 increasing with the decrease of the concentration The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

4

Table of content

Introduction 9

Inter-laboratory comparison strategy 9

Participating laboratories 10

Sampling programme and schedule 11

Filter management characterisation and homogeneity 12

Filter stability 15

Analytical methods 16

Analytical uncertainties from participating laboratories 17

Analytical uncertainties from ERLAP 17

Reference values 18

Evaluation of the laboratory results 21

Results and discussion 21

Conclusions 37

Remarks 37

References 38

Annex I

Protocol for PAHs sampling in high volume samplers and inter-comparison

schedule

40

Guide to operation 44

Short description of the uncertainty evaluation reported by the participating

laboratories

47

Histogram of results by compounds 51

Comments from laboratories 59

5

List of Figures

Figure 1 ndash Mould and tools for the subdivision of the high volume sampled filter

Figure 2 ndash Relative standard deviation with respect to priority compounds

Figure 3 ndash PAHs air concentration levels during sampling

Figure 4 ndash Analysis of the filters before and after the exercise

Figure 5 ndash Percentage of laboratories reporting data for each compound

Figure 6 ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 ndash Blanks versus sampled Filters

Figure 8 ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9 ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

Figure 10 ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11 ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

Figure 12 ndash Repeatability of the inter-laboratory comparison exercise

Figure 13 ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15 ndash Median overall expanded uncertainty ndash excluding outliers

Figure 16 ndash Median of the absolute En values

6

List of Tables

Table 1 ndash List of participating laboratories

Table 2 ndash List of compounds to be quantified on the filter

Table 3 ndash Sampling variables for the PM10 collection

Table 4 ndash Analytical method used by the participating laboratories

Table 5 ndash Outliers versus reported data for all compounds and participating laboratory

Table 6 ndash Reference values and associated expanded uncertainties

Table 7 ndash Inter-laboratory median overall expanded uncertainties by compounds

Table 8 ndash Results of the concentrations analysed by each laboratory

Table 9 ndash Expanded uncertainties reported by each laboratory

Table 10 ndash Bias with respect to the reference value

Table 11 ndash En values

Table 12 ndash Overall expanded uncertainty

Table 13 ndash Evaluation of individual results

7

Nomenclature and abbreviations ABUM Amt der oberoumlsterreichischen Landesregierung AbteilungUmweltschutz

AEA AEA Technology

APA-LRA Agecircncia Portuguesa do Ambiente

AQUILA Air Quality Reference Laboratories

ASE accelerated solvent extraction

AWEL Gewaumlsserschutzlabor Kanton Zuumlrich

BaA benzo(a)anthracene

BaP benzo(a)Pyrene

BaP-D benzo(a)pyrene deuterated

BeP benzo(e)pyrene

DBahA dibenzo(ah)anthracene

DBahA-D dibenzo(ah)anthracene deuterated

BbjkFlu benzo(bjk)fluoranthene

BbFlu benzo(b)fluoranthene

BghiPe benzo(ghi)perylene

BghiPer-D benzo(ghi)perylene deuterated

BjFlu benzo(j)fluranthene

BkFlu benzo(k)fluoranthene

blanki is the system blank level associated with the analysis of the filter i (eq 2)

Chr chrysene

Ci concentration reported by laboratory i

iC robust concentration average (eq 3)

labC average concentration of the reported values by a laboratory (eq 10)

Cref reference concentration (eq 10)

EEA Executive Environmental Agency

EERC Estonian Environmental Research Centre

22

reflab

reflab

n

UU

CCE

eq (9)

EPA-ie Environmental Protection Agency Ireland

ERLAP European Reference Laboratory of Air Pollution

ESG Scientifics part of Environmental Scientifics Group

EU European Union

F21 code for PM10 Prague summer filter

F3 code for PM10 Madrid summer filter

F10 code for PM10 Madrid winter filter

F30 code for PM10 Prague winter filter

fij concentration calculated for the injection j of the filter i (eq 1)

jif is the average value of all injections and filters

FLD Fluorescence detector

Flu Fluoranthene

FMI Laboratory of Air Chemistry Finnish Meteorological Institute

8

GC-MS gas chromatography mass spectrometer

HPLC High Performance Liquid Chromatography

IndPy indeno(123-cd)pyrene

IndPy-D indeno(123-cd)pyrene deuterated

IS internal standard

ISCIII Instituto de Salud Carlos III

ISSeP Institut Scientifique de Service Public

IVL Swedish environmental institute

KAL Chemical Analytical Laboratory Slovenia Environment Agency

LANUV Landesamt fuumlr Natur Umwelt und Verbraucherschutz NRW

m number of filters (eq 2)

n number of injections (eq 1)

na non available

NERI National Environmental Research Institute

OEU overall expanded uncertainty (eq 10)

ou overall uncertainty (eq 1)

p number of input laboratories (eqs 3 4 6 7)

Per perylene

Per-D perylene deuterated

PM Particular matter

PM10 particular matter under 10 μm

PM25 particular matter under 25 μm

PM1 particular matter under 1 μm

PAHs polycyclic aromatic hydrocarbons

Phe phenanthrene

Phe-D phenanthrene deuterated

Phe-D phenanthrene deuterated

Py-D pyrene deuterated

Py pyrene

QAQC quality assurance quality control

TPhe triphenylene

stdev() standard deviation

s standard deviation of the robust concentration average (eq 3)

ubias standard uncertainty of the bias (eq 7)

uci uncertainty of the reported value from laboratory I (eq 7)

ucl uncertainty of the calibration and the reference value (eq 1)

Ulab expanded uncertainty for the reported value (eq 9)

Uref expanded uncertainty for the reference value (eq 9)

VMM Vlaamse Milieumaatschappij

Z random variable of two tails statistic for normal distribution (eq 8)

9

Introduction

The pollution caused by particulate matter (PM) is one of the critical issues of the current

air quality policy Numerous studies relate mortality and morbidity with the pollution

levels of particulate matter in air In this context an appropriated characterization of the

particulate is of importance to provide a better health indicator for air quality than PM10

PM25 or PM1 Furthermore this could help in the identification and quantification of the

compounds responsible for health disorders

At EU level the Directive 2004107EC already focuses on the analysis of heavy metals

and polycyclic aromatic hydrocarbons (PAHs) as compounds to be analysed in PM10 as

responsible for PM toxicity and carcinogenic characteristics In the case of the PAHs an

annual limit value has been established for benzo(a)pyrene (BaP) (carcinogenic to

humans according to the last upgrade of the IARC) as a marker for PAH in particles

Furthermore other PAHs are recommended to be measured benzo(a)anthracene

benzo(b)fluoranthene benzo(j)fluranthene benzo(k)fluoranthene indeno(123-

cd)pyrene and dibenzo(ah)anthracene

The tedious methodologies linked to the quantification of PAHs imply relatively high

uncertainties in the reported analytical results This is reflected in the level of expanded

uncertainty defined in the afore-mentioned Directive being for BaP in PM10 or in total

deposition 50 and 70 respectively Furthermore the minimum time coverage for

these measurements is reduced up to 14 -33 for fixed measurements

The implementation of analytical methods that are traceable and QAQC tested becomes

an asset for this sort of analysis Furthermore the execution of inter-laboratory

comparisons represents an important tool for the demonstration of laboratory traceability

showing competence and identifying weak points in their analytical methods

This report shows the results of the first inter-laboratory comparison of PAHs on PM10

filters carried out at European level among the Air Quality Reference Laboratories in

Europe (AQUILA)

Inter-laboratory comparison strategy

This inter-laboratory comparison focussed on the evaluation of the analytical

performance of participating laboratories Any consideration regarding sampling

technique or monitoring strategic approach is out of the discussion in this report Instead

uncertainties biases or inaccuracies should be linked to analytical issues and to the

traceability of the measurements

Although the testing of laboratory traceability and analytical performance could easily be

carried out by means of reference material (ie NIST-16492 or CRM-ERMCZ-100)

this may not reflect the response of a laboratory to real samples collected on PM10 filters

For this reason this exercise was performed on the basis of real samples on PM10 quartz

filters

10

Participating laboratories

Sixteen laboratories from AQUILA have participated in this inter-laboratory comparison

Names of the laboratories and people involved are listed in Table 1

Table 1ndash List of participating laboratories

Laboratory name Acronym Country ContactAnalytical responsible

IVL Swedish environmental institute IVL Sweden Annika Potter

Erika Rehngren

Environmental Research Department of Environmental Protection Agency EPA

EPA-lt Lithuania Daiva Pockeviciute

Agecircncia Portuguesa do Ambiente APA-LRA Portugal Paula Viana Joatildeo Matos

Vlaamse Milieumaatschappij - Labo Gent VMM - Labo Gent

VMM Belgium Eric Wauters

Peter Van Caeter

Roland De Fleurquin

Landesamt fuumlr Natur Umwelt und Verbraucherschutz NRW

LANUV Germany Ulrich Pfeffer

Dieter Gladtke

Anja Olschewski

AWEL Gewaumlsserschutzlabor Kanton Zuumlrich AWEL Switzerland Robert Gehrig

Andreas Wyss

Nicole Imboden

Cesky hydrometeorologicky ustav CHMU Czech Republic Helena Placha

Jan Abraham

Eva Paznerova Irina Nikolova Jiri Novak

Estonian Environmental Research Centre EERC Estonia Toivo Truuts

Juhan Tamm

National Environmental Research Institute Aarhus University

NERI Denmark Rossana Bossi

Executive Environmental Agency EEA Bulgaria Borislav Zdravkov

Ognian Georgiev

Institut Scientifique de Service Public ISSeP Belgium HENGESCH Valerie

CADET Alain

LEBRUN Muriel

Environmental Protection Agency EPA

EPA-ie Ireland Barbara OLeary

Lin Delaney

Simon OToole

Amt der oberoumlsterreichischen Landesregierung AbteilungUmweltschutz

ABUM Austria Adolf Schinerl

Chemical Analytical Laboratory Slovenian Environment Agency

KAL Slovenia Gregor Muri

Laboratory of Air Chemistry Finnish Meteorological Institute

FMI Finland Hannele Hakola

Mika Vestenius

Heidi Hellen

AEA Technology Scientifics part of Environmental Scientifics Group

AEA ESG

UK

Christopher Connolly Shane OLeary Joanne Baker

Instituto de Salud Carlos III ISCIII Spain Rosaliacutea Fernandez Patier

Joint Research Centre European Reference Laboratory for Air Pollution

ERLAP EC E Grandesso K Kowalewski P Peacuterez Ballesta

11

Sampling programme and schedule

The need for real PM10 samples to carry out this exercise was discussed inside the

AQUILA The sampling of PM10 should represent typical operational network

monitoring conditions Two Laboratories Instituto de Salud Carlos III from Spain and the

ldquoCesky hydrometeorologicky ustavrdquo from the Czech Republic voluntarily offered to act

as sampling laboratories and were finally responsible for the PM10 sampling

The sampling was performed according to a defined protocol (see Annex I) by means of

Andersen high volume PM10 samplers on quartz filters (Whatman QM-A) Filters were

heat-treated prior to sampling and each seasonal batch of samples was sent to the JRC for

characterisation

The sampling was performed during two different seasonal periods covering the possible

range of concentrations that characterised the sampling locations summer (June-August

2009) and winter (November-January 2010) The corresponding samplers were sited in

background monitoring stations of ldquoSinesio Delgadordquo (Madrid) and ldquoLibusrdquo (Prague)

Sections of the filters were distributed among participants during the second week of

May 2010 with a data collection deadline beginning of September 2010 The package

contained one filter for each season and location and two blanks (one from each

sampling location)

The comparison was based on the amount of compound quantified on the filter which

should be expected to be equivalent to typical amounts found in low volume sampler

filters

Participating laboratories received the filters together with a ldquoGuide to operationrdquo

(included in Annex I) They were requested to provide information concerning the

analytical method and the uncertainty evaluation of the measurements Laboratories were

requested to report a minimum of 3 replicate injections for each sample

A list of fifteen different PAHs was provided from which seven of them were marked as

priority (See table 2)

12

Table 2ndash List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno(123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene+triphenylene

C Benzo(bjk)fluoranthene In highlighted print priority compounds for the inter-laboratory comparison

Filters management characterisation and homogeneity

Whatman QM-A Quartz microfiber filter [203x 254 cm (8x 10 in) Cat No 1851 865]

were used for sampling in the Andersen high volume PM10 samplers These filters

provide a sampling area of circa 406 cm2 to be subdivided into smaller filter sections

corresponding to low volume filter samples of diameter 4 cm

The high volume sampled filters that arrived directly from the sampling site were kept in

a freezer (at -16 ordmC) until the preparation for distribution among participating

laboratories Twenty filter samples of 4 cm diameter were available from each high

volume sampled filter They were systematically cut by means of a mould specifically

designed for this purpose (See Figure 1)

13

Figure 1ndash Mould and tools for the subdivision of the high volume sampled filter

The low volume dimension filters were carefully prepared for mailing according to a

particular procedure that considered the individual packing and sealing of each sample

(Detail of this packing can be observed in Annex I - Guide to operation)

The filters selected for the inter-laboratory comparison were previously tested for

homogeneity by means of a thermal desorption methodology which allowed the

quantification of small sections of filters with diameters from 25 to 6 mm (Van Drooge

et al)

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 2ndash Relative standard deviation with respect to priority compounds

The random analysis of a minimum four small filter sections by thermal desorption

shows content relative standard deviations compatible with the needs for the comparison

exercise The relative standard deviations associated with the sum of the priority

000

500

1000

1500

2000

2500

3000

1000 10000 100000 1000000 10000000

Σ(priority PAHs) pg

RS

DE

V

B3

B2

F30F21

F10

F3

14

compound concentrations for the sampled filters ranged between 32 and 65 This is in

agreement with previous studies of homogeneity on Andersen high volume sampled

filters (A Baeza et al)

Table 3 shows sampling parameters and average values for the main ambient variables

registered during the sampling of the PM10 in the corresponding locations As expected

PM10 and PM25 winter concentrations were higher than those for summer whilst the

highest levels were found in Prague during winter

Table 3ndash Sampling variables for the PM10 collection

Filter code F3 F21 F10 F30 B2 B3

Location Madrid Prague Madrid Prague Madrid Prague

Sampling Period 6-872009 27-2882009 25-27112009 21-22112009 - -

Sampling volume m3 3090 1590 3190 1708 - -

Temperature ordmC 249 228 92 728 - -

Relative Humidity 32 63 90 87 - -

PM10 microgm3 30 243 21 89 - -

PM25 microgm3 11 167 na 64 - -

O3 ppb 37 70 na 5 - -

na non available

With the exception of the winter Prague filter where the concentration of PAHs were

significantly high with concentrations of benzo(a)pyrene of about 75 ngm3 other filters

were much lower 02 ngm3 for the winter filter in Madrid and around 50 pgm

3 of BaP

for the summer period in both locations Graphs from Figure 3 show the estimated PAH

air concentration levels during the corresponding sampling days and locations

Figure 3ndash PAHs air concentration levels during sampling

249

41

000

10000

20000

30000

40000

50000

60000

70000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Madrid winter

Madrid Summer

7469

62

000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Prague winter

Prague summer

15

Filter stability

JRC retained three 4 cm diameter filters for analysis from each sampling batch One set

of filters was sent abroad and return to JRC by courier simultaneously to the filters of the

other participants The other two filters from the same sampling batch were analysed one

month before and one month after the circulating filters Those filters were stored in

freezer

The analysis of these filters showed variation within plusmn 10 of the average value

therefore validating the stability of the filters for the exercise The sum of the priority

PAHs quantified on the filters are shown in Figure 4 It is noted the lower uncertainty

associated with filters from Prague when compared to those from Madrid Similar

behaviour was also noted during the homogeneity tests which could be due to a more

volatile composition of the Madrid filters in comparison to Prague or a breakthrough on

the Madrid filters caused by the sampling volume being double that of Prague

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 4ndash Analysis of the filters before and after the exercise

100

110

120

130

140

150

160

170

180

190

F10

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

57

+10

-10

1500

1600

1700

1800

1900

2000

2100

2200

F30

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

33

+10

-10

14

16

18

20

22

24

F3

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

51

+10

- 10

16

17

18

19

20

21

22

23

24

F21

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

41

+10

-10

16

Analytical Methods

Each participant was free to choose the analytical method according to their own

experience As a consequence there were multiple combinations of different separation

techniques detectors extraction systems solvents extraction time clean up and other

analytical parameters No statistical differences could be associated with a specific

technique for extraction or analysis Table 4 shows the different techniques and relevant

analytical conditions used by the participating laboratories

Table 4ndash Analytical method used by the participating laboratories

LABORATORY ANALYTICAL

METHOD COLUMN EXTRACTION SOLVENT TIME CLEANUP

CORRELAT

ION

INTERNAL

STANDARD

IVL HPLC FLD CHROMSPHERE

PAH (VARIAN) SOXLHET PENTANE-ACETONE 24 H

SILICA GEL

MERK

Multipoint-

Linear bb-binapthyl

EPA-LT HPLC FLD SUPELCOSILlTM

LC-PAH SOXLHET HEXANE-ACETONE 4 H

SPE

CARTRIGE

Multipoint-

Linear external extandard

APA-LRA HPLC FLD C18 REVERSE

PHASE SOXLHET ACETONITRILE 16 H -

Multipoint-

Linear external extandard

VMM HPLC FLD ZORBAX ECLIPSE

PAH ASE DICHLOROMETHANE 35 MIN -

Multipoint-

Linear external extandard

LANUV HPLC FLD ZORBAX ECLIPSE

PAH ULTRASONIC TOLUENE 24 H

CHROMAB

ON

Multipoint-

Linear

through

origin

external extandard

AWEL GC-MS DB5-30 M SOXLHET

CYCLOHEXANE-

ISOOCTANE-

ACETONE

4 H - Multipoint-

Linear 111 dibromodecane

CHMU GC-MS DB5-30 M SOXLHET METHANOL-

DICHLOROMETHANE 1 H

SILICA GEL

SUPELCO

Multipoint-

Linear

through

origin

Phe-D Chry-D Per-D

EERC GC-MS DB5-30 M SOXLHET CYLCOHEXANE 16 h - Multipoint-

Linear Py-D Per-D

NERI GC-MS DB5-30 M na DICHLOROMETHANE na - Multipoint-

Linear

BaA-D Chry-D BaP-D

Per-D BghiPer-D

DBahA-D

EEA GC-MS DB-XLD- 30 M ULTRASONIC DICHLOROMETHANE 1 H SILICA GEL Multipoint-

Linear Phe-D Chry-D Per-D

ISSeP GC-MS DB-17 SOXHLET CYCLOHEXANE-

DIETHYLETHER 16 H -

Multipoint-

Linear Phe-D Chry-D BaP-D

EPA-ie GC-MS DB5-30 M ULTRASONIC DICHLOROMETHANE na FLORASIL Multipoint-

Linear Chry-D

ABUM GC-MS DB5-60 M ASE CYCLOHEXANE 30 MIN SILICA GEL Multipoint-

Linear corresponding deuterated

KAL GC-MS DB5-30 M MICROWAVE HEXANE-ACETONE 45 MIN SILICA Multipoint-

Linear

Phe-D Py-D BahA-D

BaP-D IndPy-D

FMI GC-MS DB5-50 M SOXLHET DICHLOROMETHANE 8 H FLORISIL Multipoint

Quadratic

Phe-D Chry-D DBahA-

D Per-D

AEAESG GC-MS ZB-5 30M ASE na na SPE

CARTRIGE

Multipoint-

Linear IS non expecified

ERLAP GC-MS DB-17 30 M MICROWAVE ACETANE-HEXANE 30 MIN

SPE

CARTRIGE

CUPS

Multipoint-

Linear corresponding deuterated

ERLAPT GC-MS DB-17 30 M THERMAL DESORPTION Multipoint-

Linear corresponding deuterated

17

25 of the participating laboratories used liquid chromatography and FLD detection

whilst the rest of the laboratories used gas chromatography separation and mass

spectrometry For gas chromatography separation a 30 m DB5 was the most frequently

used column other phases such as DB17 or longer lengths were rare Soxhlet was the

most common method for extraction used by 8 laboratories three laboratories used

ultrasonic extraction and another three accelerated soxhlet extraction 2 laboratories

extracted the filter by microwave whilst only one laboratory used thermal desorption

There was no agreement in the solvent or time for extraction (acetonitrile pentane

acetone cyclohexane isooctane dichloromethane toluene and mixtures of these solvents

were used by laboratories even with the same extraction technique) with times from

minutes to 24 hours Clean-up was applied by most of the laboratories All analysis were

performed by multipoint calibration Internal standard method was applied to all GC-MS

analysis while only one laboratory used internal standard for HPLC

Analytical uncertainties from participating laboratories

Participating laboratories were requested to estimate the associated expanded

uncertainties of their analytical results These values are given in Table 12 Description of

the uncertainty evaluation provided by each laboratory is given in annex I

Several laboratories provided uncertainties on the basis of data from method validations

and analysis of reference material including the bias as an additional source of

uncertainty On the other hand the 3 analyses per sample requested can only provide an

idea about the analytical repeatability but other sources of uncertainty should be

considered in the calculations such as calibration and standard preparation blank level

reproducibility desorption efficiencies known biases etc Furthermore as the exercise

contains different filters with different concentration levels it is expected that the

analytical uncertainty will depend on the concentration level The lower the analysed

concentration the higher the uncertainty associated with the quantified value Similarly

the analytical uncertainty will be different from compound to compound depending on

its analytical reproducibility and response volatility desorption efficiency etc

Nevertheless these aspects not always considered in the reported uncertainties

Analytical uncertainties from the ERLAP

ERLAP participated in the exercise by analysing the filters using two different

techniques solvent extraction with GC-MS and thermal desorption with GC-MS

analysis

The evaluation of the concentration and the associated budget uncertainty reported by

JRC was based on the results of the averaging of three filter samples analysed in

triplicate by liquid extraction and gas chromatography The reproducibility uncertainties

of these analyses were combined with others sources of uncertainties derived from the

standards calibration and system blank In a similar way uncertainty for the thermal

desorption analyses was based on the reproducibility analysis of a number of cuts

18

randomly distributed around the whole high volume filter plus the corresponding sources

of uncertainties related to standards calibration and system blank This uncertainty

evaluation did not consider uncertainties attributed to biases with respect to the analysis

of reference materials

The overall uncertainty ou was calculated as follows

22

1

2

)(blankcl

m

i

jiuu

n

fstdevou

(1)

Where

jicl fu 0250 as an approach value for the uncertainty of the calibration and the

reference standard (see referencies BL Vand Drooge et al J Chromatogr A 1216

(2009) 4030-4039)

2

2)(

iblank

m

blankstdevu i

blank

(2)

fij is the concentration calculated for the injection j of the filter i

n is the number of injections (j= 1 to n)

m is the number of filters (i=1 to m)

jif is the average value of all injections and filters

blanki is the system blank level associated with the analysis of the filter i

Reference values

Due to the nature of this kind of inter-laboratory comparisons the reference value was

determined on the basis of the robust average results from the best performance

laboratories The selection of a best performance laboratory was based on the number of

outliers reported by each laboratory with respect to a robust average calculated on the

basis of the ISO-13528 Therefore robust average

iC and standard deviation s of the

p input laboratories are derived from a convergence process of the following equation

(3)

(4)

p

CC

i

i

)1(

)(1341

2

p

CCs

ii

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 3: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

3

Executive Summary

This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Median benzo(a)pyrene overall uncertainty ranged between 30 and 50 increasing with the decrease of the concentration The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

4

Table of content

Introduction 9

Inter-laboratory comparison strategy 9

Participating laboratories 10

Sampling programme and schedule 11

Filter management characterisation and homogeneity 12

Filter stability 15

Analytical methods 16

Analytical uncertainties from participating laboratories 17

Analytical uncertainties from ERLAP 17

Reference values 18

Evaluation of the laboratory results 21

Results and discussion 21

Conclusions 37

Remarks 37

References 38

Annex I

Protocol for PAHs sampling in high volume samplers and inter-comparison

schedule

40

Guide to operation 44

Short description of the uncertainty evaluation reported by the participating

laboratories

47

Histogram of results by compounds 51

Comments from laboratories 59

5

List of Figures

Figure 1 ndash Mould and tools for the subdivision of the high volume sampled filter

Figure 2 ndash Relative standard deviation with respect to priority compounds

Figure 3 ndash PAHs air concentration levels during sampling

Figure 4 ndash Analysis of the filters before and after the exercise

Figure 5 ndash Percentage of laboratories reporting data for each compound

Figure 6 ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 ndash Blanks versus sampled Filters

Figure 8 ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9 ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

Figure 10 ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11 ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

Figure 12 ndash Repeatability of the inter-laboratory comparison exercise

Figure 13 ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15 ndash Median overall expanded uncertainty ndash excluding outliers

Figure 16 ndash Median of the absolute En values

6

List of Tables

Table 1 ndash List of participating laboratories

Table 2 ndash List of compounds to be quantified on the filter

Table 3 ndash Sampling variables for the PM10 collection

Table 4 ndash Analytical method used by the participating laboratories

Table 5 ndash Outliers versus reported data for all compounds and participating laboratory

Table 6 ndash Reference values and associated expanded uncertainties

Table 7 ndash Inter-laboratory median overall expanded uncertainties by compounds

Table 8 ndash Results of the concentrations analysed by each laboratory

Table 9 ndash Expanded uncertainties reported by each laboratory

Table 10 ndash Bias with respect to the reference value

Table 11 ndash En values

Table 12 ndash Overall expanded uncertainty

Table 13 ndash Evaluation of individual results

7

Nomenclature and abbreviations ABUM Amt der oberoumlsterreichischen Landesregierung AbteilungUmweltschutz

AEA AEA Technology

APA-LRA Agecircncia Portuguesa do Ambiente

AQUILA Air Quality Reference Laboratories

ASE accelerated solvent extraction

AWEL Gewaumlsserschutzlabor Kanton Zuumlrich

BaA benzo(a)anthracene

BaP benzo(a)Pyrene

BaP-D benzo(a)pyrene deuterated

BeP benzo(e)pyrene

DBahA dibenzo(ah)anthracene

DBahA-D dibenzo(ah)anthracene deuterated

BbjkFlu benzo(bjk)fluoranthene

BbFlu benzo(b)fluoranthene

BghiPe benzo(ghi)perylene

BghiPer-D benzo(ghi)perylene deuterated

BjFlu benzo(j)fluranthene

BkFlu benzo(k)fluoranthene

blanki is the system blank level associated with the analysis of the filter i (eq 2)

Chr chrysene

Ci concentration reported by laboratory i

iC robust concentration average (eq 3)

labC average concentration of the reported values by a laboratory (eq 10)

Cref reference concentration (eq 10)

EEA Executive Environmental Agency

EERC Estonian Environmental Research Centre

22

reflab

reflab

n

UU

CCE

eq (9)

EPA-ie Environmental Protection Agency Ireland

ERLAP European Reference Laboratory of Air Pollution

ESG Scientifics part of Environmental Scientifics Group

EU European Union

F21 code for PM10 Prague summer filter

F3 code for PM10 Madrid summer filter

F10 code for PM10 Madrid winter filter

F30 code for PM10 Prague winter filter

fij concentration calculated for the injection j of the filter i (eq 1)

jif is the average value of all injections and filters

FLD Fluorescence detector

Flu Fluoranthene

FMI Laboratory of Air Chemistry Finnish Meteorological Institute

8

GC-MS gas chromatography mass spectrometer

HPLC High Performance Liquid Chromatography

IndPy indeno(123-cd)pyrene

IndPy-D indeno(123-cd)pyrene deuterated

IS internal standard

ISCIII Instituto de Salud Carlos III

ISSeP Institut Scientifique de Service Public

IVL Swedish environmental institute

KAL Chemical Analytical Laboratory Slovenia Environment Agency

LANUV Landesamt fuumlr Natur Umwelt und Verbraucherschutz NRW

m number of filters (eq 2)

n number of injections (eq 1)

na non available

NERI National Environmental Research Institute

OEU overall expanded uncertainty (eq 10)

ou overall uncertainty (eq 1)

p number of input laboratories (eqs 3 4 6 7)

Per perylene

Per-D perylene deuterated

PM Particular matter

PM10 particular matter under 10 μm

PM25 particular matter under 25 μm

PM1 particular matter under 1 μm

PAHs polycyclic aromatic hydrocarbons

Phe phenanthrene

Phe-D phenanthrene deuterated

Phe-D phenanthrene deuterated

Py-D pyrene deuterated

Py pyrene

QAQC quality assurance quality control

TPhe triphenylene

stdev() standard deviation

s standard deviation of the robust concentration average (eq 3)

ubias standard uncertainty of the bias (eq 7)

uci uncertainty of the reported value from laboratory I (eq 7)

ucl uncertainty of the calibration and the reference value (eq 1)

Ulab expanded uncertainty for the reported value (eq 9)

Uref expanded uncertainty for the reference value (eq 9)

VMM Vlaamse Milieumaatschappij

Z random variable of two tails statistic for normal distribution (eq 8)

9

Introduction

The pollution caused by particulate matter (PM) is one of the critical issues of the current

air quality policy Numerous studies relate mortality and morbidity with the pollution

levels of particulate matter in air In this context an appropriated characterization of the

particulate is of importance to provide a better health indicator for air quality than PM10

PM25 or PM1 Furthermore this could help in the identification and quantification of the

compounds responsible for health disorders

At EU level the Directive 2004107EC already focuses on the analysis of heavy metals

and polycyclic aromatic hydrocarbons (PAHs) as compounds to be analysed in PM10 as

responsible for PM toxicity and carcinogenic characteristics In the case of the PAHs an

annual limit value has been established for benzo(a)pyrene (BaP) (carcinogenic to

humans according to the last upgrade of the IARC) as a marker for PAH in particles

Furthermore other PAHs are recommended to be measured benzo(a)anthracene

benzo(b)fluoranthene benzo(j)fluranthene benzo(k)fluoranthene indeno(123-

cd)pyrene and dibenzo(ah)anthracene

The tedious methodologies linked to the quantification of PAHs imply relatively high

uncertainties in the reported analytical results This is reflected in the level of expanded

uncertainty defined in the afore-mentioned Directive being for BaP in PM10 or in total

deposition 50 and 70 respectively Furthermore the minimum time coverage for

these measurements is reduced up to 14 -33 for fixed measurements

The implementation of analytical methods that are traceable and QAQC tested becomes

an asset for this sort of analysis Furthermore the execution of inter-laboratory

comparisons represents an important tool for the demonstration of laboratory traceability

showing competence and identifying weak points in their analytical methods

This report shows the results of the first inter-laboratory comparison of PAHs on PM10

filters carried out at European level among the Air Quality Reference Laboratories in

Europe (AQUILA)

Inter-laboratory comparison strategy

This inter-laboratory comparison focussed on the evaluation of the analytical

performance of participating laboratories Any consideration regarding sampling

technique or monitoring strategic approach is out of the discussion in this report Instead

uncertainties biases or inaccuracies should be linked to analytical issues and to the

traceability of the measurements

Although the testing of laboratory traceability and analytical performance could easily be

carried out by means of reference material (ie NIST-16492 or CRM-ERMCZ-100)

this may not reflect the response of a laboratory to real samples collected on PM10 filters

For this reason this exercise was performed on the basis of real samples on PM10 quartz

filters

10

Participating laboratories

Sixteen laboratories from AQUILA have participated in this inter-laboratory comparison

Names of the laboratories and people involved are listed in Table 1

Table 1ndash List of participating laboratories

Laboratory name Acronym Country ContactAnalytical responsible

IVL Swedish environmental institute IVL Sweden Annika Potter

Erika Rehngren

Environmental Research Department of Environmental Protection Agency EPA

EPA-lt Lithuania Daiva Pockeviciute

Agecircncia Portuguesa do Ambiente APA-LRA Portugal Paula Viana Joatildeo Matos

Vlaamse Milieumaatschappij - Labo Gent VMM - Labo Gent

VMM Belgium Eric Wauters

Peter Van Caeter

Roland De Fleurquin

Landesamt fuumlr Natur Umwelt und Verbraucherschutz NRW

LANUV Germany Ulrich Pfeffer

Dieter Gladtke

Anja Olschewski

AWEL Gewaumlsserschutzlabor Kanton Zuumlrich AWEL Switzerland Robert Gehrig

Andreas Wyss

Nicole Imboden

Cesky hydrometeorologicky ustav CHMU Czech Republic Helena Placha

Jan Abraham

Eva Paznerova Irina Nikolova Jiri Novak

Estonian Environmental Research Centre EERC Estonia Toivo Truuts

Juhan Tamm

National Environmental Research Institute Aarhus University

NERI Denmark Rossana Bossi

Executive Environmental Agency EEA Bulgaria Borislav Zdravkov

Ognian Georgiev

Institut Scientifique de Service Public ISSeP Belgium HENGESCH Valerie

CADET Alain

LEBRUN Muriel

Environmental Protection Agency EPA

EPA-ie Ireland Barbara OLeary

Lin Delaney

Simon OToole

Amt der oberoumlsterreichischen Landesregierung AbteilungUmweltschutz

ABUM Austria Adolf Schinerl

Chemical Analytical Laboratory Slovenian Environment Agency

KAL Slovenia Gregor Muri

Laboratory of Air Chemistry Finnish Meteorological Institute

FMI Finland Hannele Hakola

Mika Vestenius

Heidi Hellen

AEA Technology Scientifics part of Environmental Scientifics Group

AEA ESG

UK

Christopher Connolly Shane OLeary Joanne Baker

Instituto de Salud Carlos III ISCIII Spain Rosaliacutea Fernandez Patier

Joint Research Centre European Reference Laboratory for Air Pollution

ERLAP EC E Grandesso K Kowalewski P Peacuterez Ballesta

11

Sampling programme and schedule

The need for real PM10 samples to carry out this exercise was discussed inside the

AQUILA The sampling of PM10 should represent typical operational network

monitoring conditions Two Laboratories Instituto de Salud Carlos III from Spain and the

ldquoCesky hydrometeorologicky ustavrdquo from the Czech Republic voluntarily offered to act

as sampling laboratories and were finally responsible for the PM10 sampling

The sampling was performed according to a defined protocol (see Annex I) by means of

Andersen high volume PM10 samplers on quartz filters (Whatman QM-A) Filters were

heat-treated prior to sampling and each seasonal batch of samples was sent to the JRC for

characterisation

The sampling was performed during two different seasonal periods covering the possible

range of concentrations that characterised the sampling locations summer (June-August

2009) and winter (November-January 2010) The corresponding samplers were sited in

background monitoring stations of ldquoSinesio Delgadordquo (Madrid) and ldquoLibusrdquo (Prague)

Sections of the filters were distributed among participants during the second week of

May 2010 with a data collection deadline beginning of September 2010 The package

contained one filter for each season and location and two blanks (one from each

sampling location)

The comparison was based on the amount of compound quantified on the filter which

should be expected to be equivalent to typical amounts found in low volume sampler

filters

Participating laboratories received the filters together with a ldquoGuide to operationrdquo

(included in Annex I) They were requested to provide information concerning the

analytical method and the uncertainty evaluation of the measurements Laboratories were

requested to report a minimum of 3 replicate injections for each sample

A list of fifteen different PAHs was provided from which seven of them were marked as

priority (See table 2)

12

Table 2ndash List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno(123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene+triphenylene

C Benzo(bjk)fluoranthene In highlighted print priority compounds for the inter-laboratory comparison

Filters management characterisation and homogeneity

Whatman QM-A Quartz microfiber filter [203x 254 cm (8x 10 in) Cat No 1851 865]

were used for sampling in the Andersen high volume PM10 samplers These filters

provide a sampling area of circa 406 cm2 to be subdivided into smaller filter sections

corresponding to low volume filter samples of diameter 4 cm

The high volume sampled filters that arrived directly from the sampling site were kept in

a freezer (at -16 ordmC) until the preparation for distribution among participating

laboratories Twenty filter samples of 4 cm diameter were available from each high

volume sampled filter They were systematically cut by means of a mould specifically

designed for this purpose (See Figure 1)

13

Figure 1ndash Mould and tools for the subdivision of the high volume sampled filter

The low volume dimension filters were carefully prepared for mailing according to a

particular procedure that considered the individual packing and sealing of each sample

(Detail of this packing can be observed in Annex I - Guide to operation)

The filters selected for the inter-laboratory comparison were previously tested for

homogeneity by means of a thermal desorption methodology which allowed the

quantification of small sections of filters with diameters from 25 to 6 mm (Van Drooge

et al)

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 2ndash Relative standard deviation with respect to priority compounds

The random analysis of a minimum four small filter sections by thermal desorption

shows content relative standard deviations compatible with the needs for the comparison

exercise The relative standard deviations associated with the sum of the priority

000

500

1000

1500

2000

2500

3000

1000 10000 100000 1000000 10000000

Σ(priority PAHs) pg

RS

DE

V

B3

B2

F30F21

F10

F3

14

compound concentrations for the sampled filters ranged between 32 and 65 This is in

agreement with previous studies of homogeneity on Andersen high volume sampled

filters (A Baeza et al)

Table 3 shows sampling parameters and average values for the main ambient variables

registered during the sampling of the PM10 in the corresponding locations As expected

PM10 and PM25 winter concentrations were higher than those for summer whilst the

highest levels were found in Prague during winter

Table 3ndash Sampling variables for the PM10 collection

Filter code F3 F21 F10 F30 B2 B3

Location Madrid Prague Madrid Prague Madrid Prague

Sampling Period 6-872009 27-2882009 25-27112009 21-22112009 - -

Sampling volume m3 3090 1590 3190 1708 - -

Temperature ordmC 249 228 92 728 - -

Relative Humidity 32 63 90 87 - -

PM10 microgm3 30 243 21 89 - -

PM25 microgm3 11 167 na 64 - -

O3 ppb 37 70 na 5 - -

na non available

With the exception of the winter Prague filter where the concentration of PAHs were

significantly high with concentrations of benzo(a)pyrene of about 75 ngm3 other filters

were much lower 02 ngm3 for the winter filter in Madrid and around 50 pgm

3 of BaP

for the summer period in both locations Graphs from Figure 3 show the estimated PAH

air concentration levels during the corresponding sampling days and locations

Figure 3ndash PAHs air concentration levels during sampling

249

41

000

10000

20000

30000

40000

50000

60000

70000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Madrid winter

Madrid Summer

7469

62

000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Prague winter

Prague summer

15

Filter stability

JRC retained three 4 cm diameter filters for analysis from each sampling batch One set

of filters was sent abroad and return to JRC by courier simultaneously to the filters of the

other participants The other two filters from the same sampling batch were analysed one

month before and one month after the circulating filters Those filters were stored in

freezer

The analysis of these filters showed variation within plusmn 10 of the average value

therefore validating the stability of the filters for the exercise The sum of the priority

PAHs quantified on the filters are shown in Figure 4 It is noted the lower uncertainty

associated with filters from Prague when compared to those from Madrid Similar

behaviour was also noted during the homogeneity tests which could be due to a more

volatile composition of the Madrid filters in comparison to Prague or a breakthrough on

the Madrid filters caused by the sampling volume being double that of Prague

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 4ndash Analysis of the filters before and after the exercise

100

110

120

130

140

150

160

170

180

190

F10

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

57

+10

-10

1500

1600

1700

1800

1900

2000

2100

2200

F30

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

33

+10

-10

14

16

18

20

22

24

F3

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

51

+10

- 10

16

17

18

19

20

21

22

23

24

F21

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

41

+10

-10

16

Analytical Methods

Each participant was free to choose the analytical method according to their own

experience As a consequence there were multiple combinations of different separation

techniques detectors extraction systems solvents extraction time clean up and other

analytical parameters No statistical differences could be associated with a specific

technique for extraction or analysis Table 4 shows the different techniques and relevant

analytical conditions used by the participating laboratories

Table 4ndash Analytical method used by the participating laboratories

LABORATORY ANALYTICAL

METHOD COLUMN EXTRACTION SOLVENT TIME CLEANUP

CORRELAT

ION

INTERNAL

STANDARD

IVL HPLC FLD CHROMSPHERE

PAH (VARIAN) SOXLHET PENTANE-ACETONE 24 H

SILICA GEL

MERK

Multipoint-

Linear bb-binapthyl

EPA-LT HPLC FLD SUPELCOSILlTM

LC-PAH SOXLHET HEXANE-ACETONE 4 H

SPE

CARTRIGE

Multipoint-

Linear external extandard

APA-LRA HPLC FLD C18 REVERSE

PHASE SOXLHET ACETONITRILE 16 H -

Multipoint-

Linear external extandard

VMM HPLC FLD ZORBAX ECLIPSE

PAH ASE DICHLOROMETHANE 35 MIN -

Multipoint-

Linear external extandard

LANUV HPLC FLD ZORBAX ECLIPSE

PAH ULTRASONIC TOLUENE 24 H

CHROMAB

ON

Multipoint-

Linear

through

origin

external extandard

AWEL GC-MS DB5-30 M SOXLHET

CYCLOHEXANE-

ISOOCTANE-

ACETONE

4 H - Multipoint-

Linear 111 dibromodecane

CHMU GC-MS DB5-30 M SOXLHET METHANOL-

DICHLOROMETHANE 1 H

SILICA GEL

SUPELCO

Multipoint-

Linear

through

origin

Phe-D Chry-D Per-D

EERC GC-MS DB5-30 M SOXLHET CYLCOHEXANE 16 h - Multipoint-

Linear Py-D Per-D

NERI GC-MS DB5-30 M na DICHLOROMETHANE na - Multipoint-

Linear

BaA-D Chry-D BaP-D

Per-D BghiPer-D

DBahA-D

EEA GC-MS DB-XLD- 30 M ULTRASONIC DICHLOROMETHANE 1 H SILICA GEL Multipoint-

Linear Phe-D Chry-D Per-D

ISSeP GC-MS DB-17 SOXHLET CYCLOHEXANE-

DIETHYLETHER 16 H -

Multipoint-

Linear Phe-D Chry-D BaP-D

EPA-ie GC-MS DB5-30 M ULTRASONIC DICHLOROMETHANE na FLORASIL Multipoint-

Linear Chry-D

ABUM GC-MS DB5-60 M ASE CYCLOHEXANE 30 MIN SILICA GEL Multipoint-

Linear corresponding deuterated

KAL GC-MS DB5-30 M MICROWAVE HEXANE-ACETONE 45 MIN SILICA Multipoint-

Linear

Phe-D Py-D BahA-D

BaP-D IndPy-D

FMI GC-MS DB5-50 M SOXLHET DICHLOROMETHANE 8 H FLORISIL Multipoint

Quadratic

Phe-D Chry-D DBahA-

D Per-D

AEAESG GC-MS ZB-5 30M ASE na na SPE

CARTRIGE

Multipoint-

Linear IS non expecified

ERLAP GC-MS DB-17 30 M MICROWAVE ACETANE-HEXANE 30 MIN

SPE

CARTRIGE

CUPS

Multipoint-

Linear corresponding deuterated

ERLAPT GC-MS DB-17 30 M THERMAL DESORPTION Multipoint-

Linear corresponding deuterated

17

25 of the participating laboratories used liquid chromatography and FLD detection

whilst the rest of the laboratories used gas chromatography separation and mass

spectrometry For gas chromatography separation a 30 m DB5 was the most frequently

used column other phases such as DB17 or longer lengths were rare Soxhlet was the

most common method for extraction used by 8 laboratories three laboratories used

ultrasonic extraction and another three accelerated soxhlet extraction 2 laboratories

extracted the filter by microwave whilst only one laboratory used thermal desorption

There was no agreement in the solvent or time for extraction (acetonitrile pentane

acetone cyclohexane isooctane dichloromethane toluene and mixtures of these solvents

were used by laboratories even with the same extraction technique) with times from

minutes to 24 hours Clean-up was applied by most of the laboratories All analysis were

performed by multipoint calibration Internal standard method was applied to all GC-MS

analysis while only one laboratory used internal standard for HPLC

Analytical uncertainties from participating laboratories

Participating laboratories were requested to estimate the associated expanded

uncertainties of their analytical results These values are given in Table 12 Description of

the uncertainty evaluation provided by each laboratory is given in annex I

Several laboratories provided uncertainties on the basis of data from method validations

and analysis of reference material including the bias as an additional source of

uncertainty On the other hand the 3 analyses per sample requested can only provide an

idea about the analytical repeatability but other sources of uncertainty should be

considered in the calculations such as calibration and standard preparation blank level

reproducibility desorption efficiencies known biases etc Furthermore as the exercise

contains different filters with different concentration levels it is expected that the

analytical uncertainty will depend on the concentration level The lower the analysed

concentration the higher the uncertainty associated with the quantified value Similarly

the analytical uncertainty will be different from compound to compound depending on

its analytical reproducibility and response volatility desorption efficiency etc

Nevertheless these aspects not always considered in the reported uncertainties

Analytical uncertainties from the ERLAP

ERLAP participated in the exercise by analysing the filters using two different

techniques solvent extraction with GC-MS and thermal desorption with GC-MS

analysis

The evaluation of the concentration and the associated budget uncertainty reported by

JRC was based on the results of the averaging of three filter samples analysed in

triplicate by liquid extraction and gas chromatography The reproducibility uncertainties

of these analyses were combined with others sources of uncertainties derived from the

standards calibration and system blank In a similar way uncertainty for the thermal

desorption analyses was based on the reproducibility analysis of a number of cuts

18

randomly distributed around the whole high volume filter plus the corresponding sources

of uncertainties related to standards calibration and system blank This uncertainty

evaluation did not consider uncertainties attributed to biases with respect to the analysis

of reference materials

The overall uncertainty ou was calculated as follows

22

1

2

)(blankcl

m

i

jiuu

n

fstdevou

(1)

Where

jicl fu 0250 as an approach value for the uncertainty of the calibration and the

reference standard (see referencies BL Vand Drooge et al J Chromatogr A 1216

(2009) 4030-4039)

2

2)(

iblank

m

blankstdevu i

blank

(2)

fij is the concentration calculated for the injection j of the filter i

n is the number of injections (j= 1 to n)

m is the number of filters (i=1 to m)

jif is the average value of all injections and filters

blanki is the system blank level associated with the analysis of the filter i

Reference values

Due to the nature of this kind of inter-laboratory comparisons the reference value was

determined on the basis of the robust average results from the best performance

laboratories The selection of a best performance laboratory was based on the number of

outliers reported by each laboratory with respect to a robust average calculated on the

basis of the ISO-13528 Therefore robust average

iC and standard deviation s of the

p input laboratories are derived from a convergence process of the following equation

(3)

(4)

p

CC

i

i

)1(

)(1341

2

p

CCs

ii

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 4: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

4

Table of content

Introduction 9

Inter-laboratory comparison strategy 9

Participating laboratories 10

Sampling programme and schedule 11

Filter management characterisation and homogeneity 12

Filter stability 15

Analytical methods 16

Analytical uncertainties from participating laboratories 17

Analytical uncertainties from ERLAP 17

Reference values 18

Evaluation of the laboratory results 21

Results and discussion 21

Conclusions 37

Remarks 37

References 38

Annex I

Protocol for PAHs sampling in high volume samplers and inter-comparison

schedule

40

Guide to operation 44

Short description of the uncertainty evaluation reported by the participating

laboratories

47

Histogram of results by compounds 51

Comments from laboratories 59

5

List of Figures

Figure 1 ndash Mould and tools for the subdivision of the high volume sampled filter

Figure 2 ndash Relative standard deviation with respect to priority compounds

Figure 3 ndash PAHs air concentration levels during sampling

Figure 4 ndash Analysis of the filters before and after the exercise

Figure 5 ndash Percentage of laboratories reporting data for each compound

Figure 6 ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 ndash Blanks versus sampled Filters

Figure 8 ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9 ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

Figure 10 ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11 ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

Figure 12 ndash Repeatability of the inter-laboratory comparison exercise

Figure 13 ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15 ndash Median overall expanded uncertainty ndash excluding outliers

Figure 16 ndash Median of the absolute En values

6

List of Tables

Table 1 ndash List of participating laboratories

Table 2 ndash List of compounds to be quantified on the filter

Table 3 ndash Sampling variables for the PM10 collection

Table 4 ndash Analytical method used by the participating laboratories

Table 5 ndash Outliers versus reported data for all compounds and participating laboratory

Table 6 ndash Reference values and associated expanded uncertainties

Table 7 ndash Inter-laboratory median overall expanded uncertainties by compounds

Table 8 ndash Results of the concentrations analysed by each laboratory

Table 9 ndash Expanded uncertainties reported by each laboratory

Table 10 ndash Bias with respect to the reference value

Table 11 ndash En values

Table 12 ndash Overall expanded uncertainty

Table 13 ndash Evaluation of individual results

7

Nomenclature and abbreviations ABUM Amt der oberoumlsterreichischen Landesregierung AbteilungUmweltschutz

AEA AEA Technology

APA-LRA Agecircncia Portuguesa do Ambiente

AQUILA Air Quality Reference Laboratories

ASE accelerated solvent extraction

AWEL Gewaumlsserschutzlabor Kanton Zuumlrich

BaA benzo(a)anthracene

BaP benzo(a)Pyrene

BaP-D benzo(a)pyrene deuterated

BeP benzo(e)pyrene

DBahA dibenzo(ah)anthracene

DBahA-D dibenzo(ah)anthracene deuterated

BbjkFlu benzo(bjk)fluoranthene

BbFlu benzo(b)fluoranthene

BghiPe benzo(ghi)perylene

BghiPer-D benzo(ghi)perylene deuterated

BjFlu benzo(j)fluranthene

BkFlu benzo(k)fluoranthene

blanki is the system blank level associated with the analysis of the filter i (eq 2)

Chr chrysene

Ci concentration reported by laboratory i

iC robust concentration average (eq 3)

labC average concentration of the reported values by a laboratory (eq 10)

Cref reference concentration (eq 10)

EEA Executive Environmental Agency

EERC Estonian Environmental Research Centre

22

reflab

reflab

n

UU

CCE

eq (9)

EPA-ie Environmental Protection Agency Ireland

ERLAP European Reference Laboratory of Air Pollution

ESG Scientifics part of Environmental Scientifics Group

EU European Union

F21 code for PM10 Prague summer filter

F3 code for PM10 Madrid summer filter

F10 code for PM10 Madrid winter filter

F30 code for PM10 Prague winter filter

fij concentration calculated for the injection j of the filter i (eq 1)

jif is the average value of all injections and filters

FLD Fluorescence detector

Flu Fluoranthene

FMI Laboratory of Air Chemistry Finnish Meteorological Institute

8

GC-MS gas chromatography mass spectrometer

HPLC High Performance Liquid Chromatography

IndPy indeno(123-cd)pyrene

IndPy-D indeno(123-cd)pyrene deuterated

IS internal standard

ISCIII Instituto de Salud Carlos III

ISSeP Institut Scientifique de Service Public

IVL Swedish environmental institute

KAL Chemical Analytical Laboratory Slovenia Environment Agency

LANUV Landesamt fuumlr Natur Umwelt und Verbraucherschutz NRW

m number of filters (eq 2)

n number of injections (eq 1)

na non available

NERI National Environmental Research Institute

OEU overall expanded uncertainty (eq 10)

ou overall uncertainty (eq 1)

p number of input laboratories (eqs 3 4 6 7)

Per perylene

Per-D perylene deuterated

PM Particular matter

PM10 particular matter under 10 μm

PM25 particular matter under 25 μm

PM1 particular matter under 1 μm

PAHs polycyclic aromatic hydrocarbons

Phe phenanthrene

Phe-D phenanthrene deuterated

Phe-D phenanthrene deuterated

Py-D pyrene deuterated

Py pyrene

QAQC quality assurance quality control

TPhe triphenylene

stdev() standard deviation

s standard deviation of the robust concentration average (eq 3)

ubias standard uncertainty of the bias (eq 7)

uci uncertainty of the reported value from laboratory I (eq 7)

ucl uncertainty of the calibration and the reference value (eq 1)

Ulab expanded uncertainty for the reported value (eq 9)

Uref expanded uncertainty for the reference value (eq 9)

VMM Vlaamse Milieumaatschappij

Z random variable of two tails statistic for normal distribution (eq 8)

9

Introduction

The pollution caused by particulate matter (PM) is one of the critical issues of the current

air quality policy Numerous studies relate mortality and morbidity with the pollution

levels of particulate matter in air In this context an appropriated characterization of the

particulate is of importance to provide a better health indicator for air quality than PM10

PM25 or PM1 Furthermore this could help in the identification and quantification of the

compounds responsible for health disorders

At EU level the Directive 2004107EC already focuses on the analysis of heavy metals

and polycyclic aromatic hydrocarbons (PAHs) as compounds to be analysed in PM10 as

responsible for PM toxicity and carcinogenic characteristics In the case of the PAHs an

annual limit value has been established for benzo(a)pyrene (BaP) (carcinogenic to

humans according to the last upgrade of the IARC) as a marker for PAH in particles

Furthermore other PAHs are recommended to be measured benzo(a)anthracene

benzo(b)fluoranthene benzo(j)fluranthene benzo(k)fluoranthene indeno(123-

cd)pyrene and dibenzo(ah)anthracene

The tedious methodologies linked to the quantification of PAHs imply relatively high

uncertainties in the reported analytical results This is reflected in the level of expanded

uncertainty defined in the afore-mentioned Directive being for BaP in PM10 or in total

deposition 50 and 70 respectively Furthermore the minimum time coverage for

these measurements is reduced up to 14 -33 for fixed measurements

The implementation of analytical methods that are traceable and QAQC tested becomes

an asset for this sort of analysis Furthermore the execution of inter-laboratory

comparisons represents an important tool for the demonstration of laboratory traceability

showing competence and identifying weak points in their analytical methods

This report shows the results of the first inter-laboratory comparison of PAHs on PM10

filters carried out at European level among the Air Quality Reference Laboratories in

Europe (AQUILA)

Inter-laboratory comparison strategy

This inter-laboratory comparison focussed on the evaluation of the analytical

performance of participating laboratories Any consideration regarding sampling

technique or monitoring strategic approach is out of the discussion in this report Instead

uncertainties biases or inaccuracies should be linked to analytical issues and to the

traceability of the measurements

Although the testing of laboratory traceability and analytical performance could easily be

carried out by means of reference material (ie NIST-16492 or CRM-ERMCZ-100)

this may not reflect the response of a laboratory to real samples collected on PM10 filters

For this reason this exercise was performed on the basis of real samples on PM10 quartz

filters

10

Participating laboratories

Sixteen laboratories from AQUILA have participated in this inter-laboratory comparison

Names of the laboratories and people involved are listed in Table 1

Table 1ndash List of participating laboratories

Laboratory name Acronym Country ContactAnalytical responsible

IVL Swedish environmental institute IVL Sweden Annika Potter

Erika Rehngren

Environmental Research Department of Environmental Protection Agency EPA

EPA-lt Lithuania Daiva Pockeviciute

Agecircncia Portuguesa do Ambiente APA-LRA Portugal Paula Viana Joatildeo Matos

Vlaamse Milieumaatschappij - Labo Gent VMM - Labo Gent

VMM Belgium Eric Wauters

Peter Van Caeter

Roland De Fleurquin

Landesamt fuumlr Natur Umwelt und Verbraucherschutz NRW

LANUV Germany Ulrich Pfeffer

Dieter Gladtke

Anja Olschewski

AWEL Gewaumlsserschutzlabor Kanton Zuumlrich AWEL Switzerland Robert Gehrig

Andreas Wyss

Nicole Imboden

Cesky hydrometeorologicky ustav CHMU Czech Republic Helena Placha

Jan Abraham

Eva Paznerova Irina Nikolova Jiri Novak

Estonian Environmental Research Centre EERC Estonia Toivo Truuts

Juhan Tamm

National Environmental Research Institute Aarhus University

NERI Denmark Rossana Bossi

Executive Environmental Agency EEA Bulgaria Borislav Zdravkov

Ognian Georgiev

Institut Scientifique de Service Public ISSeP Belgium HENGESCH Valerie

CADET Alain

LEBRUN Muriel

Environmental Protection Agency EPA

EPA-ie Ireland Barbara OLeary

Lin Delaney

Simon OToole

Amt der oberoumlsterreichischen Landesregierung AbteilungUmweltschutz

ABUM Austria Adolf Schinerl

Chemical Analytical Laboratory Slovenian Environment Agency

KAL Slovenia Gregor Muri

Laboratory of Air Chemistry Finnish Meteorological Institute

FMI Finland Hannele Hakola

Mika Vestenius

Heidi Hellen

AEA Technology Scientifics part of Environmental Scientifics Group

AEA ESG

UK

Christopher Connolly Shane OLeary Joanne Baker

Instituto de Salud Carlos III ISCIII Spain Rosaliacutea Fernandez Patier

Joint Research Centre European Reference Laboratory for Air Pollution

ERLAP EC E Grandesso K Kowalewski P Peacuterez Ballesta

11

Sampling programme and schedule

The need for real PM10 samples to carry out this exercise was discussed inside the

AQUILA The sampling of PM10 should represent typical operational network

monitoring conditions Two Laboratories Instituto de Salud Carlos III from Spain and the

ldquoCesky hydrometeorologicky ustavrdquo from the Czech Republic voluntarily offered to act

as sampling laboratories and were finally responsible for the PM10 sampling

The sampling was performed according to a defined protocol (see Annex I) by means of

Andersen high volume PM10 samplers on quartz filters (Whatman QM-A) Filters were

heat-treated prior to sampling and each seasonal batch of samples was sent to the JRC for

characterisation

The sampling was performed during two different seasonal periods covering the possible

range of concentrations that characterised the sampling locations summer (June-August

2009) and winter (November-January 2010) The corresponding samplers were sited in

background monitoring stations of ldquoSinesio Delgadordquo (Madrid) and ldquoLibusrdquo (Prague)

Sections of the filters were distributed among participants during the second week of

May 2010 with a data collection deadline beginning of September 2010 The package

contained one filter for each season and location and two blanks (one from each

sampling location)

The comparison was based on the amount of compound quantified on the filter which

should be expected to be equivalent to typical amounts found in low volume sampler

filters

Participating laboratories received the filters together with a ldquoGuide to operationrdquo

(included in Annex I) They were requested to provide information concerning the

analytical method and the uncertainty evaluation of the measurements Laboratories were

requested to report a minimum of 3 replicate injections for each sample

A list of fifteen different PAHs was provided from which seven of them were marked as

priority (See table 2)

12

Table 2ndash List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno(123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene+triphenylene

C Benzo(bjk)fluoranthene In highlighted print priority compounds for the inter-laboratory comparison

Filters management characterisation and homogeneity

Whatman QM-A Quartz microfiber filter [203x 254 cm (8x 10 in) Cat No 1851 865]

were used for sampling in the Andersen high volume PM10 samplers These filters

provide a sampling area of circa 406 cm2 to be subdivided into smaller filter sections

corresponding to low volume filter samples of diameter 4 cm

The high volume sampled filters that arrived directly from the sampling site were kept in

a freezer (at -16 ordmC) until the preparation for distribution among participating

laboratories Twenty filter samples of 4 cm diameter were available from each high

volume sampled filter They were systematically cut by means of a mould specifically

designed for this purpose (See Figure 1)

13

Figure 1ndash Mould and tools for the subdivision of the high volume sampled filter

The low volume dimension filters were carefully prepared for mailing according to a

particular procedure that considered the individual packing and sealing of each sample

(Detail of this packing can be observed in Annex I - Guide to operation)

The filters selected for the inter-laboratory comparison were previously tested for

homogeneity by means of a thermal desorption methodology which allowed the

quantification of small sections of filters with diameters from 25 to 6 mm (Van Drooge

et al)

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 2ndash Relative standard deviation with respect to priority compounds

The random analysis of a minimum four small filter sections by thermal desorption

shows content relative standard deviations compatible with the needs for the comparison

exercise The relative standard deviations associated with the sum of the priority

000

500

1000

1500

2000

2500

3000

1000 10000 100000 1000000 10000000

Σ(priority PAHs) pg

RS

DE

V

B3

B2

F30F21

F10

F3

14

compound concentrations for the sampled filters ranged between 32 and 65 This is in

agreement with previous studies of homogeneity on Andersen high volume sampled

filters (A Baeza et al)

Table 3 shows sampling parameters and average values for the main ambient variables

registered during the sampling of the PM10 in the corresponding locations As expected

PM10 and PM25 winter concentrations were higher than those for summer whilst the

highest levels were found in Prague during winter

Table 3ndash Sampling variables for the PM10 collection

Filter code F3 F21 F10 F30 B2 B3

Location Madrid Prague Madrid Prague Madrid Prague

Sampling Period 6-872009 27-2882009 25-27112009 21-22112009 - -

Sampling volume m3 3090 1590 3190 1708 - -

Temperature ordmC 249 228 92 728 - -

Relative Humidity 32 63 90 87 - -

PM10 microgm3 30 243 21 89 - -

PM25 microgm3 11 167 na 64 - -

O3 ppb 37 70 na 5 - -

na non available

With the exception of the winter Prague filter where the concentration of PAHs were

significantly high with concentrations of benzo(a)pyrene of about 75 ngm3 other filters

were much lower 02 ngm3 for the winter filter in Madrid and around 50 pgm

3 of BaP

for the summer period in both locations Graphs from Figure 3 show the estimated PAH

air concentration levels during the corresponding sampling days and locations

Figure 3ndash PAHs air concentration levels during sampling

249

41

000

10000

20000

30000

40000

50000

60000

70000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Madrid winter

Madrid Summer

7469

62

000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Prague winter

Prague summer

15

Filter stability

JRC retained three 4 cm diameter filters for analysis from each sampling batch One set

of filters was sent abroad and return to JRC by courier simultaneously to the filters of the

other participants The other two filters from the same sampling batch were analysed one

month before and one month after the circulating filters Those filters were stored in

freezer

The analysis of these filters showed variation within plusmn 10 of the average value

therefore validating the stability of the filters for the exercise The sum of the priority

PAHs quantified on the filters are shown in Figure 4 It is noted the lower uncertainty

associated with filters from Prague when compared to those from Madrid Similar

behaviour was also noted during the homogeneity tests which could be due to a more

volatile composition of the Madrid filters in comparison to Prague or a breakthrough on

the Madrid filters caused by the sampling volume being double that of Prague

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 4ndash Analysis of the filters before and after the exercise

100

110

120

130

140

150

160

170

180

190

F10

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

57

+10

-10

1500

1600

1700

1800

1900

2000

2100

2200

F30

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

33

+10

-10

14

16

18

20

22

24

F3

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

51

+10

- 10

16

17

18

19

20

21

22

23

24

F21

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

41

+10

-10

16

Analytical Methods

Each participant was free to choose the analytical method according to their own

experience As a consequence there were multiple combinations of different separation

techniques detectors extraction systems solvents extraction time clean up and other

analytical parameters No statistical differences could be associated with a specific

technique for extraction or analysis Table 4 shows the different techniques and relevant

analytical conditions used by the participating laboratories

Table 4ndash Analytical method used by the participating laboratories

LABORATORY ANALYTICAL

METHOD COLUMN EXTRACTION SOLVENT TIME CLEANUP

CORRELAT

ION

INTERNAL

STANDARD

IVL HPLC FLD CHROMSPHERE

PAH (VARIAN) SOXLHET PENTANE-ACETONE 24 H

SILICA GEL

MERK

Multipoint-

Linear bb-binapthyl

EPA-LT HPLC FLD SUPELCOSILlTM

LC-PAH SOXLHET HEXANE-ACETONE 4 H

SPE

CARTRIGE

Multipoint-

Linear external extandard

APA-LRA HPLC FLD C18 REVERSE

PHASE SOXLHET ACETONITRILE 16 H -

Multipoint-

Linear external extandard

VMM HPLC FLD ZORBAX ECLIPSE

PAH ASE DICHLOROMETHANE 35 MIN -

Multipoint-

Linear external extandard

LANUV HPLC FLD ZORBAX ECLIPSE

PAH ULTRASONIC TOLUENE 24 H

CHROMAB

ON

Multipoint-

Linear

through

origin

external extandard

AWEL GC-MS DB5-30 M SOXLHET

CYCLOHEXANE-

ISOOCTANE-

ACETONE

4 H - Multipoint-

Linear 111 dibromodecane

CHMU GC-MS DB5-30 M SOXLHET METHANOL-

DICHLOROMETHANE 1 H

SILICA GEL

SUPELCO

Multipoint-

Linear

through

origin

Phe-D Chry-D Per-D

EERC GC-MS DB5-30 M SOXLHET CYLCOHEXANE 16 h - Multipoint-

Linear Py-D Per-D

NERI GC-MS DB5-30 M na DICHLOROMETHANE na - Multipoint-

Linear

BaA-D Chry-D BaP-D

Per-D BghiPer-D

DBahA-D

EEA GC-MS DB-XLD- 30 M ULTRASONIC DICHLOROMETHANE 1 H SILICA GEL Multipoint-

Linear Phe-D Chry-D Per-D

ISSeP GC-MS DB-17 SOXHLET CYCLOHEXANE-

DIETHYLETHER 16 H -

Multipoint-

Linear Phe-D Chry-D BaP-D

EPA-ie GC-MS DB5-30 M ULTRASONIC DICHLOROMETHANE na FLORASIL Multipoint-

Linear Chry-D

ABUM GC-MS DB5-60 M ASE CYCLOHEXANE 30 MIN SILICA GEL Multipoint-

Linear corresponding deuterated

KAL GC-MS DB5-30 M MICROWAVE HEXANE-ACETONE 45 MIN SILICA Multipoint-

Linear

Phe-D Py-D BahA-D

BaP-D IndPy-D

FMI GC-MS DB5-50 M SOXLHET DICHLOROMETHANE 8 H FLORISIL Multipoint

Quadratic

Phe-D Chry-D DBahA-

D Per-D

AEAESG GC-MS ZB-5 30M ASE na na SPE

CARTRIGE

Multipoint-

Linear IS non expecified

ERLAP GC-MS DB-17 30 M MICROWAVE ACETANE-HEXANE 30 MIN

SPE

CARTRIGE

CUPS

Multipoint-

Linear corresponding deuterated

ERLAPT GC-MS DB-17 30 M THERMAL DESORPTION Multipoint-

Linear corresponding deuterated

17

25 of the participating laboratories used liquid chromatography and FLD detection

whilst the rest of the laboratories used gas chromatography separation and mass

spectrometry For gas chromatography separation a 30 m DB5 was the most frequently

used column other phases such as DB17 or longer lengths were rare Soxhlet was the

most common method for extraction used by 8 laboratories three laboratories used

ultrasonic extraction and another three accelerated soxhlet extraction 2 laboratories

extracted the filter by microwave whilst only one laboratory used thermal desorption

There was no agreement in the solvent or time for extraction (acetonitrile pentane

acetone cyclohexane isooctane dichloromethane toluene and mixtures of these solvents

were used by laboratories even with the same extraction technique) with times from

minutes to 24 hours Clean-up was applied by most of the laboratories All analysis were

performed by multipoint calibration Internal standard method was applied to all GC-MS

analysis while only one laboratory used internal standard for HPLC

Analytical uncertainties from participating laboratories

Participating laboratories were requested to estimate the associated expanded

uncertainties of their analytical results These values are given in Table 12 Description of

the uncertainty evaluation provided by each laboratory is given in annex I

Several laboratories provided uncertainties on the basis of data from method validations

and analysis of reference material including the bias as an additional source of

uncertainty On the other hand the 3 analyses per sample requested can only provide an

idea about the analytical repeatability but other sources of uncertainty should be

considered in the calculations such as calibration and standard preparation blank level

reproducibility desorption efficiencies known biases etc Furthermore as the exercise

contains different filters with different concentration levels it is expected that the

analytical uncertainty will depend on the concentration level The lower the analysed

concentration the higher the uncertainty associated with the quantified value Similarly

the analytical uncertainty will be different from compound to compound depending on

its analytical reproducibility and response volatility desorption efficiency etc

Nevertheless these aspects not always considered in the reported uncertainties

Analytical uncertainties from the ERLAP

ERLAP participated in the exercise by analysing the filters using two different

techniques solvent extraction with GC-MS and thermal desorption with GC-MS

analysis

The evaluation of the concentration and the associated budget uncertainty reported by

JRC was based on the results of the averaging of three filter samples analysed in

triplicate by liquid extraction and gas chromatography The reproducibility uncertainties

of these analyses were combined with others sources of uncertainties derived from the

standards calibration and system blank In a similar way uncertainty for the thermal

desorption analyses was based on the reproducibility analysis of a number of cuts

18

randomly distributed around the whole high volume filter plus the corresponding sources

of uncertainties related to standards calibration and system blank This uncertainty

evaluation did not consider uncertainties attributed to biases with respect to the analysis

of reference materials

The overall uncertainty ou was calculated as follows

22

1

2

)(blankcl

m

i

jiuu

n

fstdevou

(1)

Where

jicl fu 0250 as an approach value for the uncertainty of the calibration and the

reference standard (see referencies BL Vand Drooge et al J Chromatogr A 1216

(2009) 4030-4039)

2

2)(

iblank

m

blankstdevu i

blank

(2)

fij is the concentration calculated for the injection j of the filter i

n is the number of injections (j= 1 to n)

m is the number of filters (i=1 to m)

jif is the average value of all injections and filters

blanki is the system blank level associated with the analysis of the filter i

Reference values

Due to the nature of this kind of inter-laboratory comparisons the reference value was

determined on the basis of the robust average results from the best performance

laboratories The selection of a best performance laboratory was based on the number of

outliers reported by each laboratory with respect to a robust average calculated on the

basis of the ISO-13528 Therefore robust average

iC and standard deviation s of the

p input laboratories are derived from a convergence process of the following equation

(3)

(4)

p

CC

i

i

)1(

)(1341

2

p

CCs

ii

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 5: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

5

List of Figures

Figure 1 ndash Mould and tools for the subdivision of the high volume sampled filter

Figure 2 ndash Relative standard deviation with respect to priority compounds

Figure 3 ndash PAHs air concentration levels during sampling

Figure 4 ndash Analysis of the filters before and after the exercise

Figure 5 ndash Percentage of laboratories reporting data for each compound

Figure 6 ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 ndash Blanks versus sampled Filters

Figure 8 ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9 ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

Figure 10 ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11 ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

Figure 12 ndash Repeatability of the inter-laboratory comparison exercise

Figure 13 ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15 ndash Median overall expanded uncertainty ndash excluding outliers

Figure 16 ndash Median of the absolute En values

6

List of Tables

Table 1 ndash List of participating laboratories

Table 2 ndash List of compounds to be quantified on the filter

Table 3 ndash Sampling variables for the PM10 collection

Table 4 ndash Analytical method used by the participating laboratories

Table 5 ndash Outliers versus reported data for all compounds and participating laboratory

Table 6 ndash Reference values and associated expanded uncertainties

Table 7 ndash Inter-laboratory median overall expanded uncertainties by compounds

Table 8 ndash Results of the concentrations analysed by each laboratory

Table 9 ndash Expanded uncertainties reported by each laboratory

Table 10 ndash Bias with respect to the reference value

Table 11 ndash En values

Table 12 ndash Overall expanded uncertainty

Table 13 ndash Evaluation of individual results

7

Nomenclature and abbreviations ABUM Amt der oberoumlsterreichischen Landesregierung AbteilungUmweltschutz

AEA AEA Technology

APA-LRA Agecircncia Portuguesa do Ambiente

AQUILA Air Quality Reference Laboratories

ASE accelerated solvent extraction

AWEL Gewaumlsserschutzlabor Kanton Zuumlrich

BaA benzo(a)anthracene

BaP benzo(a)Pyrene

BaP-D benzo(a)pyrene deuterated

BeP benzo(e)pyrene

DBahA dibenzo(ah)anthracene

DBahA-D dibenzo(ah)anthracene deuterated

BbjkFlu benzo(bjk)fluoranthene

BbFlu benzo(b)fluoranthene

BghiPe benzo(ghi)perylene

BghiPer-D benzo(ghi)perylene deuterated

BjFlu benzo(j)fluranthene

BkFlu benzo(k)fluoranthene

blanki is the system blank level associated with the analysis of the filter i (eq 2)

Chr chrysene

Ci concentration reported by laboratory i

iC robust concentration average (eq 3)

labC average concentration of the reported values by a laboratory (eq 10)

Cref reference concentration (eq 10)

EEA Executive Environmental Agency

EERC Estonian Environmental Research Centre

22

reflab

reflab

n

UU

CCE

eq (9)

EPA-ie Environmental Protection Agency Ireland

ERLAP European Reference Laboratory of Air Pollution

ESG Scientifics part of Environmental Scientifics Group

EU European Union

F21 code for PM10 Prague summer filter

F3 code for PM10 Madrid summer filter

F10 code for PM10 Madrid winter filter

F30 code for PM10 Prague winter filter

fij concentration calculated for the injection j of the filter i (eq 1)

jif is the average value of all injections and filters

FLD Fluorescence detector

Flu Fluoranthene

FMI Laboratory of Air Chemistry Finnish Meteorological Institute

8

GC-MS gas chromatography mass spectrometer

HPLC High Performance Liquid Chromatography

IndPy indeno(123-cd)pyrene

IndPy-D indeno(123-cd)pyrene deuterated

IS internal standard

ISCIII Instituto de Salud Carlos III

ISSeP Institut Scientifique de Service Public

IVL Swedish environmental institute

KAL Chemical Analytical Laboratory Slovenia Environment Agency

LANUV Landesamt fuumlr Natur Umwelt und Verbraucherschutz NRW

m number of filters (eq 2)

n number of injections (eq 1)

na non available

NERI National Environmental Research Institute

OEU overall expanded uncertainty (eq 10)

ou overall uncertainty (eq 1)

p number of input laboratories (eqs 3 4 6 7)

Per perylene

Per-D perylene deuterated

PM Particular matter

PM10 particular matter under 10 μm

PM25 particular matter under 25 μm

PM1 particular matter under 1 μm

PAHs polycyclic aromatic hydrocarbons

Phe phenanthrene

Phe-D phenanthrene deuterated

Phe-D phenanthrene deuterated

Py-D pyrene deuterated

Py pyrene

QAQC quality assurance quality control

TPhe triphenylene

stdev() standard deviation

s standard deviation of the robust concentration average (eq 3)

ubias standard uncertainty of the bias (eq 7)

uci uncertainty of the reported value from laboratory I (eq 7)

ucl uncertainty of the calibration and the reference value (eq 1)

Ulab expanded uncertainty for the reported value (eq 9)

Uref expanded uncertainty for the reference value (eq 9)

VMM Vlaamse Milieumaatschappij

Z random variable of two tails statistic for normal distribution (eq 8)

9

Introduction

The pollution caused by particulate matter (PM) is one of the critical issues of the current

air quality policy Numerous studies relate mortality and morbidity with the pollution

levels of particulate matter in air In this context an appropriated characterization of the

particulate is of importance to provide a better health indicator for air quality than PM10

PM25 or PM1 Furthermore this could help in the identification and quantification of the

compounds responsible for health disorders

At EU level the Directive 2004107EC already focuses on the analysis of heavy metals

and polycyclic aromatic hydrocarbons (PAHs) as compounds to be analysed in PM10 as

responsible for PM toxicity and carcinogenic characteristics In the case of the PAHs an

annual limit value has been established for benzo(a)pyrene (BaP) (carcinogenic to

humans according to the last upgrade of the IARC) as a marker for PAH in particles

Furthermore other PAHs are recommended to be measured benzo(a)anthracene

benzo(b)fluoranthene benzo(j)fluranthene benzo(k)fluoranthene indeno(123-

cd)pyrene and dibenzo(ah)anthracene

The tedious methodologies linked to the quantification of PAHs imply relatively high

uncertainties in the reported analytical results This is reflected in the level of expanded

uncertainty defined in the afore-mentioned Directive being for BaP in PM10 or in total

deposition 50 and 70 respectively Furthermore the minimum time coverage for

these measurements is reduced up to 14 -33 for fixed measurements

The implementation of analytical methods that are traceable and QAQC tested becomes

an asset for this sort of analysis Furthermore the execution of inter-laboratory

comparisons represents an important tool for the demonstration of laboratory traceability

showing competence and identifying weak points in their analytical methods

This report shows the results of the first inter-laboratory comparison of PAHs on PM10

filters carried out at European level among the Air Quality Reference Laboratories in

Europe (AQUILA)

Inter-laboratory comparison strategy

This inter-laboratory comparison focussed on the evaluation of the analytical

performance of participating laboratories Any consideration regarding sampling

technique or monitoring strategic approach is out of the discussion in this report Instead

uncertainties biases or inaccuracies should be linked to analytical issues and to the

traceability of the measurements

Although the testing of laboratory traceability and analytical performance could easily be

carried out by means of reference material (ie NIST-16492 or CRM-ERMCZ-100)

this may not reflect the response of a laboratory to real samples collected on PM10 filters

For this reason this exercise was performed on the basis of real samples on PM10 quartz

filters

10

Participating laboratories

Sixteen laboratories from AQUILA have participated in this inter-laboratory comparison

Names of the laboratories and people involved are listed in Table 1

Table 1ndash List of participating laboratories

Laboratory name Acronym Country ContactAnalytical responsible

IVL Swedish environmental institute IVL Sweden Annika Potter

Erika Rehngren

Environmental Research Department of Environmental Protection Agency EPA

EPA-lt Lithuania Daiva Pockeviciute

Agecircncia Portuguesa do Ambiente APA-LRA Portugal Paula Viana Joatildeo Matos

Vlaamse Milieumaatschappij - Labo Gent VMM - Labo Gent

VMM Belgium Eric Wauters

Peter Van Caeter

Roland De Fleurquin

Landesamt fuumlr Natur Umwelt und Verbraucherschutz NRW

LANUV Germany Ulrich Pfeffer

Dieter Gladtke

Anja Olschewski

AWEL Gewaumlsserschutzlabor Kanton Zuumlrich AWEL Switzerland Robert Gehrig

Andreas Wyss

Nicole Imboden

Cesky hydrometeorologicky ustav CHMU Czech Republic Helena Placha

Jan Abraham

Eva Paznerova Irina Nikolova Jiri Novak

Estonian Environmental Research Centre EERC Estonia Toivo Truuts

Juhan Tamm

National Environmental Research Institute Aarhus University

NERI Denmark Rossana Bossi

Executive Environmental Agency EEA Bulgaria Borislav Zdravkov

Ognian Georgiev

Institut Scientifique de Service Public ISSeP Belgium HENGESCH Valerie

CADET Alain

LEBRUN Muriel

Environmental Protection Agency EPA

EPA-ie Ireland Barbara OLeary

Lin Delaney

Simon OToole

Amt der oberoumlsterreichischen Landesregierung AbteilungUmweltschutz

ABUM Austria Adolf Schinerl

Chemical Analytical Laboratory Slovenian Environment Agency

KAL Slovenia Gregor Muri

Laboratory of Air Chemistry Finnish Meteorological Institute

FMI Finland Hannele Hakola

Mika Vestenius

Heidi Hellen

AEA Technology Scientifics part of Environmental Scientifics Group

AEA ESG

UK

Christopher Connolly Shane OLeary Joanne Baker

Instituto de Salud Carlos III ISCIII Spain Rosaliacutea Fernandez Patier

Joint Research Centre European Reference Laboratory for Air Pollution

ERLAP EC E Grandesso K Kowalewski P Peacuterez Ballesta

11

Sampling programme and schedule

The need for real PM10 samples to carry out this exercise was discussed inside the

AQUILA The sampling of PM10 should represent typical operational network

monitoring conditions Two Laboratories Instituto de Salud Carlos III from Spain and the

ldquoCesky hydrometeorologicky ustavrdquo from the Czech Republic voluntarily offered to act

as sampling laboratories and were finally responsible for the PM10 sampling

The sampling was performed according to a defined protocol (see Annex I) by means of

Andersen high volume PM10 samplers on quartz filters (Whatman QM-A) Filters were

heat-treated prior to sampling and each seasonal batch of samples was sent to the JRC for

characterisation

The sampling was performed during two different seasonal periods covering the possible

range of concentrations that characterised the sampling locations summer (June-August

2009) and winter (November-January 2010) The corresponding samplers were sited in

background monitoring stations of ldquoSinesio Delgadordquo (Madrid) and ldquoLibusrdquo (Prague)

Sections of the filters were distributed among participants during the second week of

May 2010 with a data collection deadline beginning of September 2010 The package

contained one filter for each season and location and two blanks (one from each

sampling location)

The comparison was based on the amount of compound quantified on the filter which

should be expected to be equivalent to typical amounts found in low volume sampler

filters

Participating laboratories received the filters together with a ldquoGuide to operationrdquo

(included in Annex I) They were requested to provide information concerning the

analytical method and the uncertainty evaluation of the measurements Laboratories were

requested to report a minimum of 3 replicate injections for each sample

A list of fifteen different PAHs was provided from which seven of them were marked as

priority (See table 2)

12

Table 2ndash List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno(123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene+triphenylene

C Benzo(bjk)fluoranthene In highlighted print priority compounds for the inter-laboratory comparison

Filters management characterisation and homogeneity

Whatman QM-A Quartz microfiber filter [203x 254 cm (8x 10 in) Cat No 1851 865]

were used for sampling in the Andersen high volume PM10 samplers These filters

provide a sampling area of circa 406 cm2 to be subdivided into smaller filter sections

corresponding to low volume filter samples of diameter 4 cm

The high volume sampled filters that arrived directly from the sampling site were kept in

a freezer (at -16 ordmC) until the preparation for distribution among participating

laboratories Twenty filter samples of 4 cm diameter were available from each high

volume sampled filter They were systematically cut by means of a mould specifically

designed for this purpose (See Figure 1)

13

Figure 1ndash Mould and tools for the subdivision of the high volume sampled filter

The low volume dimension filters were carefully prepared for mailing according to a

particular procedure that considered the individual packing and sealing of each sample

(Detail of this packing can be observed in Annex I - Guide to operation)

The filters selected for the inter-laboratory comparison were previously tested for

homogeneity by means of a thermal desorption methodology which allowed the

quantification of small sections of filters with diameters from 25 to 6 mm (Van Drooge

et al)

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 2ndash Relative standard deviation with respect to priority compounds

The random analysis of a minimum four small filter sections by thermal desorption

shows content relative standard deviations compatible with the needs for the comparison

exercise The relative standard deviations associated with the sum of the priority

000

500

1000

1500

2000

2500

3000

1000 10000 100000 1000000 10000000

Σ(priority PAHs) pg

RS

DE

V

B3

B2

F30F21

F10

F3

14

compound concentrations for the sampled filters ranged between 32 and 65 This is in

agreement with previous studies of homogeneity on Andersen high volume sampled

filters (A Baeza et al)

Table 3 shows sampling parameters and average values for the main ambient variables

registered during the sampling of the PM10 in the corresponding locations As expected

PM10 and PM25 winter concentrations were higher than those for summer whilst the

highest levels were found in Prague during winter

Table 3ndash Sampling variables for the PM10 collection

Filter code F3 F21 F10 F30 B2 B3

Location Madrid Prague Madrid Prague Madrid Prague

Sampling Period 6-872009 27-2882009 25-27112009 21-22112009 - -

Sampling volume m3 3090 1590 3190 1708 - -

Temperature ordmC 249 228 92 728 - -

Relative Humidity 32 63 90 87 - -

PM10 microgm3 30 243 21 89 - -

PM25 microgm3 11 167 na 64 - -

O3 ppb 37 70 na 5 - -

na non available

With the exception of the winter Prague filter where the concentration of PAHs were

significantly high with concentrations of benzo(a)pyrene of about 75 ngm3 other filters

were much lower 02 ngm3 for the winter filter in Madrid and around 50 pgm

3 of BaP

for the summer period in both locations Graphs from Figure 3 show the estimated PAH

air concentration levels during the corresponding sampling days and locations

Figure 3ndash PAHs air concentration levels during sampling

249

41

000

10000

20000

30000

40000

50000

60000

70000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Madrid winter

Madrid Summer

7469

62

000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Prague winter

Prague summer

15

Filter stability

JRC retained three 4 cm diameter filters for analysis from each sampling batch One set

of filters was sent abroad and return to JRC by courier simultaneously to the filters of the

other participants The other two filters from the same sampling batch were analysed one

month before and one month after the circulating filters Those filters were stored in

freezer

The analysis of these filters showed variation within plusmn 10 of the average value

therefore validating the stability of the filters for the exercise The sum of the priority

PAHs quantified on the filters are shown in Figure 4 It is noted the lower uncertainty

associated with filters from Prague when compared to those from Madrid Similar

behaviour was also noted during the homogeneity tests which could be due to a more

volatile composition of the Madrid filters in comparison to Prague or a breakthrough on

the Madrid filters caused by the sampling volume being double that of Prague

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 4ndash Analysis of the filters before and after the exercise

100

110

120

130

140

150

160

170

180

190

F10

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

57

+10

-10

1500

1600

1700

1800

1900

2000

2100

2200

F30

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

33

+10

-10

14

16

18

20

22

24

F3

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

51

+10

- 10

16

17

18

19

20

21

22

23

24

F21

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

41

+10

-10

16

Analytical Methods

Each participant was free to choose the analytical method according to their own

experience As a consequence there were multiple combinations of different separation

techniques detectors extraction systems solvents extraction time clean up and other

analytical parameters No statistical differences could be associated with a specific

technique for extraction or analysis Table 4 shows the different techniques and relevant

analytical conditions used by the participating laboratories

Table 4ndash Analytical method used by the participating laboratories

LABORATORY ANALYTICAL

METHOD COLUMN EXTRACTION SOLVENT TIME CLEANUP

CORRELAT

ION

INTERNAL

STANDARD

IVL HPLC FLD CHROMSPHERE

PAH (VARIAN) SOXLHET PENTANE-ACETONE 24 H

SILICA GEL

MERK

Multipoint-

Linear bb-binapthyl

EPA-LT HPLC FLD SUPELCOSILlTM

LC-PAH SOXLHET HEXANE-ACETONE 4 H

SPE

CARTRIGE

Multipoint-

Linear external extandard

APA-LRA HPLC FLD C18 REVERSE

PHASE SOXLHET ACETONITRILE 16 H -

Multipoint-

Linear external extandard

VMM HPLC FLD ZORBAX ECLIPSE

PAH ASE DICHLOROMETHANE 35 MIN -

Multipoint-

Linear external extandard

LANUV HPLC FLD ZORBAX ECLIPSE

PAH ULTRASONIC TOLUENE 24 H

CHROMAB

ON

Multipoint-

Linear

through

origin

external extandard

AWEL GC-MS DB5-30 M SOXLHET

CYCLOHEXANE-

ISOOCTANE-

ACETONE

4 H - Multipoint-

Linear 111 dibromodecane

CHMU GC-MS DB5-30 M SOXLHET METHANOL-

DICHLOROMETHANE 1 H

SILICA GEL

SUPELCO

Multipoint-

Linear

through

origin

Phe-D Chry-D Per-D

EERC GC-MS DB5-30 M SOXLHET CYLCOHEXANE 16 h - Multipoint-

Linear Py-D Per-D

NERI GC-MS DB5-30 M na DICHLOROMETHANE na - Multipoint-

Linear

BaA-D Chry-D BaP-D

Per-D BghiPer-D

DBahA-D

EEA GC-MS DB-XLD- 30 M ULTRASONIC DICHLOROMETHANE 1 H SILICA GEL Multipoint-

Linear Phe-D Chry-D Per-D

ISSeP GC-MS DB-17 SOXHLET CYCLOHEXANE-

DIETHYLETHER 16 H -

Multipoint-

Linear Phe-D Chry-D BaP-D

EPA-ie GC-MS DB5-30 M ULTRASONIC DICHLOROMETHANE na FLORASIL Multipoint-

Linear Chry-D

ABUM GC-MS DB5-60 M ASE CYCLOHEXANE 30 MIN SILICA GEL Multipoint-

Linear corresponding deuterated

KAL GC-MS DB5-30 M MICROWAVE HEXANE-ACETONE 45 MIN SILICA Multipoint-

Linear

Phe-D Py-D BahA-D

BaP-D IndPy-D

FMI GC-MS DB5-50 M SOXLHET DICHLOROMETHANE 8 H FLORISIL Multipoint

Quadratic

Phe-D Chry-D DBahA-

D Per-D

AEAESG GC-MS ZB-5 30M ASE na na SPE

CARTRIGE

Multipoint-

Linear IS non expecified

ERLAP GC-MS DB-17 30 M MICROWAVE ACETANE-HEXANE 30 MIN

SPE

CARTRIGE

CUPS

Multipoint-

Linear corresponding deuterated

ERLAPT GC-MS DB-17 30 M THERMAL DESORPTION Multipoint-

Linear corresponding deuterated

17

25 of the participating laboratories used liquid chromatography and FLD detection

whilst the rest of the laboratories used gas chromatography separation and mass

spectrometry For gas chromatography separation a 30 m DB5 was the most frequently

used column other phases such as DB17 or longer lengths were rare Soxhlet was the

most common method for extraction used by 8 laboratories three laboratories used

ultrasonic extraction and another three accelerated soxhlet extraction 2 laboratories

extracted the filter by microwave whilst only one laboratory used thermal desorption

There was no agreement in the solvent or time for extraction (acetonitrile pentane

acetone cyclohexane isooctane dichloromethane toluene and mixtures of these solvents

were used by laboratories even with the same extraction technique) with times from

minutes to 24 hours Clean-up was applied by most of the laboratories All analysis were

performed by multipoint calibration Internal standard method was applied to all GC-MS

analysis while only one laboratory used internal standard for HPLC

Analytical uncertainties from participating laboratories

Participating laboratories were requested to estimate the associated expanded

uncertainties of their analytical results These values are given in Table 12 Description of

the uncertainty evaluation provided by each laboratory is given in annex I

Several laboratories provided uncertainties on the basis of data from method validations

and analysis of reference material including the bias as an additional source of

uncertainty On the other hand the 3 analyses per sample requested can only provide an

idea about the analytical repeatability but other sources of uncertainty should be

considered in the calculations such as calibration and standard preparation blank level

reproducibility desorption efficiencies known biases etc Furthermore as the exercise

contains different filters with different concentration levels it is expected that the

analytical uncertainty will depend on the concentration level The lower the analysed

concentration the higher the uncertainty associated with the quantified value Similarly

the analytical uncertainty will be different from compound to compound depending on

its analytical reproducibility and response volatility desorption efficiency etc

Nevertheless these aspects not always considered in the reported uncertainties

Analytical uncertainties from the ERLAP

ERLAP participated in the exercise by analysing the filters using two different

techniques solvent extraction with GC-MS and thermal desorption with GC-MS

analysis

The evaluation of the concentration and the associated budget uncertainty reported by

JRC was based on the results of the averaging of three filter samples analysed in

triplicate by liquid extraction and gas chromatography The reproducibility uncertainties

of these analyses were combined with others sources of uncertainties derived from the

standards calibration and system blank In a similar way uncertainty for the thermal

desorption analyses was based on the reproducibility analysis of a number of cuts

18

randomly distributed around the whole high volume filter plus the corresponding sources

of uncertainties related to standards calibration and system blank This uncertainty

evaluation did not consider uncertainties attributed to biases with respect to the analysis

of reference materials

The overall uncertainty ou was calculated as follows

22

1

2

)(blankcl

m

i

jiuu

n

fstdevou

(1)

Where

jicl fu 0250 as an approach value for the uncertainty of the calibration and the

reference standard (see referencies BL Vand Drooge et al J Chromatogr A 1216

(2009) 4030-4039)

2

2)(

iblank

m

blankstdevu i

blank

(2)

fij is the concentration calculated for the injection j of the filter i

n is the number of injections (j= 1 to n)

m is the number of filters (i=1 to m)

jif is the average value of all injections and filters

blanki is the system blank level associated with the analysis of the filter i

Reference values

Due to the nature of this kind of inter-laboratory comparisons the reference value was

determined on the basis of the robust average results from the best performance

laboratories The selection of a best performance laboratory was based on the number of

outliers reported by each laboratory with respect to a robust average calculated on the

basis of the ISO-13528 Therefore robust average

iC and standard deviation s of the

p input laboratories are derived from a convergence process of the following equation

(3)

(4)

p

CC

i

i

)1(

)(1341

2

p

CCs

ii

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 6: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

6

List of Tables

Table 1 ndash List of participating laboratories

Table 2 ndash List of compounds to be quantified on the filter

Table 3 ndash Sampling variables for the PM10 collection

Table 4 ndash Analytical method used by the participating laboratories

Table 5 ndash Outliers versus reported data for all compounds and participating laboratory

Table 6 ndash Reference values and associated expanded uncertainties

Table 7 ndash Inter-laboratory median overall expanded uncertainties by compounds

Table 8 ndash Results of the concentrations analysed by each laboratory

Table 9 ndash Expanded uncertainties reported by each laboratory

Table 10 ndash Bias with respect to the reference value

Table 11 ndash En values

Table 12 ndash Overall expanded uncertainty

Table 13 ndash Evaluation of individual results

7

Nomenclature and abbreviations ABUM Amt der oberoumlsterreichischen Landesregierung AbteilungUmweltschutz

AEA AEA Technology

APA-LRA Agecircncia Portuguesa do Ambiente

AQUILA Air Quality Reference Laboratories

ASE accelerated solvent extraction

AWEL Gewaumlsserschutzlabor Kanton Zuumlrich

BaA benzo(a)anthracene

BaP benzo(a)Pyrene

BaP-D benzo(a)pyrene deuterated

BeP benzo(e)pyrene

DBahA dibenzo(ah)anthracene

DBahA-D dibenzo(ah)anthracene deuterated

BbjkFlu benzo(bjk)fluoranthene

BbFlu benzo(b)fluoranthene

BghiPe benzo(ghi)perylene

BghiPer-D benzo(ghi)perylene deuterated

BjFlu benzo(j)fluranthene

BkFlu benzo(k)fluoranthene

blanki is the system blank level associated with the analysis of the filter i (eq 2)

Chr chrysene

Ci concentration reported by laboratory i

iC robust concentration average (eq 3)

labC average concentration of the reported values by a laboratory (eq 10)

Cref reference concentration (eq 10)

EEA Executive Environmental Agency

EERC Estonian Environmental Research Centre

22

reflab

reflab

n

UU

CCE

eq (9)

EPA-ie Environmental Protection Agency Ireland

ERLAP European Reference Laboratory of Air Pollution

ESG Scientifics part of Environmental Scientifics Group

EU European Union

F21 code for PM10 Prague summer filter

F3 code for PM10 Madrid summer filter

F10 code for PM10 Madrid winter filter

F30 code for PM10 Prague winter filter

fij concentration calculated for the injection j of the filter i (eq 1)

jif is the average value of all injections and filters

FLD Fluorescence detector

Flu Fluoranthene

FMI Laboratory of Air Chemistry Finnish Meteorological Institute

8

GC-MS gas chromatography mass spectrometer

HPLC High Performance Liquid Chromatography

IndPy indeno(123-cd)pyrene

IndPy-D indeno(123-cd)pyrene deuterated

IS internal standard

ISCIII Instituto de Salud Carlos III

ISSeP Institut Scientifique de Service Public

IVL Swedish environmental institute

KAL Chemical Analytical Laboratory Slovenia Environment Agency

LANUV Landesamt fuumlr Natur Umwelt und Verbraucherschutz NRW

m number of filters (eq 2)

n number of injections (eq 1)

na non available

NERI National Environmental Research Institute

OEU overall expanded uncertainty (eq 10)

ou overall uncertainty (eq 1)

p number of input laboratories (eqs 3 4 6 7)

Per perylene

Per-D perylene deuterated

PM Particular matter

PM10 particular matter under 10 μm

PM25 particular matter under 25 μm

PM1 particular matter under 1 μm

PAHs polycyclic aromatic hydrocarbons

Phe phenanthrene

Phe-D phenanthrene deuterated

Phe-D phenanthrene deuterated

Py-D pyrene deuterated

Py pyrene

QAQC quality assurance quality control

TPhe triphenylene

stdev() standard deviation

s standard deviation of the robust concentration average (eq 3)

ubias standard uncertainty of the bias (eq 7)

uci uncertainty of the reported value from laboratory I (eq 7)

ucl uncertainty of the calibration and the reference value (eq 1)

Ulab expanded uncertainty for the reported value (eq 9)

Uref expanded uncertainty for the reference value (eq 9)

VMM Vlaamse Milieumaatschappij

Z random variable of two tails statistic for normal distribution (eq 8)

9

Introduction

The pollution caused by particulate matter (PM) is one of the critical issues of the current

air quality policy Numerous studies relate mortality and morbidity with the pollution

levels of particulate matter in air In this context an appropriated characterization of the

particulate is of importance to provide a better health indicator for air quality than PM10

PM25 or PM1 Furthermore this could help in the identification and quantification of the

compounds responsible for health disorders

At EU level the Directive 2004107EC already focuses on the analysis of heavy metals

and polycyclic aromatic hydrocarbons (PAHs) as compounds to be analysed in PM10 as

responsible for PM toxicity and carcinogenic characteristics In the case of the PAHs an

annual limit value has been established for benzo(a)pyrene (BaP) (carcinogenic to

humans according to the last upgrade of the IARC) as a marker for PAH in particles

Furthermore other PAHs are recommended to be measured benzo(a)anthracene

benzo(b)fluoranthene benzo(j)fluranthene benzo(k)fluoranthene indeno(123-

cd)pyrene and dibenzo(ah)anthracene

The tedious methodologies linked to the quantification of PAHs imply relatively high

uncertainties in the reported analytical results This is reflected in the level of expanded

uncertainty defined in the afore-mentioned Directive being for BaP in PM10 or in total

deposition 50 and 70 respectively Furthermore the minimum time coverage for

these measurements is reduced up to 14 -33 for fixed measurements

The implementation of analytical methods that are traceable and QAQC tested becomes

an asset for this sort of analysis Furthermore the execution of inter-laboratory

comparisons represents an important tool for the demonstration of laboratory traceability

showing competence and identifying weak points in their analytical methods

This report shows the results of the first inter-laboratory comparison of PAHs on PM10

filters carried out at European level among the Air Quality Reference Laboratories in

Europe (AQUILA)

Inter-laboratory comparison strategy

This inter-laboratory comparison focussed on the evaluation of the analytical

performance of participating laboratories Any consideration regarding sampling

technique or monitoring strategic approach is out of the discussion in this report Instead

uncertainties biases or inaccuracies should be linked to analytical issues and to the

traceability of the measurements

Although the testing of laboratory traceability and analytical performance could easily be

carried out by means of reference material (ie NIST-16492 or CRM-ERMCZ-100)

this may not reflect the response of a laboratory to real samples collected on PM10 filters

For this reason this exercise was performed on the basis of real samples on PM10 quartz

filters

10

Participating laboratories

Sixteen laboratories from AQUILA have participated in this inter-laboratory comparison

Names of the laboratories and people involved are listed in Table 1

Table 1ndash List of participating laboratories

Laboratory name Acronym Country ContactAnalytical responsible

IVL Swedish environmental institute IVL Sweden Annika Potter

Erika Rehngren

Environmental Research Department of Environmental Protection Agency EPA

EPA-lt Lithuania Daiva Pockeviciute

Agecircncia Portuguesa do Ambiente APA-LRA Portugal Paula Viana Joatildeo Matos

Vlaamse Milieumaatschappij - Labo Gent VMM - Labo Gent

VMM Belgium Eric Wauters

Peter Van Caeter

Roland De Fleurquin

Landesamt fuumlr Natur Umwelt und Verbraucherschutz NRW

LANUV Germany Ulrich Pfeffer

Dieter Gladtke

Anja Olschewski

AWEL Gewaumlsserschutzlabor Kanton Zuumlrich AWEL Switzerland Robert Gehrig

Andreas Wyss

Nicole Imboden

Cesky hydrometeorologicky ustav CHMU Czech Republic Helena Placha

Jan Abraham

Eva Paznerova Irina Nikolova Jiri Novak

Estonian Environmental Research Centre EERC Estonia Toivo Truuts

Juhan Tamm

National Environmental Research Institute Aarhus University

NERI Denmark Rossana Bossi

Executive Environmental Agency EEA Bulgaria Borislav Zdravkov

Ognian Georgiev

Institut Scientifique de Service Public ISSeP Belgium HENGESCH Valerie

CADET Alain

LEBRUN Muriel

Environmental Protection Agency EPA

EPA-ie Ireland Barbara OLeary

Lin Delaney

Simon OToole

Amt der oberoumlsterreichischen Landesregierung AbteilungUmweltschutz

ABUM Austria Adolf Schinerl

Chemical Analytical Laboratory Slovenian Environment Agency

KAL Slovenia Gregor Muri

Laboratory of Air Chemistry Finnish Meteorological Institute

FMI Finland Hannele Hakola

Mika Vestenius

Heidi Hellen

AEA Technology Scientifics part of Environmental Scientifics Group

AEA ESG

UK

Christopher Connolly Shane OLeary Joanne Baker

Instituto de Salud Carlos III ISCIII Spain Rosaliacutea Fernandez Patier

Joint Research Centre European Reference Laboratory for Air Pollution

ERLAP EC E Grandesso K Kowalewski P Peacuterez Ballesta

11

Sampling programme and schedule

The need for real PM10 samples to carry out this exercise was discussed inside the

AQUILA The sampling of PM10 should represent typical operational network

monitoring conditions Two Laboratories Instituto de Salud Carlos III from Spain and the

ldquoCesky hydrometeorologicky ustavrdquo from the Czech Republic voluntarily offered to act

as sampling laboratories and were finally responsible for the PM10 sampling

The sampling was performed according to a defined protocol (see Annex I) by means of

Andersen high volume PM10 samplers on quartz filters (Whatman QM-A) Filters were

heat-treated prior to sampling and each seasonal batch of samples was sent to the JRC for

characterisation

The sampling was performed during two different seasonal periods covering the possible

range of concentrations that characterised the sampling locations summer (June-August

2009) and winter (November-January 2010) The corresponding samplers were sited in

background monitoring stations of ldquoSinesio Delgadordquo (Madrid) and ldquoLibusrdquo (Prague)

Sections of the filters were distributed among participants during the second week of

May 2010 with a data collection deadline beginning of September 2010 The package

contained one filter for each season and location and two blanks (one from each

sampling location)

The comparison was based on the amount of compound quantified on the filter which

should be expected to be equivalent to typical amounts found in low volume sampler

filters

Participating laboratories received the filters together with a ldquoGuide to operationrdquo

(included in Annex I) They were requested to provide information concerning the

analytical method and the uncertainty evaluation of the measurements Laboratories were

requested to report a minimum of 3 replicate injections for each sample

A list of fifteen different PAHs was provided from which seven of them were marked as

priority (See table 2)

12

Table 2ndash List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno(123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene+triphenylene

C Benzo(bjk)fluoranthene In highlighted print priority compounds for the inter-laboratory comparison

Filters management characterisation and homogeneity

Whatman QM-A Quartz microfiber filter [203x 254 cm (8x 10 in) Cat No 1851 865]

were used for sampling in the Andersen high volume PM10 samplers These filters

provide a sampling area of circa 406 cm2 to be subdivided into smaller filter sections

corresponding to low volume filter samples of diameter 4 cm

The high volume sampled filters that arrived directly from the sampling site were kept in

a freezer (at -16 ordmC) until the preparation for distribution among participating

laboratories Twenty filter samples of 4 cm diameter were available from each high

volume sampled filter They were systematically cut by means of a mould specifically

designed for this purpose (See Figure 1)

13

Figure 1ndash Mould and tools for the subdivision of the high volume sampled filter

The low volume dimension filters were carefully prepared for mailing according to a

particular procedure that considered the individual packing and sealing of each sample

(Detail of this packing can be observed in Annex I - Guide to operation)

The filters selected for the inter-laboratory comparison were previously tested for

homogeneity by means of a thermal desorption methodology which allowed the

quantification of small sections of filters with diameters from 25 to 6 mm (Van Drooge

et al)

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 2ndash Relative standard deviation with respect to priority compounds

The random analysis of a minimum four small filter sections by thermal desorption

shows content relative standard deviations compatible with the needs for the comparison

exercise The relative standard deviations associated with the sum of the priority

000

500

1000

1500

2000

2500

3000

1000 10000 100000 1000000 10000000

Σ(priority PAHs) pg

RS

DE

V

B3

B2

F30F21

F10

F3

14

compound concentrations for the sampled filters ranged between 32 and 65 This is in

agreement with previous studies of homogeneity on Andersen high volume sampled

filters (A Baeza et al)

Table 3 shows sampling parameters and average values for the main ambient variables

registered during the sampling of the PM10 in the corresponding locations As expected

PM10 and PM25 winter concentrations were higher than those for summer whilst the

highest levels were found in Prague during winter

Table 3ndash Sampling variables for the PM10 collection

Filter code F3 F21 F10 F30 B2 B3

Location Madrid Prague Madrid Prague Madrid Prague

Sampling Period 6-872009 27-2882009 25-27112009 21-22112009 - -

Sampling volume m3 3090 1590 3190 1708 - -

Temperature ordmC 249 228 92 728 - -

Relative Humidity 32 63 90 87 - -

PM10 microgm3 30 243 21 89 - -

PM25 microgm3 11 167 na 64 - -

O3 ppb 37 70 na 5 - -

na non available

With the exception of the winter Prague filter where the concentration of PAHs were

significantly high with concentrations of benzo(a)pyrene of about 75 ngm3 other filters

were much lower 02 ngm3 for the winter filter in Madrid and around 50 pgm

3 of BaP

for the summer period in both locations Graphs from Figure 3 show the estimated PAH

air concentration levels during the corresponding sampling days and locations

Figure 3ndash PAHs air concentration levels during sampling

249

41

000

10000

20000

30000

40000

50000

60000

70000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Madrid winter

Madrid Summer

7469

62

000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Prague winter

Prague summer

15

Filter stability

JRC retained three 4 cm diameter filters for analysis from each sampling batch One set

of filters was sent abroad and return to JRC by courier simultaneously to the filters of the

other participants The other two filters from the same sampling batch were analysed one

month before and one month after the circulating filters Those filters were stored in

freezer

The analysis of these filters showed variation within plusmn 10 of the average value

therefore validating the stability of the filters for the exercise The sum of the priority

PAHs quantified on the filters are shown in Figure 4 It is noted the lower uncertainty

associated with filters from Prague when compared to those from Madrid Similar

behaviour was also noted during the homogeneity tests which could be due to a more

volatile composition of the Madrid filters in comparison to Prague or a breakthrough on

the Madrid filters caused by the sampling volume being double that of Prague

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 4ndash Analysis of the filters before and after the exercise

100

110

120

130

140

150

160

170

180

190

F10

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

57

+10

-10

1500

1600

1700

1800

1900

2000

2100

2200

F30

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

33

+10

-10

14

16

18

20

22

24

F3

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

51

+10

- 10

16

17

18

19

20

21

22

23

24

F21

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

41

+10

-10

16

Analytical Methods

Each participant was free to choose the analytical method according to their own

experience As a consequence there were multiple combinations of different separation

techniques detectors extraction systems solvents extraction time clean up and other

analytical parameters No statistical differences could be associated with a specific

technique for extraction or analysis Table 4 shows the different techniques and relevant

analytical conditions used by the participating laboratories

Table 4ndash Analytical method used by the participating laboratories

LABORATORY ANALYTICAL

METHOD COLUMN EXTRACTION SOLVENT TIME CLEANUP

CORRELAT

ION

INTERNAL

STANDARD

IVL HPLC FLD CHROMSPHERE

PAH (VARIAN) SOXLHET PENTANE-ACETONE 24 H

SILICA GEL

MERK

Multipoint-

Linear bb-binapthyl

EPA-LT HPLC FLD SUPELCOSILlTM

LC-PAH SOXLHET HEXANE-ACETONE 4 H

SPE

CARTRIGE

Multipoint-

Linear external extandard

APA-LRA HPLC FLD C18 REVERSE

PHASE SOXLHET ACETONITRILE 16 H -

Multipoint-

Linear external extandard

VMM HPLC FLD ZORBAX ECLIPSE

PAH ASE DICHLOROMETHANE 35 MIN -

Multipoint-

Linear external extandard

LANUV HPLC FLD ZORBAX ECLIPSE

PAH ULTRASONIC TOLUENE 24 H

CHROMAB

ON

Multipoint-

Linear

through

origin

external extandard

AWEL GC-MS DB5-30 M SOXLHET

CYCLOHEXANE-

ISOOCTANE-

ACETONE

4 H - Multipoint-

Linear 111 dibromodecane

CHMU GC-MS DB5-30 M SOXLHET METHANOL-

DICHLOROMETHANE 1 H

SILICA GEL

SUPELCO

Multipoint-

Linear

through

origin

Phe-D Chry-D Per-D

EERC GC-MS DB5-30 M SOXLHET CYLCOHEXANE 16 h - Multipoint-

Linear Py-D Per-D

NERI GC-MS DB5-30 M na DICHLOROMETHANE na - Multipoint-

Linear

BaA-D Chry-D BaP-D

Per-D BghiPer-D

DBahA-D

EEA GC-MS DB-XLD- 30 M ULTRASONIC DICHLOROMETHANE 1 H SILICA GEL Multipoint-

Linear Phe-D Chry-D Per-D

ISSeP GC-MS DB-17 SOXHLET CYCLOHEXANE-

DIETHYLETHER 16 H -

Multipoint-

Linear Phe-D Chry-D BaP-D

EPA-ie GC-MS DB5-30 M ULTRASONIC DICHLOROMETHANE na FLORASIL Multipoint-

Linear Chry-D

ABUM GC-MS DB5-60 M ASE CYCLOHEXANE 30 MIN SILICA GEL Multipoint-

Linear corresponding deuterated

KAL GC-MS DB5-30 M MICROWAVE HEXANE-ACETONE 45 MIN SILICA Multipoint-

Linear

Phe-D Py-D BahA-D

BaP-D IndPy-D

FMI GC-MS DB5-50 M SOXLHET DICHLOROMETHANE 8 H FLORISIL Multipoint

Quadratic

Phe-D Chry-D DBahA-

D Per-D

AEAESG GC-MS ZB-5 30M ASE na na SPE

CARTRIGE

Multipoint-

Linear IS non expecified

ERLAP GC-MS DB-17 30 M MICROWAVE ACETANE-HEXANE 30 MIN

SPE

CARTRIGE

CUPS

Multipoint-

Linear corresponding deuterated

ERLAPT GC-MS DB-17 30 M THERMAL DESORPTION Multipoint-

Linear corresponding deuterated

17

25 of the participating laboratories used liquid chromatography and FLD detection

whilst the rest of the laboratories used gas chromatography separation and mass

spectrometry For gas chromatography separation a 30 m DB5 was the most frequently

used column other phases such as DB17 or longer lengths were rare Soxhlet was the

most common method for extraction used by 8 laboratories three laboratories used

ultrasonic extraction and another three accelerated soxhlet extraction 2 laboratories

extracted the filter by microwave whilst only one laboratory used thermal desorption

There was no agreement in the solvent or time for extraction (acetonitrile pentane

acetone cyclohexane isooctane dichloromethane toluene and mixtures of these solvents

were used by laboratories even with the same extraction technique) with times from

minutes to 24 hours Clean-up was applied by most of the laboratories All analysis were

performed by multipoint calibration Internal standard method was applied to all GC-MS

analysis while only one laboratory used internal standard for HPLC

Analytical uncertainties from participating laboratories

Participating laboratories were requested to estimate the associated expanded

uncertainties of their analytical results These values are given in Table 12 Description of

the uncertainty evaluation provided by each laboratory is given in annex I

Several laboratories provided uncertainties on the basis of data from method validations

and analysis of reference material including the bias as an additional source of

uncertainty On the other hand the 3 analyses per sample requested can only provide an

idea about the analytical repeatability but other sources of uncertainty should be

considered in the calculations such as calibration and standard preparation blank level

reproducibility desorption efficiencies known biases etc Furthermore as the exercise

contains different filters with different concentration levels it is expected that the

analytical uncertainty will depend on the concentration level The lower the analysed

concentration the higher the uncertainty associated with the quantified value Similarly

the analytical uncertainty will be different from compound to compound depending on

its analytical reproducibility and response volatility desorption efficiency etc

Nevertheless these aspects not always considered in the reported uncertainties

Analytical uncertainties from the ERLAP

ERLAP participated in the exercise by analysing the filters using two different

techniques solvent extraction with GC-MS and thermal desorption with GC-MS

analysis

The evaluation of the concentration and the associated budget uncertainty reported by

JRC was based on the results of the averaging of three filter samples analysed in

triplicate by liquid extraction and gas chromatography The reproducibility uncertainties

of these analyses were combined with others sources of uncertainties derived from the

standards calibration and system blank In a similar way uncertainty for the thermal

desorption analyses was based on the reproducibility analysis of a number of cuts

18

randomly distributed around the whole high volume filter plus the corresponding sources

of uncertainties related to standards calibration and system blank This uncertainty

evaluation did not consider uncertainties attributed to biases with respect to the analysis

of reference materials

The overall uncertainty ou was calculated as follows

22

1

2

)(blankcl

m

i

jiuu

n

fstdevou

(1)

Where

jicl fu 0250 as an approach value for the uncertainty of the calibration and the

reference standard (see referencies BL Vand Drooge et al J Chromatogr A 1216

(2009) 4030-4039)

2

2)(

iblank

m

blankstdevu i

blank

(2)

fij is the concentration calculated for the injection j of the filter i

n is the number of injections (j= 1 to n)

m is the number of filters (i=1 to m)

jif is the average value of all injections and filters

blanki is the system blank level associated with the analysis of the filter i

Reference values

Due to the nature of this kind of inter-laboratory comparisons the reference value was

determined on the basis of the robust average results from the best performance

laboratories The selection of a best performance laboratory was based on the number of

outliers reported by each laboratory with respect to a robust average calculated on the

basis of the ISO-13528 Therefore robust average

iC and standard deviation s of the

p input laboratories are derived from a convergence process of the following equation

(3)

(4)

p

CC

i

i

)1(

)(1341

2

p

CCs

ii

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 7: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

7

Nomenclature and abbreviations ABUM Amt der oberoumlsterreichischen Landesregierung AbteilungUmweltschutz

AEA AEA Technology

APA-LRA Agecircncia Portuguesa do Ambiente

AQUILA Air Quality Reference Laboratories

ASE accelerated solvent extraction

AWEL Gewaumlsserschutzlabor Kanton Zuumlrich

BaA benzo(a)anthracene

BaP benzo(a)Pyrene

BaP-D benzo(a)pyrene deuterated

BeP benzo(e)pyrene

DBahA dibenzo(ah)anthracene

DBahA-D dibenzo(ah)anthracene deuterated

BbjkFlu benzo(bjk)fluoranthene

BbFlu benzo(b)fluoranthene

BghiPe benzo(ghi)perylene

BghiPer-D benzo(ghi)perylene deuterated

BjFlu benzo(j)fluranthene

BkFlu benzo(k)fluoranthene

blanki is the system blank level associated with the analysis of the filter i (eq 2)

Chr chrysene

Ci concentration reported by laboratory i

iC robust concentration average (eq 3)

labC average concentration of the reported values by a laboratory (eq 10)

Cref reference concentration (eq 10)

EEA Executive Environmental Agency

EERC Estonian Environmental Research Centre

22

reflab

reflab

n

UU

CCE

eq (9)

EPA-ie Environmental Protection Agency Ireland

ERLAP European Reference Laboratory of Air Pollution

ESG Scientifics part of Environmental Scientifics Group

EU European Union

F21 code for PM10 Prague summer filter

F3 code for PM10 Madrid summer filter

F10 code for PM10 Madrid winter filter

F30 code for PM10 Prague winter filter

fij concentration calculated for the injection j of the filter i (eq 1)

jif is the average value of all injections and filters

FLD Fluorescence detector

Flu Fluoranthene

FMI Laboratory of Air Chemistry Finnish Meteorological Institute

8

GC-MS gas chromatography mass spectrometer

HPLC High Performance Liquid Chromatography

IndPy indeno(123-cd)pyrene

IndPy-D indeno(123-cd)pyrene deuterated

IS internal standard

ISCIII Instituto de Salud Carlos III

ISSeP Institut Scientifique de Service Public

IVL Swedish environmental institute

KAL Chemical Analytical Laboratory Slovenia Environment Agency

LANUV Landesamt fuumlr Natur Umwelt und Verbraucherschutz NRW

m number of filters (eq 2)

n number of injections (eq 1)

na non available

NERI National Environmental Research Institute

OEU overall expanded uncertainty (eq 10)

ou overall uncertainty (eq 1)

p number of input laboratories (eqs 3 4 6 7)

Per perylene

Per-D perylene deuterated

PM Particular matter

PM10 particular matter under 10 μm

PM25 particular matter under 25 μm

PM1 particular matter under 1 μm

PAHs polycyclic aromatic hydrocarbons

Phe phenanthrene

Phe-D phenanthrene deuterated

Phe-D phenanthrene deuterated

Py-D pyrene deuterated

Py pyrene

QAQC quality assurance quality control

TPhe triphenylene

stdev() standard deviation

s standard deviation of the robust concentration average (eq 3)

ubias standard uncertainty of the bias (eq 7)

uci uncertainty of the reported value from laboratory I (eq 7)

ucl uncertainty of the calibration and the reference value (eq 1)

Ulab expanded uncertainty for the reported value (eq 9)

Uref expanded uncertainty for the reference value (eq 9)

VMM Vlaamse Milieumaatschappij

Z random variable of two tails statistic for normal distribution (eq 8)

9

Introduction

The pollution caused by particulate matter (PM) is one of the critical issues of the current

air quality policy Numerous studies relate mortality and morbidity with the pollution

levels of particulate matter in air In this context an appropriated characterization of the

particulate is of importance to provide a better health indicator for air quality than PM10

PM25 or PM1 Furthermore this could help in the identification and quantification of the

compounds responsible for health disorders

At EU level the Directive 2004107EC already focuses on the analysis of heavy metals

and polycyclic aromatic hydrocarbons (PAHs) as compounds to be analysed in PM10 as

responsible for PM toxicity and carcinogenic characteristics In the case of the PAHs an

annual limit value has been established for benzo(a)pyrene (BaP) (carcinogenic to

humans according to the last upgrade of the IARC) as a marker for PAH in particles

Furthermore other PAHs are recommended to be measured benzo(a)anthracene

benzo(b)fluoranthene benzo(j)fluranthene benzo(k)fluoranthene indeno(123-

cd)pyrene and dibenzo(ah)anthracene

The tedious methodologies linked to the quantification of PAHs imply relatively high

uncertainties in the reported analytical results This is reflected in the level of expanded

uncertainty defined in the afore-mentioned Directive being for BaP in PM10 or in total

deposition 50 and 70 respectively Furthermore the minimum time coverage for

these measurements is reduced up to 14 -33 for fixed measurements

The implementation of analytical methods that are traceable and QAQC tested becomes

an asset for this sort of analysis Furthermore the execution of inter-laboratory

comparisons represents an important tool for the demonstration of laboratory traceability

showing competence and identifying weak points in their analytical methods

This report shows the results of the first inter-laboratory comparison of PAHs on PM10

filters carried out at European level among the Air Quality Reference Laboratories in

Europe (AQUILA)

Inter-laboratory comparison strategy

This inter-laboratory comparison focussed on the evaluation of the analytical

performance of participating laboratories Any consideration regarding sampling

technique or monitoring strategic approach is out of the discussion in this report Instead

uncertainties biases or inaccuracies should be linked to analytical issues and to the

traceability of the measurements

Although the testing of laboratory traceability and analytical performance could easily be

carried out by means of reference material (ie NIST-16492 or CRM-ERMCZ-100)

this may not reflect the response of a laboratory to real samples collected on PM10 filters

For this reason this exercise was performed on the basis of real samples on PM10 quartz

filters

10

Participating laboratories

Sixteen laboratories from AQUILA have participated in this inter-laboratory comparison

Names of the laboratories and people involved are listed in Table 1

Table 1ndash List of participating laboratories

Laboratory name Acronym Country ContactAnalytical responsible

IVL Swedish environmental institute IVL Sweden Annika Potter

Erika Rehngren

Environmental Research Department of Environmental Protection Agency EPA

EPA-lt Lithuania Daiva Pockeviciute

Agecircncia Portuguesa do Ambiente APA-LRA Portugal Paula Viana Joatildeo Matos

Vlaamse Milieumaatschappij - Labo Gent VMM - Labo Gent

VMM Belgium Eric Wauters

Peter Van Caeter

Roland De Fleurquin

Landesamt fuumlr Natur Umwelt und Verbraucherschutz NRW

LANUV Germany Ulrich Pfeffer

Dieter Gladtke

Anja Olschewski

AWEL Gewaumlsserschutzlabor Kanton Zuumlrich AWEL Switzerland Robert Gehrig

Andreas Wyss

Nicole Imboden

Cesky hydrometeorologicky ustav CHMU Czech Republic Helena Placha

Jan Abraham

Eva Paznerova Irina Nikolova Jiri Novak

Estonian Environmental Research Centre EERC Estonia Toivo Truuts

Juhan Tamm

National Environmental Research Institute Aarhus University

NERI Denmark Rossana Bossi

Executive Environmental Agency EEA Bulgaria Borislav Zdravkov

Ognian Georgiev

Institut Scientifique de Service Public ISSeP Belgium HENGESCH Valerie

CADET Alain

LEBRUN Muriel

Environmental Protection Agency EPA

EPA-ie Ireland Barbara OLeary

Lin Delaney

Simon OToole

Amt der oberoumlsterreichischen Landesregierung AbteilungUmweltschutz

ABUM Austria Adolf Schinerl

Chemical Analytical Laboratory Slovenian Environment Agency

KAL Slovenia Gregor Muri

Laboratory of Air Chemistry Finnish Meteorological Institute

FMI Finland Hannele Hakola

Mika Vestenius

Heidi Hellen

AEA Technology Scientifics part of Environmental Scientifics Group

AEA ESG

UK

Christopher Connolly Shane OLeary Joanne Baker

Instituto de Salud Carlos III ISCIII Spain Rosaliacutea Fernandez Patier

Joint Research Centre European Reference Laboratory for Air Pollution

ERLAP EC E Grandesso K Kowalewski P Peacuterez Ballesta

11

Sampling programme and schedule

The need for real PM10 samples to carry out this exercise was discussed inside the

AQUILA The sampling of PM10 should represent typical operational network

monitoring conditions Two Laboratories Instituto de Salud Carlos III from Spain and the

ldquoCesky hydrometeorologicky ustavrdquo from the Czech Republic voluntarily offered to act

as sampling laboratories and were finally responsible for the PM10 sampling

The sampling was performed according to a defined protocol (see Annex I) by means of

Andersen high volume PM10 samplers on quartz filters (Whatman QM-A) Filters were

heat-treated prior to sampling and each seasonal batch of samples was sent to the JRC for

characterisation

The sampling was performed during two different seasonal periods covering the possible

range of concentrations that characterised the sampling locations summer (June-August

2009) and winter (November-January 2010) The corresponding samplers were sited in

background monitoring stations of ldquoSinesio Delgadordquo (Madrid) and ldquoLibusrdquo (Prague)

Sections of the filters were distributed among participants during the second week of

May 2010 with a data collection deadline beginning of September 2010 The package

contained one filter for each season and location and two blanks (one from each

sampling location)

The comparison was based on the amount of compound quantified on the filter which

should be expected to be equivalent to typical amounts found in low volume sampler

filters

Participating laboratories received the filters together with a ldquoGuide to operationrdquo

(included in Annex I) They were requested to provide information concerning the

analytical method and the uncertainty evaluation of the measurements Laboratories were

requested to report a minimum of 3 replicate injections for each sample

A list of fifteen different PAHs was provided from which seven of them were marked as

priority (See table 2)

12

Table 2ndash List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno(123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene+triphenylene

C Benzo(bjk)fluoranthene In highlighted print priority compounds for the inter-laboratory comparison

Filters management characterisation and homogeneity

Whatman QM-A Quartz microfiber filter [203x 254 cm (8x 10 in) Cat No 1851 865]

were used for sampling in the Andersen high volume PM10 samplers These filters

provide a sampling area of circa 406 cm2 to be subdivided into smaller filter sections

corresponding to low volume filter samples of diameter 4 cm

The high volume sampled filters that arrived directly from the sampling site were kept in

a freezer (at -16 ordmC) until the preparation for distribution among participating

laboratories Twenty filter samples of 4 cm diameter were available from each high

volume sampled filter They were systematically cut by means of a mould specifically

designed for this purpose (See Figure 1)

13

Figure 1ndash Mould and tools for the subdivision of the high volume sampled filter

The low volume dimension filters were carefully prepared for mailing according to a

particular procedure that considered the individual packing and sealing of each sample

(Detail of this packing can be observed in Annex I - Guide to operation)

The filters selected for the inter-laboratory comparison were previously tested for

homogeneity by means of a thermal desorption methodology which allowed the

quantification of small sections of filters with diameters from 25 to 6 mm (Van Drooge

et al)

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 2ndash Relative standard deviation with respect to priority compounds

The random analysis of a minimum four small filter sections by thermal desorption

shows content relative standard deviations compatible with the needs for the comparison

exercise The relative standard deviations associated with the sum of the priority

000

500

1000

1500

2000

2500

3000

1000 10000 100000 1000000 10000000

Σ(priority PAHs) pg

RS

DE

V

B3

B2

F30F21

F10

F3

14

compound concentrations for the sampled filters ranged between 32 and 65 This is in

agreement with previous studies of homogeneity on Andersen high volume sampled

filters (A Baeza et al)

Table 3 shows sampling parameters and average values for the main ambient variables

registered during the sampling of the PM10 in the corresponding locations As expected

PM10 and PM25 winter concentrations were higher than those for summer whilst the

highest levels were found in Prague during winter

Table 3ndash Sampling variables for the PM10 collection

Filter code F3 F21 F10 F30 B2 B3

Location Madrid Prague Madrid Prague Madrid Prague

Sampling Period 6-872009 27-2882009 25-27112009 21-22112009 - -

Sampling volume m3 3090 1590 3190 1708 - -

Temperature ordmC 249 228 92 728 - -

Relative Humidity 32 63 90 87 - -

PM10 microgm3 30 243 21 89 - -

PM25 microgm3 11 167 na 64 - -

O3 ppb 37 70 na 5 - -

na non available

With the exception of the winter Prague filter where the concentration of PAHs were

significantly high with concentrations of benzo(a)pyrene of about 75 ngm3 other filters

were much lower 02 ngm3 for the winter filter in Madrid and around 50 pgm

3 of BaP

for the summer period in both locations Graphs from Figure 3 show the estimated PAH

air concentration levels during the corresponding sampling days and locations

Figure 3ndash PAHs air concentration levels during sampling

249

41

000

10000

20000

30000

40000

50000

60000

70000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Madrid winter

Madrid Summer

7469

62

000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Prague winter

Prague summer

15

Filter stability

JRC retained three 4 cm diameter filters for analysis from each sampling batch One set

of filters was sent abroad and return to JRC by courier simultaneously to the filters of the

other participants The other two filters from the same sampling batch were analysed one

month before and one month after the circulating filters Those filters were stored in

freezer

The analysis of these filters showed variation within plusmn 10 of the average value

therefore validating the stability of the filters for the exercise The sum of the priority

PAHs quantified on the filters are shown in Figure 4 It is noted the lower uncertainty

associated with filters from Prague when compared to those from Madrid Similar

behaviour was also noted during the homogeneity tests which could be due to a more

volatile composition of the Madrid filters in comparison to Prague or a breakthrough on

the Madrid filters caused by the sampling volume being double that of Prague

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 4ndash Analysis of the filters before and after the exercise

100

110

120

130

140

150

160

170

180

190

F10

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

57

+10

-10

1500

1600

1700

1800

1900

2000

2100

2200

F30

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

33

+10

-10

14

16

18

20

22

24

F3

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

51

+10

- 10

16

17

18

19

20

21

22

23

24

F21

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

41

+10

-10

16

Analytical Methods

Each participant was free to choose the analytical method according to their own

experience As a consequence there were multiple combinations of different separation

techniques detectors extraction systems solvents extraction time clean up and other

analytical parameters No statistical differences could be associated with a specific

technique for extraction or analysis Table 4 shows the different techniques and relevant

analytical conditions used by the participating laboratories

Table 4ndash Analytical method used by the participating laboratories

LABORATORY ANALYTICAL

METHOD COLUMN EXTRACTION SOLVENT TIME CLEANUP

CORRELAT

ION

INTERNAL

STANDARD

IVL HPLC FLD CHROMSPHERE

PAH (VARIAN) SOXLHET PENTANE-ACETONE 24 H

SILICA GEL

MERK

Multipoint-

Linear bb-binapthyl

EPA-LT HPLC FLD SUPELCOSILlTM

LC-PAH SOXLHET HEXANE-ACETONE 4 H

SPE

CARTRIGE

Multipoint-

Linear external extandard

APA-LRA HPLC FLD C18 REVERSE

PHASE SOXLHET ACETONITRILE 16 H -

Multipoint-

Linear external extandard

VMM HPLC FLD ZORBAX ECLIPSE

PAH ASE DICHLOROMETHANE 35 MIN -

Multipoint-

Linear external extandard

LANUV HPLC FLD ZORBAX ECLIPSE

PAH ULTRASONIC TOLUENE 24 H

CHROMAB

ON

Multipoint-

Linear

through

origin

external extandard

AWEL GC-MS DB5-30 M SOXLHET

CYCLOHEXANE-

ISOOCTANE-

ACETONE

4 H - Multipoint-

Linear 111 dibromodecane

CHMU GC-MS DB5-30 M SOXLHET METHANOL-

DICHLOROMETHANE 1 H

SILICA GEL

SUPELCO

Multipoint-

Linear

through

origin

Phe-D Chry-D Per-D

EERC GC-MS DB5-30 M SOXLHET CYLCOHEXANE 16 h - Multipoint-

Linear Py-D Per-D

NERI GC-MS DB5-30 M na DICHLOROMETHANE na - Multipoint-

Linear

BaA-D Chry-D BaP-D

Per-D BghiPer-D

DBahA-D

EEA GC-MS DB-XLD- 30 M ULTRASONIC DICHLOROMETHANE 1 H SILICA GEL Multipoint-

Linear Phe-D Chry-D Per-D

ISSeP GC-MS DB-17 SOXHLET CYCLOHEXANE-

DIETHYLETHER 16 H -

Multipoint-

Linear Phe-D Chry-D BaP-D

EPA-ie GC-MS DB5-30 M ULTRASONIC DICHLOROMETHANE na FLORASIL Multipoint-

Linear Chry-D

ABUM GC-MS DB5-60 M ASE CYCLOHEXANE 30 MIN SILICA GEL Multipoint-

Linear corresponding deuterated

KAL GC-MS DB5-30 M MICROWAVE HEXANE-ACETONE 45 MIN SILICA Multipoint-

Linear

Phe-D Py-D BahA-D

BaP-D IndPy-D

FMI GC-MS DB5-50 M SOXLHET DICHLOROMETHANE 8 H FLORISIL Multipoint

Quadratic

Phe-D Chry-D DBahA-

D Per-D

AEAESG GC-MS ZB-5 30M ASE na na SPE

CARTRIGE

Multipoint-

Linear IS non expecified

ERLAP GC-MS DB-17 30 M MICROWAVE ACETANE-HEXANE 30 MIN

SPE

CARTRIGE

CUPS

Multipoint-

Linear corresponding deuterated

ERLAPT GC-MS DB-17 30 M THERMAL DESORPTION Multipoint-

Linear corresponding deuterated

17

25 of the participating laboratories used liquid chromatography and FLD detection

whilst the rest of the laboratories used gas chromatography separation and mass

spectrometry For gas chromatography separation a 30 m DB5 was the most frequently

used column other phases such as DB17 or longer lengths were rare Soxhlet was the

most common method for extraction used by 8 laboratories three laboratories used

ultrasonic extraction and another three accelerated soxhlet extraction 2 laboratories

extracted the filter by microwave whilst only one laboratory used thermal desorption

There was no agreement in the solvent or time for extraction (acetonitrile pentane

acetone cyclohexane isooctane dichloromethane toluene and mixtures of these solvents

were used by laboratories even with the same extraction technique) with times from

minutes to 24 hours Clean-up was applied by most of the laboratories All analysis were

performed by multipoint calibration Internal standard method was applied to all GC-MS

analysis while only one laboratory used internal standard for HPLC

Analytical uncertainties from participating laboratories

Participating laboratories were requested to estimate the associated expanded

uncertainties of their analytical results These values are given in Table 12 Description of

the uncertainty evaluation provided by each laboratory is given in annex I

Several laboratories provided uncertainties on the basis of data from method validations

and analysis of reference material including the bias as an additional source of

uncertainty On the other hand the 3 analyses per sample requested can only provide an

idea about the analytical repeatability but other sources of uncertainty should be

considered in the calculations such as calibration and standard preparation blank level

reproducibility desorption efficiencies known biases etc Furthermore as the exercise

contains different filters with different concentration levels it is expected that the

analytical uncertainty will depend on the concentration level The lower the analysed

concentration the higher the uncertainty associated with the quantified value Similarly

the analytical uncertainty will be different from compound to compound depending on

its analytical reproducibility and response volatility desorption efficiency etc

Nevertheless these aspects not always considered in the reported uncertainties

Analytical uncertainties from the ERLAP

ERLAP participated in the exercise by analysing the filters using two different

techniques solvent extraction with GC-MS and thermal desorption with GC-MS

analysis

The evaluation of the concentration and the associated budget uncertainty reported by

JRC was based on the results of the averaging of three filter samples analysed in

triplicate by liquid extraction and gas chromatography The reproducibility uncertainties

of these analyses were combined with others sources of uncertainties derived from the

standards calibration and system blank In a similar way uncertainty for the thermal

desorption analyses was based on the reproducibility analysis of a number of cuts

18

randomly distributed around the whole high volume filter plus the corresponding sources

of uncertainties related to standards calibration and system blank This uncertainty

evaluation did not consider uncertainties attributed to biases with respect to the analysis

of reference materials

The overall uncertainty ou was calculated as follows

22

1

2

)(blankcl

m

i

jiuu

n

fstdevou

(1)

Where

jicl fu 0250 as an approach value for the uncertainty of the calibration and the

reference standard (see referencies BL Vand Drooge et al J Chromatogr A 1216

(2009) 4030-4039)

2

2)(

iblank

m

blankstdevu i

blank

(2)

fij is the concentration calculated for the injection j of the filter i

n is the number of injections (j= 1 to n)

m is the number of filters (i=1 to m)

jif is the average value of all injections and filters

blanki is the system blank level associated with the analysis of the filter i

Reference values

Due to the nature of this kind of inter-laboratory comparisons the reference value was

determined on the basis of the robust average results from the best performance

laboratories The selection of a best performance laboratory was based on the number of

outliers reported by each laboratory with respect to a robust average calculated on the

basis of the ISO-13528 Therefore robust average

iC and standard deviation s of the

p input laboratories are derived from a convergence process of the following equation

(3)

(4)

p

CC

i

i

)1(

)(1341

2

p

CCs

ii

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 8: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

8

GC-MS gas chromatography mass spectrometer

HPLC High Performance Liquid Chromatography

IndPy indeno(123-cd)pyrene

IndPy-D indeno(123-cd)pyrene deuterated

IS internal standard

ISCIII Instituto de Salud Carlos III

ISSeP Institut Scientifique de Service Public

IVL Swedish environmental institute

KAL Chemical Analytical Laboratory Slovenia Environment Agency

LANUV Landesamt fuumlr Natur Umwelt und Verbraucherschutz NRW

m number of filters (eq 2)

n number of injections (eq 1)

na non available

NERI National Environmental Research Institute

OEU overall expanded uncertainty (eq 10)

ou overall uncertainty (eq 1)

p number of input laboratories (eqs 3 4 6 7)

Per perylene

Per-D perylene deuterated

PM Particular matter

PM10 particular matter under 10 μm

PM25 particular matter under 25 μm

PM1 particular matter under 1 μm

PAHs polycyclic aromatic hydrocarbons

Phe phenanthrene

Phe-D phenanthrene deuterated

Phe-D phenanthrene deuterated

Py-D pyrene deuterated

Py pyrene

QAQC quality assurance quality control

TPhe triphenylene

stdev() standard deviation

s standard deviation of the robust concentration average (eq 3)

ubias standard uncertainty of the bias (eq 7)

uci uncertainty of the reported value from laboratory I (eq 7)

ucl uncertainty of the calibration and the reference value (eq 1)

Ulab expanded uncertainty for the reported value (eq 9)

Uref expanded uncertainty for the reference value (eq 9)

VMM Vlaamse Milieumaatschappij

Z random variable of two tails statistic for normal distribution (eq 8)

9

Introduction

The pollution caused by particulate matter (PM) is one of the critical issues of the current

air quality policy Numerous studies relate mortality and morbidity with the pollution

levels of particulate matter in air In this context an appropriated characterization of the

particulate is of importance to provide a better health indicator for air quality than PM10

PM25 or PM1 Furthermore this could help in the identification and quantification of the

compounds responsible for health disorders

At EU level the Directive 2004107EC already focuses on the analysis of heavy metals

and polycyclic aromatic hydrocarbons (PAHs) as compounds to be analysed in PM10 as

responsible for PM toxicity and carcinogenic characteristics In the case of the PAHs an

annual limit value has been established for benzo(a)pyrene (BaP) (carcinogenic to

humans according to the last upgrade of the IARC) as a marker for PAH in particles

Furthermore other PAHs are recommended to be measured benzo(a)anthracene

benzo(b)fluoranthene benzo(j)fluranthene benzo(k)fluoranthene indeno(123-

cd)pyrene and dibenzo(ah)anthracene

The tedious methodologies linked to the quantification of PAHs imply relatively high

uncertainties in the reported analytical results This is reflected in the level of expanded

uncertainty defined in the afore-mentioned Directive being for BaP in PM10 or in total

deposition 50 and 70 respectively Furthermore the minimum time coverage for

these measurements is reduced up to 14 -33 for fixed measurements

The implementation of analytical methods that are traceable and QAQC tested becomes

an asset for this sort of analysis Furthermore the execution of inter-laboratory

comparisons represents an important tool for the demonstration of laboratory traceability

showing competence and identifying weak points in their analytical methods

This report shows the results of the first inter-laboratory comparison of PAHs on PM10

filters carried out at European level among the Air Quality Reference Laboratories in

Europe (AQUILA)

Inter-laboratory comparison strategy

This inter-laboratory comparison focussed on the evaluation of the analytical

performance of participating laboratories Any consideration regarding sampling

technique or monitoring strategic approach is out of the discussion in this report Instead

uncertainties biases or inaccuracies should be linked to analytical issues and to the

traceability of the measurements

Although the testing of laboratory traceability and analytical performance could easily be

carried out by means of reference material (ie NIST-16492 or CRM-ERMCZ-100)

this may not reflect the response of a laboratory to real samples collected on PM10 filters

For this reason this exercise was performed on the basis of real samples on PM10 quartz

filters

10

Participating laboratories

Sixteen laboratories from AQUILA have participated in this inter-laboratory comparison

Names of the laboratories and people involved are listed in Table 1

Table 1ndash List of participating laboratories

Laboratory name Acronym Country ContactAnalytical responsible

IVL Swedish environmental institute IVL Sweden Annika Potter

Erika Rehngren

Environmental Research Department of Environmental Protection Agency EPA

EPA-lt Lithuania Daiva Pockeviciute

Agecircncia Portuguesa do Ambiente APA-LRA Portugal Paula Viana Joatildeo Matos

Vlaamse Milieumaatschappij - Labo Gent VMM - Labo Gent

VMM Belgium Eric Wauters

Peter Van Caeter

Roland De Fleurquin

Landesamt fuumlr Natur Umwelt und Verbraucherschutz NRW

LANUV Germany Ulrich Pfeffer

Dieter Gladtke

Anja Olschewski

AWEL Gewaumlsserschutzlabor Kanton Zuumlrich AWEL Switzerland Robert Gehrig

Andreas Wyss

Nicole Imboden

Cesky hydrometeorologicky ustav CHMU Czech Republic Helena Placha

Jan Abraham

Eva Paznerova Irina Nikolova Jiri Novak

Estonian Environmental Research Centre EERC Estonia Toivo Truuts

Juhan Tamm

National Environmental Research Institute Aarhus University

NERI Denmark Rossana Bossi

Executive Environmental Agency EEA Bulgaria Borislav Zdravkov

Ognian Georgiev

Institut Scientifique de Service Public ISSeP Belgium HENGESCH Valerie

CADET Alain

LEBRUN Muriel

Environmental Protection Agency EPA

EPA-ie Ireland Barbara OLeary

Lin Delaney

Simon OToole

Amt der oberoumlsterreichischen Landesregierung AbteilungUmweltschutz

ABUM Austria Adolf Schinerl

Chemical Analytical Laboratory Slovenian Environment Agency

KAL Slovenia Gregor Muri

Laboratory of Air Chemistry Finnish Meteorological Institute

FMI Finland Hannele Hakola

Mika Vestenius

Heidi Hellen

AEA Technology Scientifics part of Environmental Scientifics Group

AEA ESG

UK

Christopher Connolly Shane OLeary Joanne Baker

Instituto de Salud Carlos III ISCIII Spain Rosaliacutea Fernandez Patier

Joint Research Centre European Reference Laboratory for Air Pollution

ERLAP EC E Grandesso K Kowalewski P Peacuterez Ballesta

11

Sampling programme and schedule

The need for real PM10 samples to carry out this exercise was discussed inside the

AQUILA The sampling of PM10 should represent typical operational network

monitoring conditions Two Laboratories Instituto de Salud Carlos III from Spain and the

ldquoCesky hydrometeorologicky ustavrdquo from the Czech Republic voluntarily offered to act

as sampling laboratories and were finally responsible for the PM10 sampling

The sampling was performed according to a defined protocol (see Annex I) by means of

Andersen high volume PM10 samplers on quartz filters (Whatman QM-A) Filters were

heat-treated prior to sampling and each seasonal batch of samples was sent to the JRC for

characterisation

The sampling was performed during two different seasonal periods covering the possible

range of concentrations that characterised the sampling locations summer (June-August

2009) and winter (November-January 2010) The corresponding samplers were sited in

background monitoring stations of ldquoSinesio Delgadordquo (Madrid) and ldquoLibusrdquo (Prague)

Sections of the filters were distributed among participants during the second week of

May 2010 with a data collection deadline beginning of September 2010 The package

contained one filter for each season and location and two blanks (one from each

sampling location)

The comparison was based on the amount of compound quantified on the filter which

should be expected to be equivalent to typical amounts found in low volume sampler

filters

Participating laboratories received the filters together with a ldquoGuide to operationrdquo

(included in Annex I) They were requested to provide information concerning the

analytical method and the uncertainty evaluation of the measurements Laboratories were

requested to report a minimum of 3 replicate injections for each sample

A list of fifteen different PAHs was provided from which seven of them were marked as

priority (See table 2)

12

Table 2ndash List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno(123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene+triphenylene

C Benzo(bjk)fluoranthene In highlighted print priority compounds for the inter-laboratory comparison

Filters management characterisation and homogeneity

Whatman QM-A Quartz microfiber filter [203x 254 cm (8x 10 in) Cat No 1851 865]

were used for sampling in the Andersen high volume PM10 samplers These filters

provide a sampling area of circa 406 cm2 to be subdivided into smaller filter sections

corresponding to low volume filter samples of diameter 4 cm

The high volume sampled filters that arrived directly from the sampling site were kept in

a freezer (at -16 ordmC) until the preparation for distribution among participating

laboratories Twenty filter samples of 4 cm diameter were available from each high

volume sampled filter They were systematically cut by means of a mould specifically

designed for this purpose (See Figure 1)

13

Figure 1ndash Mould and tools for the subdivision of the high volume sampled filter

The low volume dimension filters were carefully prepared for mailing according to a

particular procedure that considered the individual packing and sealing of each sample

(Detail of this packing can be observed in Annex I - Guide to operation)

The filters selected for the inter-laboratory comparison were previously tested for

homogeneity by means of a thermal desorption methodology which allowed the

quantification of small sections of filters with diameters from 25 to 6 mm (Van Drooge

et al)

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 2ndash Relative standard deviation with respect to priority compounds

The random analysis of a minimum four small filter sections by thermal desorption

shows content relative standard deviations compatible with the needs for the comparison

exercise The relative standard deviations associated with the sum of the priority

000

500

1000

1500

2000

2500

3000

1000 10000 100000 1000000 10000000

Σ(priority PAHs) pg

RS

DE

V

B3

B2

F30F21

F10

F3

14

compound concentrations for the sampled filters ranged between 32 and 65 This is in

agreement with previous studies of homogeneity on Andersen high volume sampled

filters (A Baeza et al)

Table 3 shows sampling parameters and average values for the main ambient variables

registered during the sampling of the PM10 in the corresponding locations As expected

PM10 and PM25 winter concentrations were higher than those for summer whilst the

highest levels were found in Prague during winter

Table 3ndash Sampling variables for the PM10 collection

Filter code F3 F21 F10 F30 B2 B3

Location Madrid Prague Madrid Prague Madrid Prague

Sampling Period 6-872009 27-2882009 25-27112009 21-22112009 - -

Sampling volume m3 3090 1590 3190 1708 - -

Temperature ordmC 249 228 92 728 - -

Relative Humidity 32 63 90 87 - -

PM10 microgm3 30 243 21 89 - -

PM25 microgm3 11 167 na 64 - -

O3 ppb 37 70 na 5 - -

na non available

With the exception of the winter Prague filter where the concentration of PAHs were

significantly high with concentrations of benzo(a)pyrene of about 75 ngm3 other filters

were much lower 02 ngm3 for the winter filter in Madrid and around 50 pgm

3 of BaP

for the summer period in both locations Graphs from Figure 3 show the estimated PAH

air concentration levels during the corresponding sampling days and locations

Figure 3ndash PAHs air concentration levels during sampling

249

41

000

10000

20000

30000

40000

50000

60000

70000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Madrid winter

Madrid Summer

7469

62

000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Prague winter

Prague summer

15

Filter stability

JRC retained three 4 cm diameter filters for analysis from each sampling batch One set

of filters was sent abroad and return to JRC by courier simultaneously to the filters of the

other participants The other two filters from the same sampling batch were analysed one

month before and one month after the circulating filters Those filters were stored in

freezer

The analysis of these filters showed variation within plusmn 10 of the average value

therefore validating the stability of the filters for the exercise The sum of the priority

PAHs quantified on the filters are shown in Figure 4 It is noted the lower uncertainty

associated with filters from Prague when compared to those from Madrid Similar

behaviour was also noted during the homogeneity tests which could be due to a more

volatile composition of the Madrid filters in comparison to Prague or a breakthrough on

the Madrid filters caused by the sampling volume being double that of Prague

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 4ndash Analysis of the filters before and after the exercise

100

110

120

130

140

150

160

170

180

190

F10

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

57

+10

-10

1500

1600

1700

1800

1900

2000

2100

2200

F30

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

33

+10

-10

14

16

18

20

22

24

F3

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

51

+10

- 10

16

17

18

19

20

21

22

23

24

F21

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

41

+10

-10

16

Analytical Methods

Each participant was free to choose the analytical method according to their own

experience As a consequence there were multiple combinations of different separation

techniques detectors extraction systems solvents extraction time clean up and other

analytical parameters No statistical differences could be associated with a specific

technique for extraction or analysis Table 4 shows the different techniques and relevant

analytical conditions used by the participating laboratories

Table 4ndash Analytical method used by the participating laboratories

LABORATORY ANALYTICAL

METHOD COLUMN EXTRACTION SOLVENT TIME CLEANUP

CORRELAT

ION

INTERNAL

STANDARD

IVL HPLC FLD CHROMSPHERE

PAH (VARIAN) SOXLHET PENTANE-ACETONE 24 H

SILICA GEL

MERK

Multipoint-

Linear bb-binapthyl

EPA-LT HPLC FLD SUPELCOSILlTM

LC-PAH SOXLHET HEXANE-ACETONE 4 H

SPE

CARTRIGE

Multipoint-

Linear external extandard

APA-LRA HPLC FLD C18 REVERSE

PHASE SOXLHET ACETONITRILE 16 H -

Multipoint-

Linear external extandard

VMM HPLC FLD ZORBAX ECLIPSE

PAH ASE DICHLOROMETHANE 35 MIN -

Multipoint-

Linear external extandard

LANUV HPLC FLD ZORBAX ECLIPSE

PAH ULTRASONIC TOLUENE 24 H

CHROMAB

ON

Multipoint-

Linear

through

origin

external extandard

AWEL GC-MS DB5-30 M SOXLHET

CYCLOHEXANE-

ISOOCTANE-

ACETONE

4 H - Multipoint-

Linear 111 dibromodecane

CHMU GC-MS DB5-30 M SOXLHET METHANOL-

DICHLOROMETHANE 1 H

SILICA GEL

SUPELCO

Multipoint-

Linear

through

origin

Phe-D Chry-D Per-D

EERC GC-MS DB5-30 M SOXLHET CYLCOHEXANE 16 h - Multipoint-

Linear Py-D Per-D

NERI GC-MS DB5-30 M na DICHLOROMETHANE na - Multipoint-

Linear

BaA-D Chry-D BaP-D

Per-D BghiPer-D

DBahA-D

EEA GC-MS DB-XLD- 30 M ULTRASONIC DICHLOROMETHANE 1 H SILICA GEL Multipoint-

Linear Phe-D Chry-D Per-D

ISSeP GC-MS DB-17 SOXHLET CYCLOHEXANE-

DIETHYLETHER 16 H -

Multipoint-

Linear Phe-D Chry-D BaP-D

EPA-ie GC-MS DB5-30 M ULTRASONIC DICHLOROMETHANE na FLORASIL Multipoint-

Linear Chry-D

ABUM GC-MS DB5-60 M ASE CYCLOHEXANE 30 MIN SILICA GEL Multipoint-

Linear corresponding deuterated

KAL GC-MS DB5-30 M MICROWAVE HEXANE-ACETONE 45 MIN SILICA Multipoint-

Linear

Phe-D Py-D BahA-D

BaP-D IndPy-D

FMI GC-MS DB5-50 M SOXLHET DICHLOROMETHANE 8 H FLORISIL Multipoint

Quadratic

Phe-D Chry-D DBahA-

D Per-D

AEAESG GC-MS ZB-5 30M ASE na na SPE

CARTRIGE

Multipoint-

Linear IS non expecified

ERLAP GC-MS DB-17 30 M MICROWAVE ACETANE-HEXANE 30 MIN

SPE

CARTRIGE

CUPS

Multipoint-

Linear corresponding deuterated

ERLAPT GC-MS DB-17 30 M THERMAL DESORPTION Multipoint-

Linear corresponding deuterated

17

25 of the participating laboratories used liquid chromatography and FLD detection

whilst the rest of the laboratories used gas chromatography separation and mass

spectrometry For gas chromatography separation a 30 m DB5 was the most frequently

used column other phases such as DB17 or longer lengths were rare Soxhlet was the

most common method for extraction used by 8 laboratories three laboratories used

ultrasonic extraction and another three accelerated soxhlet extraction 2 laboratories

extracted the filter by microwave whilst only one laboratory used thermal desorption

There was no agreement in the solvent or time for extraction (acetonitrile pentane

acetone cyclohexane isooctane dichloromethane toluene and mixtures of these solvents

were used by laboratories even with the same extraction technique) with times from

minutes to 24 hours Clean-up was applied by most of the laboratories All analysis were

performed by multipoint calibration Internal standard method was applied to all GC-MS

analysis while only one laboratory used internal standard for HPLC

Analytical uncertainties from participating laboratories

Participating laboratories were requested to estimate the associated expanded

uncertainties of their analytical results These values are given in Table 12 Description of

the uncertainty evaluation provided by each laboratory is given in annex I

Several laboratories provided uncertainties on the basis of data from method validations

and analysis of reference material including the bias as an additional source of

uncertainty On the other hand the 3 analyses per sample requested can only provide an

idea about the analytical repeatability but other sources of uncertainty should be

considered in the calculations such as calibration and standard preparation blank level

reproducibility desorption efficiencies known biases etc Furthermore as the exercise

contains different filters with different concentration levels it is expected that the

analytical uncertainty will depend on the concentration level The lower the analysed

concentration the higher the uncertainty associated with the quantified value Similarly

the analytical uncertainty will be different from compound to compound depending on

its analytical reproducibility and response volatility desorption efficiency etc

Nevertheless these aspects not always considered in the reported uncertainties

Analytical uncertainties from the ERLAP

ERLAP participated in the exercise by analysing the filters using two different

techniques solvent extraction with GC-MS and thermal desorption with GC-MS

analysis

The evaluation of the concentration and the associated budget uncertainty reported by

JRC was based on the results of the averaging of three filter samples analysed in

triplicate by liquid extraction and gas chromatography The reproducibility uncertainties

of these analyses were combined with others sources of uncertainties derived from the

standards calibration and system blank In a similar way uncertainty for the thermal

desorption analyses was based on the reproducibility analysis of a number of cuts

18

randomly distributed around the whole high volume filter plus the corresponding sources

of uncertainties related to standards calibration and system blank This uncertainty

evaluation did not consider uncertainties attributed to biases with respect to the analysis

of reference materials

The overall uncertainty ou was calculated as follows

22

1

2

)(blankcl

m

i

jiuu

n

fstdevou

(1)

Where

jicl fu 0250 as an approach value for the uncertainty of the calibration and the

reference standard (see referencies BL Vand Drooge et al J Chromatogr A 1216

(2009) 4030-4039)

2

2)(

iblank

m

blankstdevu i

blank

(2)

fij is the concentration calculated for the injection j of the filter i

n is the number of injections (j= 1 to n)

m is the number of filters (i=1 to m)

jif is the average value of all injections and filters

blanki is the system blank level associated with the analysis of the filter i

Reference values

Due to the nature of this kind of inter-laboratory comparisons the reference value was

determined on the basis of the robust average results from the best performance

laboratories The selection of a best performance laboratory was based on the number of

outliers reported by each laboratory with respect to a robust average calculated on the

basis of the ISO-13528 Therefore robust average

iC and standard deviation s of the

p input laboratories are derived from a convergence process of the following equation

(3)

(4)

p

CC

i

i

)1(

)(1341

2

p

CCs

ii

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 9: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

9

Introduction

The pollution caused by particulate matter (PM) is one of the critical issues of the current

air quality policy Numerous studies relate mortality and morbidity with the pollution

levels of particulate matter in air In this context an appropriated characterization of the

particulate is of importance to provide a better health indicator for air quality than PM10

PM25 or PM1 Furthermore this could help in the identification and quantification of the

compounds responsible for health disorders

At EU level the Directive 2004107EC already focuses on the analysis of heavy metals

and polycyclic aromatic hydrocarbons (PAHs) as compounds to be analysed in PM10 as

responsible for PM toxicity and carcinogenic characteristics In the case of the PAHs an

annual limit value has been established for benzo(a)pyrene (BaP) (carcinogenic to

humans according to the last upgrade of the IARC) as a marker for PAH in particles

Furthermore other PAHs are recommended to be measured benzo(a)anthracene

benzo(b)fluoranthene benzo(j)fluranthene benzo(k)fluoranthene indeno(123-

cd)pyrene and dibenzo(ah)anthracene

The tedious methodologies linked to the quantification of PAHs imply relatively high

uncertainties in the reported analytical results This is reflected in the level of expanded

uncertainty defined in the afore-mentioned Directive being for BaP in PM10 or in total

deposition 50 and 70 respectively Furthermore the minimum time coverage for

these measurements is reduced up to 14 -33 for fixed measurements

The implementation of analytical methods that are traceable and QAQC tested becomes

an asset for this sort of analysis Furthermore the execution of inter-laboratory

comparisons represents an important tool for the demonstration of laboratory traceability

showing competence and identifying weak points in their analytical methods

This report shows the results of the first inter-laboratory comparison of PAHs on PM10

filters carried out at European level among the Air Quality Reference Laboratories in

Europe (AQUILA)

Inter-laboratory comparison strategy

This inter-laboratory comparison focussed on the evaluation of the analytical

performance of participating laboratories Any consideration regarding sampling

technique or monitoring strategic approach is out of the discussion in this report Instead

uncertainties biases or inaccuracies should be linked to analytical issues and to the

traceability of the measurements

Although the testing of laboratory traceability and analytical performance could easily be

carried out by means of reference material (ie NIST-16492 or CRM-ERMCZ-100)

this may not reflect the response of a laboratory to real samples collected on PM10 filters

For this reason this exercise was performed on the basis of real samples on PM10 quartz

filters

10

Participating laboratories

Sixteen laboratories from AQUILA have participated in this inter-laboratory comparison

Names of the laboratories and people involved are listed in Table 1

Table 1ndash List of participating laboratories

Laboratory name Acronym Country ContactAnalytical responsible

IVL Swedish environmental institute IVL Sweden Annika Potter

Erika Rehngren

Environmental Research Department of Environmental Protection Agency EPA

EPA-lt Lithuania Daiva Pockeviciute

Agecircncia Portuguesa do Ambiente APA-LRA Portugal Paula Viana Joatildeo Matos

Vlaamse Milieumaatschappij - Labo Gent VMM - Labo Gent

VMM Belgium Eric Wauters

Peter Van Caeter

Roland De Fleurquin

Landesamt fuumlr Natur Umwelt und Verbraucherschutz NRW

LANUV Germany Ulrich Pfeffer

Dieter Gladtke

Anja Olschewski

AWEL Gewaumlsserschutzlabor Kanton Zuumlrich AWEL Switzerland Robert Gehrig

Andreas Wyss

Nicole Imboden

Cesky hydrometeorologicky ustav CHMU Czech Republic Helena Placha

Jan Abraham

Eva Paznerova Irina Nikolova Jiri Novak

Estonian Environmental Research Centre EERC Estonia Toivo Truuts

Juhan Tamm

National Environmental Research Institute Aarhus University

NERI Denmark Rossana Bossi

Executive Environmental Agency EEA Bulgaria Borislav Zdravkov

Ognian Georgiev

Institut Scientifique de Service Public ISSeP Belgium HENGESCH Valerie

CADET Alain

LEBRUN Muriel

Environmental Protection Agency EPA

EPA-ie Ireland Barbara OLeary

Lin Delaney

Simon OToole

Amt der oberoumlsterreichischen Landesregierung AbteilungUmweltschutz

ABUM Austria Adolf Schinerl

Chemical Analytical Laboratory Slovenian Environment Agency

KAL Slovenia Gregor Muri

Laboratory of Air Chemistry Finnish Meteorological Institute

FMI Finland Hannele Hakola

Mika Vestenius

Heidi Hellen

AEA Technology Scientifics part of Environmental Scientifics Group

AEA ESG

UK

Christopher Connolly Shane OLeary Joanne Baker

Instituto de Salud Carlos III ISCIII Spain Rosaliacutea Fernandez Patier

Joint Research Centre European Reference Laboratory for Air Pollution

ERLAP EC E Grandesso K Kowalewski P Peacuterez Ballesta

11

Sampling programme and schedule

The need for real PM10 samples to carry out this exercise was discussed inside the

AQUILA The sampling of PM10 should represent typical operational network

monitoring conditions Two Laboratories Instituto de Salud Carlos III from Spain and the

ldquoCesky hydrometeorologicky ustavrdquo from the Czech Republic voluntarily offered to act

as sampling laboratories and were finally responsible for the PM10 sampling

The sampling was performed according to a defined protocol (see Annex I) by means of

Andersen high volume PM10 samplers on quartz filters (Whatman QM-A) Filters were

heat-treated prior to sampling and each seasonal batch of samples was sent to the JRC for

characterisation

The sampling was performed during two different seasonal periods covering the possible

range of concentrations that characterised the sampling locations summer (June-August

2009) and winter (November-January 2010) The corresponding samplers were sited in

background monitoring stations of ldquoSinesio Delgadordquo (Madrid) and ldquoLibusrdquo (Prague)

Sections of the filters were distributed among participants during the second week of

May 2010 with a data collection deadline beginning of September 2010 The package

contained one filter for each season and location and two blanks (one from each

sampling location)

The comparison was based on the amount of compound quantified on the filter which

should be expected to be equivalent to typical amounts found in low volume sampler

filters

Participating laboratories received the filters together with a ldquoGuide to operationrdquo

(included in Annex I) They were requested to provide information concerning the

analytical method and the uncertainty evaluation of the measurements Laboratories were

requested to report a minimum of 3 replicate injections for each sample

A list of fifteen different PAHs was provided from which seven of them were marked as

priority (See table 2)

12

Table 2ndash List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno(123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene+triphenylene

C Benzo(bjk)fluoranthene In highlighted print priority compounds for the inter-laboratory comparison

Filters management characterisation and homogeneity

Whatman QM-A Quartz microfiber filter [203x 254 cm (8x 10 in) Cat No 1851 865]

were used for sampling in the Andersen high volume PM10 samplers These filters

provide a sampling area of circa 406 cm2 to be subdivided into smaller filter sections

corresponding to low volume filter samples of diameter 4 cm

The high volume sampled filters that arrived directly from the sampling site were kept in

a freezer (at -16 ordmC) until the preparation for distribution among participating

laboratories Twenty filter samples of 4 cm diameter were available from each high

volume sampled filter They were systematically cut by means of a mould specifically

designed for this purpose (See Figure 1)

13

Figure 1ndash Mould and tools for the subdivision of the high volume sampled filter

The low volume dimension filters were carefully prepared for mailing according to a

particular procedure that considered the individual packing and sealing of each sample

(Detail of this packing can be observed in Annex I - Guide to operation)

The filters selected for the inter-laboratory comparison were previously tested for

homogeneity by means of a thermal desorption methodology which allowed the

quantification of small sections of filters with diameters from 25 to 6 mm (Van Drooge

et al)

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 2ndash Relative standard deviation with respect to priority compounds

The random analysis of a minimum four small filter sections by thermal desorption

shows content relative standard deviations compatible with the needs for the comparison

exercise The relative standard deviations associated with the sum of the priority

000

500

1000

1500

2000

2500

3000

1000 10000 100000 1000000 10000000

Σ(priority PAHs) pg

RS

DE

V

B3

B2

F30F21

F10

F3

14

compound concentrations for the sampled filters ranged between 32 and 65 This is in

agreement with previous studies of homogeneity on Andersen high volume sampled

filters (A Baeza et al)

Table 3 shows sampling parameters and average values for the main ambient variables

registered during the sampling of the PM10 in the corresponding locations As expected

PM10 and PM25 winter concentrations were higher than those for summer whilst the

highest levels were found in Prague during winter

Table 3ndash Sampling variables for the PM10 collection

Filter code F3 F21 F10 F30 B2 B3

Location Madrid Prague Madrid Prague Madrid Prague

Sampling Period 6-872009 27-2882009 25-27112009 21-22112009 - -

Sampling volume m3 3090 1590 3190 1708 - -

Temperature ordmC 249 228 92 728 - -

Relative Humidity 32 63 90 87 - -

PM10 microgm3 30 243 21 89 - -

PM25 microgm3 11 167 na 64 - -

O3 ppb 37 70 na 5 - -

na non available

With the exception of the winter Prague filter where the concentration of PAHs were

significantly high with concentrations of benzo(a)pyrene of about 75 ngm3 other filters

were much lower 02 ngm3 for the winter filter in Madrid and around 50 pgm

3 of BaP

for the summer period in both locations Graphs from Figure 3 show the estimated PAH

air concentration levels during the corresponding sampling days and locations

Figure 3ndash PAHs air concentration levels during sampling

249

41

000

10000

20000

30000

40000

50000

60000

70000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Madrid winter

Madrid Summer

7469

62

000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Prague winter

Prague summer

15

Filter stability

JRC retained three 4 cm diameter filters for analysis from each sampling batch One set

of filters was sent abroad and return to JRC by courier simultaneously to the filters of the

other participants The other two filters from the same sampling batch were analysed one

month before and one month after the circulating filters Those filters were stored in

freezer

The analysis of these filters showed variation within plusmn 10 of the average value

therefore validating the stability of the filters for the exercise The sum of the priority

PAHs quantified on the filters are shown in Figure 4 It is noted the lower uncertainty

associated with filters from Prague when compared to those from Madrid Similar

behaviour was also noted during the homogeneity tests which could be due to a more

volatile composition of the Madrid filters in comparison to Prague or a breakthrough on

the Madrid filters caused by the sampling volume being double that of Prague

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 4ndash Analysis of the filters before and after the exercise

100

110

120

130

140

150

160

170

180

190

F10

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

57

+10

-10

1500

1600

1700

1800

1900

2000

2100

2200

F30

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

33

+10

-10

14

16

18

20

22

24

F3

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

51

+10

- 10

16

17

18

19

20

21

22

23

24

F21

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

41

+10

-10

16

Analytical Methods

Each participant was free to choose the analytical method according to their own

experience As a consequence there were multiple combinations of different separation

techniques detectors extraction systems solvents extraction time clean up and other

analytical parameters No statistical differences could be associated with a specific

technique for extraction or analysis Table 4 shows the different techniques and relevant

analytical conditions used by the participating laboratories

Table 4ndash Analytical method used by the participating laboratories

LABORATORY ANALYTICAL

METHOD COLUMN EXTRACTION SOLVENT TIME CLEANUP

CORRELAT

ION

INTERNAL

STANDARD

IVL HPLC FLD CHROMSPHERE

PAH (VARIAN) SOXLHET PENTANE-ACETONE 24 H

SILICA GEL

MERK

Multipoint-

Linear bb-binapthyl

EPA-LT HPLC FLD SUPELCOSILlTM

LC-PAH SOXLHET HEXANE-ACETONE 4 H

SPE

CARTRIGE

Multipoint-

Linear external extandard

APA-LRA HPLC FLD C18 REVERSE

PHASE SOXLHET ACETONITRILE 16 H -

Multipoint-

Linear external extandard

VMM HPLC FLD ZORBAX ECLIPSE

PAH ASE DICHLOROMETHANE 35 MIN -

Multipoint-

Linear external extandard

LANUV HPLC FLD ZORBAX ECLIPSE

PAH ULTRASONIC TOLUENE 24 H

CHROMAB

ON

Multipoint-

Linear

through

origin

external extandard

AWEL GC-MS DB5-30 M SOXLHET

CYCLOHEXANE-

ISOOCTANE-

ACETONE

4 H - Multipoint-

Linear 111 dibromodecane

CHMU GC-MS DB5-30 M SOXLHET METHANOL-

DICHLOROMETHANE 1 H

SILICA GEL

SUPELCO

Multipoint-

Linear

through

origin

Phe-D Chry-D Per-D

EERC GC-MS DB5-30 M SOXLHET CYLCOHEXANE 16 h - Multipoint-

Linear Py-D Per-D

NERI GC-MS DB5-30 M na DICHLOROMETHANE na - Multipoint-

Linear

BaA-D Chry-D BaP-D

Per-D BghiPer-D

DBahA-D

EEA GC-MS DB-XLD- 30 M ULTRASONIC DICHLOROMETHANE 1 H SILICA GEL Multipoint-

Linear Phe-D Chry-D Per-D

ISSeP GC-MS DB-17 SOXHLET CYCLOHEXANE-

DIETHYLETHER 16 H -

Multipoint-

Linear Phe-D Chry-D BaP-D

EPA-ie GC-MS DB5-30 M ULTRASONIC DICHLOROMETHANE na FLORASIL Multipoint-

Linear Chry-D

ABUM GC-MS DB5-60 M ASE CYCLOHEXANE 30 MIN SILICA GEL Multipoint-

Linear corresponding deuterated

KAL GC-MS DB5-30 M MICROWAVE HEXANE-ACETONE 45 MIN SILICA Multipoint-

Linear

Phe-D Py-D BahA-D

BaP-D IndPy-D

FMI GC-MS DB5-50 M SOXLHET DICHLOROMETHANE 8 H FLORISIL Multipoint

Quadratic

Phe-D Chry-D DBahA-

D Per-D

AEAESG GC-MS ZB-5 30M ASE na na SPE

CARTRIGE

Multipoint-

Linear IS non expecified

ERLAP GC-MS DB-17 30 M MICROWAVE ACETANE-HEXANE 30 MIN

SPE

CARTRIGE

CUPS

Multipoint-

Linear corresponding deuterated

ERLAPT GC-MS DB-17 30 M THERMAL DESORPTION Multipoint-

Linear corresponding deuterated

17

25 of the participating laboratories used liquid chromatography and FLD detection

whilst the rest of the laboratories used gas chromatography separation and mass

spectrometry For gas chromatography separation a 30 m DB5 was the most frequently

used column other phases such as DB17 or longer lengths were rare Soxhlet was the

most common method for extraction used by 8 laboratories three laboratories used

ultrasonic extraction and another three accelerated soxhlet extraction 2 laboratories

extracted the filter by microwave whilst only one laboratory used thermal desorption

There was no agreement in the solvent or time for extraction (acetonitrile pentane

acetone cyclohexane isooctane dichloromethane toluene and mixtures of these solvents

were used by laboratories even with the same extraction technique) with times from

minutes to 24 hours Clean-up was applied by most of the laboratories All analysis were

performed by multipoint calibration Internal standard method was applied to all GC-MS

analysis while only one laboratory used internal standard for HPLC

Analytical uncertainties from participating laboratories

Participating laboratories were requested to estimate the associated expanded

uncertainties of their analytical results These values are given in Table 12 Description of

the uncertainty evaluation provided by each laboratory is given in annex I

Several laboratories provided uncertainties on the basis of data from method validations

and analysis of reference material including the bias as an additional source of

uncertainty On the other hand the 3 analyses per sample requested can only provide an

idea about the analytical repeatability but other sources of uncertainty should be

considered in the calculations such as calibration and standard preparation blank level

reproducibility desorption efficiencies known biases etc Furthermore as the exercise

contains different filters with different concentration levels it is expected that the

analytical uncertainty will depend on the concentration level The lower the analysed

concentration the higher the uncertainty associated with the quantified value Similarly

the analytical uncertainty will be different from compound to compound depending on

its analytical reproducibility and response volatility desorption efficiency etc

Nevertheless these aspects not always considered in the reported uncertainties

Analytical uncertainties from the ERLAP

ERLAP participated in the exercise by analysing the filters using two different

techniques solvent extraction with GC-MS and thermal desorption with GC-MS

analysis

The evaluation of the concentration and the associated budget uncertainty reported by

JRC was based on the results of the averaging of three filter samples analysed in

triplicate by liquid extraction and gas chromatography The reproducibility uncertainties

of these analyses were combined with others sources of uncertainties derived from the

standards calibration and system blank In a similar way uncertainty for the thermal

desorption analyses was based on the reproducibility analysis of a number of cuts

18

randomly distributed around the whole high volume filter plus the corresponding sources

of uncertainties related to standards calibration and system blank This uncertainty

evaluation did not consider uncertainties attributed to biases with respect to the analysis

of reference materials

The overall uncertainty ou was calculated as follows

22

1

2

)(blankcl

m

i

jiuu

n

fstdevou

(1)

Where

jicl fu 0250 as an approach value for the uncertainty of the calibration and the

reference standard (see referencies BL Vand Drooge et al J Chromatogr A 1216

(2009) 4030-4039)

2

2)(

iblank

m

blankstdevu i

blank

(2)

fij is the concentration calculated for the injection j of the filter i

n is the number of injections (j= 1 to n)

m is the number of filters (i=1 to m)

jif is the average value of all injections and filters

blanki is the system blank level associated with the analysis of the filter i

Reference values

Due to the nature of this kind of inter-laboratory comparisons the reference value was

determined on the basis of the robust average results from the best performance

laboratories The selection of a best performance laboratory was based on the number of

outliers reported by each laboratory with respect to a robust average calculated on the

basis of the ISO-13528 Therefore robust average

iC and standard deviation s of the

p input laboratories are derived from a convergence process of the following equation

(3)

(4)

p

CC

i

i

)1(

)(1341

2

p

CCs

ii

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 10: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

10

Participating laboratories

Sixteen laboratories from AQUILA have participated in this inter-laboratory comparison

Names of the laboratories and people involved are listed in Table 1

Table 1ndash List of participating laboratories

Laboratory name Acronym Country ContactAnalytical responsible

IVL Swedish environmental institute IVL Sweden Annika Potter

Erika Rehngren

Environmental Research Department of Environmental Protection Agency EPA

EPA-lt Lithuania Daiva Pockeviciute

Agecircncia Portuguesa do Ambiente APA-LRA Portugal Paula Viana Joatildeo Matos

Vlaamse Milieumaatschappij - Labo Gent VMM - Labo Gent

VMM Belgium Eric Wauters

Peter Van Caeter

Roland De Fleurquin

Landesamt fuumlr Natur Umwelt und Verbraucherschutz NRW

LANUV Germany Ulrich Pfeffer

Dieter Gladtke

Anja Olschewski

AWEL Gewaumlsserschutzlabor Kanton Zuumlrich AWEL Switzerland Robert Gehrig

Andreas Wyss

Nicole Imboden

Cesky hydrometeorologicky ustav CHMU Czech Republic Helena Placha

Jan Abraham

Eva Paznerova Irina Nikolova Jiri Novak

Estonian Environmental Research Centre EERC Estonia Toivo Truuts

Juhan Tamm

National Environmental Research Institute Aarhus University

NERI Denmark Rossana Bossi

Executive Environmental Agency EEA Bulgaria Borislav Zdravkov

Ognian Georgiev

Institut Scientifique de Service Public ISSeP Belgium HENGESCH Valerie

CADET Alain

LEBRUN Muriel

Environmental Protection Agency EPA

EPA-ie Ireland Barbara OLeary

Lin Delaney

Simon OToole

Amt der oberoumlsterreichischen Landesregierung AbteilungUmweltschutz

ABUM Austria Adolf Schinerl

Chemical Analytical Laboratory Slovenian Environment Agency

KAL Slovenia Gregor Muri

Laboratory of Air Chemistry Finnish Meteorological Institute

FMI Finland Hannele Hakola

Mika Vestenius

Heidi Hellen

AEA Technology Scientifics part of Environmental Scientifics Group

AEA ESG

UK

Christopher Connolly Shane OLeary Joanne Baker

Instituto de Salud Carlos III ISCIII Spain Rosaliacutea Fernandez Patier

Joint Research Centre European Reference Laboratory for Air Pollution

ERLAP EC E Grandesso K Kowalewski P Peacuterez Ballesta

11

Sampling programme and schedule

The need for real PM10 samples to carry out this exercise was discussed inside the

AQUILA The sampling of PM10 should represent typical operational network

monitoring conditions Two Laboratories Instituto de Salud Carlos III from Spain and the

ldquoCesky hydrometeorologicky ustavrdquo from the Czech Republic voluntarily offered to act

as sampling laboratories and were finally responsible for the PM10 sampling

The sampling was performed according to a defined protocol (see Annex I) by means of

Andersen high volume PM10 samplers on quartz filters (Whatman QM-A) Filters were

heat-treated prior to sampling and each seasonal batch of samples was sent to the JRC for

characterisation

The sampling was performed during two different seasonal periods covering the possible

range of concentrations that characterised the sampling locations summer (June-August

2009) and winter (November-January 2010) The corresponding samplers were sited in

background monitoring stations of ldquoSinesio Delgadordquo (Madrid) and ldquoLibusrdquo (Prague)

Sections of the filters were distributed among participants during the second week of

May 2010 with a data collection deadline beginning of September 2010 The package

contained one filter for each season and location and two blanks (one from each

sampling location)

The comparison was based on the amount of compound quantified on the filter which

should be expected to be equivalent to typical amounts found in low volume sampler

filters

Participating laboratories received the filters together with a ldquoGuide to operationrdquo

(included in Annex I) They were requested to provide information concerning the

analytical method and the uncertainty evaluation of the measurements Laboratories were

requested to report a minimum of 3 replicate injections for each sample

A list of fifteen different PAHs was provided from which seven of them were marked as

priority (See table 2)

12

Table 2ndash List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno(123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene+triphenylene

C Benzo(bjk)fluoranthene In highlighted print priority compounds for the inter-laboratory comparison

Filters management characterisation and homogeneity

Whatman QM-A Quartz microfiber filter [203x 254 cm (8x 10 in) Cat No 1851 865]

were used for sampling in the Andersen high volume PM10 samplers These filters

provide a sampling area of circa 406 cm2 to be subdivided into smaller filter sections

corresponding to low volume filter samples of diameter 4 cm

The high volume sampled filters that arrived directly from the sampling site were kept in

a freezer (at -16 ordmC) until the preparation for distribution among participating

laboratories Twenty filter samples of 4 cm diameter were available from each high

volume sampled filter They were systematically cut by means of a mould specifically

designed for this purpose (See Figure 1)

13

Figure 1ndash Mould and tools for the subdivision of the high volume sampled filter

The low volume dimension filters were carefully prepared for mailing according to a

particular procedure that considered the individual packing and sealing of each sample

(Detail of this packing can be observed in Annex I - Guide to operation)

The filters selected for the inter-laboratory comparison were previously tested for

homogeneity by means of a thermal desorption methodology which allowed the

quantification of small sections of filters with diameters from 25 to 6 mm (Van Drooge

et al)

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 2ndash Relative standard deviation with respect to priority compounds

The random analysis of a minimum four small filter sections by thermal desorption

shows content relative standard deviations compatible with the needs for the comparison

exercise The relative standard deviations associated with the sum of the priority

000

500

1000

1500

2000

2500

3000

1000 10000 100000 1000000 10000000

Σ(priority PAHs) pg

RS

DE

V

B3

B2

F30F21

F10

F3

14

compound concentrations for the sampled filters ranged between 32 and 65 This is in

agreement with previous studies of homogeneity on Andersen high volume sampled

filters (A Baeza et al)

Table 3 shows sampling parameters and average values for the main ambient variables

registered during the sampling of the PM10 in the corresponding locations As expected

PM10 and PM25 winter concentrations were higher than those for summer whilst the

highest levels were found in Prague during winter

Table 3ndash Sampling variables for the PM10 collection

Filter code F3 F21 F10 F30 B2 B3

Location Madrid Prague Madrid Prague Madrid Prague

Sampling Period 6-872009 27-2882009 25-27112009 21-22112009 - -

Sampling volume m3 3090 1590 3190 1708 - -

Temperature ordmC 249 228 92 728 - -

Relative Humidity 32 63 90 87 - -

PM10 microgm3 30 243 21 89 - -

PM25 microgm3 11 167 na 64 - -

O3 ppb 37 70 na 5 - -

na non available

With the exception of the winter Prague filter where the concentration of PAHs were

significantly high with concentrations of benzo(a)pyrene of about 75 ngm3 other filters

were much lower 02 ngm3 for the winter filter in Madrid and around 50 pgm

3 of BaP

for the summer period in both locations Graphs from Figure 3 show the estimated PAH

air concentration levels during the corresponding sampling days and locations

Figure 3ndash PAHs air concentration levels during sampling

249

41

000

10000

20000

30000

40000

50000

60000

70000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Madrid winter

Madrid Summer

7469

62

000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Prague winter

Prague summer

15

Filter stability

JRC retained three 4 cm diameter filters for analysis from each sampling batch One set

of filters was sent abroad and return to JRC by courier simultaneously to the filters of the

other participants The other two filters from the same sampling batch were analysed one

month before and one month after the circulating filters Those filters were stored in

freezer

The analysis of these filters showed variation within plusmn 10 of the average value

therefore validating the stability of the filters for the exercise The sum of the priority

PAHs quantified on the filters are shown in Figure 4 It is noted the lower uncertainty

associated with filters from Prague when compared to those from Madrid Similar

behaviour was also noted during the homogeneity tests which could be due to a more

volatile composition of the Madrid filters in comparison to Prague or a breakthrough on

the Madrid filters caused by the sampling volume being double that of Prague

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 4ndash Analysis of the filters before and after the exercise

100

110

120

130

140

150

160

170

180

190

F10

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

57

+10

-10

1500

1600

1700

1800

1900

2000

2100

2200

F30

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

33

+10

-10

14

16

18

20

22

24

F3

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

51

+10

- 10

16

17

18

19

20

21

22

23

24

F21

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

41

+10

-10

16

Analytical Methods

Each participant was free to choose the analytical method according to their own

experience As a consequence there were multiple combinations of different separation

techniques detectors extraction systems solvents extraction time clean up and other

analytical parameters No statistical differences could be associated with a specific

technique for extraction or analysis Table 4 shows the different techniques and relevant

analytical conditions used by the participating laboratories

Table 4ndash Analytical method used by the participating laboratories

LABORATORY ANALYTICAL

METHOD COLUMN EXTRACTION SOLVENT TIME CLEANUP

CORRELAT

ION

INTERNAL

STANDARD

IVL HPLC FLD CHROMSPHERE

PAH (VARIAN) SOXLHET PENTANE-ACETONE 24 H

SILICA GEL

MERK

Multipoint-

Linear bb-binapthyl

EPA-LT HPLC FLD SUPELCOSILlTM

LC-PAH SOXLHET HEXANE-ACETONE 4 H

SPE

CARTRIGE

Multipoint-

Linear external extandard

APA-LRA HPLC FLD C18 REVERSE

PHASE SOXLHET ACETONITRILE 16 H -

Multipoint-

Linear external extandard

VMM HPLC FLD ZORBAX ECLIPSE

PAH ASE DICHLOROMETHANE 35 MIN -

Multipoint-

Linear external extandard

LANUV HPLC FLD ZORBAX ECLIPSE

PAH ULTRASONIC TOLUENE 24 H

CHROMAB

ON

Multipoint-

Linear

through

origin

external extandard

AWEL GC-MS DB5-30 M SOXLHET

CYCLOHEXANE-

ISOOCTANE-

ACETONE

4 H - Multipoint-

Linear 111 dibromodecane

CHMU GC-MS DB5-30 M SOXLHET METHANOL-

DICHLOROMETHANE 1 H

SILICA GEL

SUPELCO

Multipoint-

Linear

through

origin

Phe-D Chry-D Per-D

EERC GC-MS DB5-30 M SOXLHET CYLCOHEXANE 16 h - Multipoint-

Linear Py-D Per-D

NERI GC-MS DB5-30 M na DICHLOROMETHANE na - Multipoint-

Linear

BaA-D Chry-D BaP-D

Per-D BghiPer-D

DBahA-D

EEA GC-MS DB-XLD- 30 M ULTRASONIC DICHLOROMETHANE 1 H SILICA GEL Multipoint-

Linear Phe-D Chry-D Per-D

ISSeP GC-MS DB-17 SOXHLET CYCLOHEXANE-

DIETHYLETHER 16 H -

Multipoint-

Linear Phe-D Chry-D BaP-D

EPA-ie GC-MS DB5-30 M ULTRASONIC DICHLOROMETHANE na FLORASIL Multipoint-

Linear Chry-D

ABUM GC-MS DB5-60 M ASE CYCLOHEXANE 30 MIN SILICA GEL Multipoint-

Linear corresponding deuterated

KAL GC-MS DB5-30 M MICROWAVE HEXANE-ACETONE 45 MIN SILICA Multipoint-

Linear

Phe-D Py-D BahA-D

BaP-D IndPy-D

FMI GC-MS DB5-50 M SOXLHET DICHLOROMETHANE 8 H FLORISIL Multipoint

Quadratic

Phe-D Chry-D DBahA-

D Per-D

AEAESG GC-MS ZB-5 30M ASE na na SPE

CARTRIGE

Multipoint-

Linear IS non expecified

ERLAP GC-MS DB-17 30 M MICROWAVE ACETANE-HEXANE 30 MIN

SPE

CARTRIGE

CUPS

Multipoint-

Linear corresponding deuterated

ERLAPT GC-MS DB-17 30 M THERMAL DESORPTION Multipoint-

Linear corresponding deuterated

17

25 of the participating laboratories used liquid chromatography and FLD detection

whilst the rest of the laboratories used gas chromatography separation and mass

spectrometry For gas chromatography separation a 30 m DB5 was the most frequently

used column other phases such as DB17 or longer lengths were rare Soxhlet was the

most common method for extraction used by 8 laboratories three laboratories used

ultrasonic extraction and another three accelerated soxhlet extraction 2 laboratories

extracted the filter by microwave whilst only one laboratory used thermal desorption

There was no agreement in the solvent or time for extraction (acetonitrile pentane

acetone cyclohexane isooctane dichloromethane toluene and mixtures of these solvents

were used by laboratories even with the same extraction technique) with times from

minutes to 24 hours Clean-up was applied by most of the laboratories All analysis were

performed by multipoint calibration Internal standard method was applied to all GC-MS

analysis while only one laboratory used internal standard for HPLC

Analytical uncertainties from participating laboratories

Participating laboratories were requested to estimate the associated expanded

uncertainties of their analytical results These values are given in Table 12 Description of

the uncertainty evaluation provided by each laboratory is given in annex I

Several laboratories provided uncertainties on the basis of data from method validations

and analysis of reference material including the bias as an additional source of

uncertainty On the other hand the 3 analyses per sample requested can only provide an

idea about the analytical repeatability but other sources of uncertainty should be

considered in the calculations such as calibration and standard preparation blank level

reproducibility desorption efficiencies known biases etc Furthermore as the exercise

contains different filters with different concentration levels it is expected that the

analytical uncertainty will depend on the concentration level The lower the analysed

concentration the higher the uncertainty associated with the quantified value Similarly

the analytical uncertainty will be different from compound to compound depending on

its analytical reproducibility and response volatility desorption efficiency etc

Nevertheless these aspects not always considered in the reported uncertainties

Analytical uncertainties from the ERLAP

ERLAP participated in the exercise by analysing the filters using two different

techniques solvent extraction with GC-MS and thermal desorption with GC-MS

analysis

The evaluation of the concentration and the associated budget uncertainty reported by

JRC was based on the results of the averaging of three filter samples analysed in

triplicate by liquid extraction and gas chromatography The reproducibility uncertainties

of these analyses were combined with others sources of uncertainties derived from the

standards calibration and system blank In a similar way uncertainty for the thermal

desorption analyses was based on the reproducibility analysis of a number of cuts

18

randomly distributed around the whole high volume filter plus the corresponding sources

of uncertainties related to standards calibration and system blank This uncertainty

evaluation did not consider uncertainties attributed to biases with respect to the analysis

of reference materials

The overall uncertainty ou was calculated as follows

22

1

2

)(blankcl

m

i

jiuu

n

fstdevou

(1)

Where

jicl fu 0250 as an approach value for the uncertainty of the calibration and the

reference standard (see referencies BL Vand Drooge et al J Chromatogr A 1216

(2009) 4030-4039)

2

2)(

iblank

m

blankstdevu i

blank

(2)

fij is the concentration calculated for the injection j of the filter i

n is the number of injections (j= 1 to n)

m is the number of filters (i=1 to m)

jif is the average value of all injections and filters

blanki is the system blank level associated with the analysis of the filter i

Reference values

Due to the nature of this kind of inter-laboratory comparisons the reference value was

determined on the basis of the robust average results from the best performance

laboratories The selection of a best performance laboratory was based on the number of

outliers reported by each laboratory with respect to a robust average calculated on the

basis of the ISO-13528 Therefore robust average

iC and standard deviation s of the

p input laboratories are derived from a convergence process of the following equation

(3)

(4)

p

CC

i

i

)1(

)(1341

2

p

CCs

ii

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 11: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

11

Sampling programme and schedule

The need for real PM10 samples to carry out this exercise was discussed inside the

AQUILA The sampling of PM10 should represent typical operational network

monitoring conditions Two Laboratories Instituto de Salud Carlos III from Spain and the

ldquoCesky hydrometeorologicky ustavrdquo from the Czech Republic voluntarily offered to act

as sampling laboratories and were finally responsible for the PM10 sampling

The sampling was performed according to a defined protocol (see Annex I) by means of

Andersen high volume PM10 samplers on quartz filters (Whatman QM-A) Filters were

heat-treated prior to sampling and each seasonal batch of samples was sent to the JRC for

characterisation

The sampling was performed during two different seasonal periods covering the possible

range of concentrations that characterised the sampling locations summer (June-August

2009) and winter (November-January 2010) The corresponding samplers were sited in

background monitoring stations of ldquoSinesio Delgadordquo (Madrid) and ldquoLibusrdquo (Prague)

Sections of the filters were distributed among participants during the second week of

May 2010 with a data collection deadline beginning of September 2010 The package

contained one filter for each season and location and two blanks (one from each

sampling location)

The comparison was based on the amount of compound quantified on the filter which

should be expected to be equivalent to typical amounts found in low volume sampler

filters

Participating laboratories received the filters together with a ldquoGuide to operationrdquo

(included in Annex I) They were requested to provide information concerning the

analytical method and the uncertainty evaluation of the measurements Laboratories were

requested to report a minimum of 3 replicate injections for each sample

A list of fifteen different PAHs was provided from which seven of them were marked as

priority (See table 2)

12

Table 2ndash List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno(123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene+triphenylene

C Benzo(bjk)fluoranthene In highlighted print priority compounds for the inter-laboratory comparison

Filters management characterisation and homogeneity

Whatman QM-A Quartz microfiber filter [203x 254 cm (8x 10 in) Cat No 1851 865]

were used for sampling in the Andersen high volume PM10 samplers These filters

provide a sampling area of circa 406 cm2 to be subdivided into smaller filter sections

corresponding to low volume filter samples of diameter 4 cm

The high volume sampled filters that arrived directly from the sampling site were kept in

a freezer (at -16 ordmC) until the preparation for distribution among participating

laboratories Twenty filter samples of 4 cm diameter were available from each high

volume sampled filter They were systematically cut by means of a mould specifically

designed for this purpose (See Figure 1)

13

Figure 1ndash Mould and tools for the subdivision of the high volume sampled filter

The low volume dimension filters were carefully prepared for mailing according to a

particular procedure that considered the individual packing and sealing of each sample

(Detail of this packing can be observed in Annex I - Guide to operation)

The filters selected for the inter-laboratory comparison were previously tested for

homogeneity by means of a thermal desorption methodology which allowed the

quantification of small sections of filters with diameters from 25 to 6 mm (Van Drooge

et al)

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 2ndash Relative standard deviation with respect to priority compounds

The random analysis of a minimum four small filter sections by thermal desorption

shows content relative standard deviations compatible with the needs for the comparison

exercise The relative standard deviations associated with the sum of the priority

000

500

1000

1500

2000

2500

3000

1000 10000 100000 1000000 10000000

Σ(priority PAHs) pg

RS

DE

V

B3

B2

F30F21

F10

F3

14

compound concentrations for the sampled filters ranged between 32 and 65 This is in

agreement with previous studies of homogeneity on Andersen high volume sampled

filters (A Baeza et al)

Table 3 shows sampling parameters and average values for the main ambient variables

registered during the sampling of the PM10 in the corresponding locations As expected

PM10 and PM25 winter concentrations were higher than those for summer whilst the

highest levels were found in Prague during winter

Table 3ndash Sampling variables for the PM10 collection

Filter code F3 F21 F10 F30 B2 B3

Location Madrid Prague Madrid Prague Madrid Prague

Sampling Period 6-872009 27-2882009 25-27112009 21-22112009 - -

Sampling volume m3 3090 1590 3190 1708 - -

Temperature ordmC 249 228 92 728 - -

Relative Humidity 32 63 90 87 - -

PM10 microgm3 30 243 21 89 - -

PM25 microgm3 11 167 na 64 - -

O3 ppb 37 70 na 5 - -

na non available

With the exception of the winter Prague filter where the concentration of PAHs were

significantly high with concentrations of benzo(a)pyrene of about 75 ngm3 other filters

were much lower 02 ngm3 for the winter filter in Madrid and around 50 pgm

3 of BaP

for the summer period in both locations Graphs from Figure 3 show the estimated PAH

air concentration levels during the corresponding sampling days and locations

Figure 3ndash PAHs air concentration levels during sampling

249

41

000

10000

20000

30000

40000

50000

60000

70000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Madrid winter

Madrid Summer

7469

62

000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Prague winter

Prague summer

15

Filter stability

JRC retained three 4 cm diameter filters for analysis from each sampling batch One set

of filters was sent abroad and return to JRC by courier simultaneously to the filters of the

other participants The other two filters from the same sampling batch were analysed one

month before and one month after the circulating filters Those filters were stored in

freezer

The analysis of these filters showed variation within plusmn 10 of the average value

therefore validating the stability of the filters for the exercise The sum of the priority

PAHs quantified on the filters are shown in Figure 4 It is noted the lower uncertainty

associated with filters from Prague when compared to those from Madrid Similar

behaviour was also noted during the homogeneity tests which could be due to a more

volatile composition of the Madrid filters in comparison to Prague or a breakthrough on

the Madrid filters caused by the sampling volume being double that of Prague

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 4ndash Analysis of the filters before and after the exercise

100

110

120

130

140

150

160

170

180

190

F10

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

57

+10

-10

1500

1600

1700

1800

1900

2000

2100

2200

F30

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

33

+10

-10

14

16

18

20

22

24

F3

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

51

+10

- 10

16

17

18

19

20

21

22

23

24

F21

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

41

+10

-10

16

Analytical Methods

Each participant was free to choose the analytical method according to their own

experience As a consequence there were multiple combinations of different separation

techniques detectors extraction systems solvents extraction time clean up and other

analytical parameters No statistical differences could be associated with a specific

technique for extraction or analysis Table 4 shows the different techniques and relevant

analytical conditions used by the participating laboratories

Table 4ndash Analytical method used by the participating laboratories

LABORATORY ANALYTICAL

METHOD COLUMN EXTRACTION SOLVENT TIME CLEANUP

CORRELAT

ION

INTERNAL

STANDARD

IVL HPLC FLD CHROMSPHERE

PAH (VARIAN) SOXLHET PENTANE-ACETONE 24 H

SILICA GEL

MERK

Multipoint-

Linear bb-binapthyl

EPA-LT HPLC FLD SUPELCOSILlTM

LC-PAH SOXLHET HEXANE-ACETONE 4 H

SPE

CARTRIGE

Multipoint-

Linear external extandard

APA-LRA HPLC FLD C18 REVERSE

PHASE SOXLHET ACETONITRILE 16 H -

Multipoint-

Linear external extandard

VMM HPLC FLD ZORBAX ECLIPSE

PAH ASE DICHLOROMETHANE 35 MIN -

Multipoint-

Linear external extandard

LANUV HPLC FLD ZORBAX ECLIPSE

PAH ULTRASONIC TOLUENE 24 H

CHROMAB

ON

Multipoint-

Linear

through

origin

external extandard

AWEL GC-MS DB5-30 M SOXLHET

CYCLOHEXANE-

ISOOCTANE-

ACETONE

4 H - Multipoint-

Linear 111 dibromodecane

CHMU GC-MS DB5-30 M SOXLHET METHANOL-

DICHLOROMETHANE 1 H

SILICA GEL

SUPELCO

Multipoint-

Linear

through

origin

Phe-D Chry-D Per-D

EERC GC-MS DB5-30 M SOXLHET CYLCOHEXANE 16 h - Multipoint-

Linear Py-D Per-D

NERI GC-MS DB5-30 M na DICHLOROMETHANE na - Multipoint-

Linear

BaA-D Chry-D BaP-D

Per-D BghiPer-D

DBahA-D

EEA GC-MS DB-XLD- 30 M ULTRASONIC DICHLOROMETHANE 1 H SILICA GEL Multipoint-

Linear Phe-D Chry-D Per-D

ISSeP GC-MS DB-17 SOXHLET CYCLOHEXANE-

DIETHYLETHER 16 H -

Multipoint-

Linear Phe-D Chry-D BaP-D

EPA-ie GC-MS DB5-30 M ULTRASONIC DICHLOROMETHANE na FLORASIL Multipoint-

Linear Chry-D

ABUM GC-MS DB5-60 M ASE CYCLOHEXANE 30 MIN SILICA GEL Multipoint-

Linear corresponding deuterated

KAL GC-MS DB5-30 M MICROWAVE HEXANE-ACETONE 45 MIN SILICA Multipoint-

Linear

Phe-D Py-D BahA-D

BaP-D IndPy-D

FMI GC-MS DB5-50 M SOXLHET DICHLOROMETHANE 8 H FLORISIL Multipoint

Quadratic

Phe-D Chry-D DBahA-

D Per-D

AEAESG GC-MS ZB-5 30M ASE na na SPE

CARTRIGE

Multipoint-

Linear IS non expecified

ERLAP GC-MS DB-17 30 M MICROWAVE ACETANE-HEXANE 30 MIN

SPE

CARTRIGE

CUPS

Multipoint-

Linear corresponding deuterated

ERLAPT GC-MS DB-17 30 M THERMAL DESORPTION Multipoint-

Linear corresponding deuterated

17

25 of the participating laboratories used liquid chromatography and FLD detection

whilst the rest of the laboratories used gas chromatography separation and mass

spectrometry For gas chromatography separation a 30 m DB5 was the most frequently

used column other phases such as DB17 or longer lengths were rare Soxhlet was the

most common method for extraction used by 8 laboratories three laboratories used

ultrasonic extraction and another three accelerated soxhlet extraction 2 laboratories

extracted the filter by microwave whilst only one laboratory used thermal desorption

There was no agreement in the solvent or time for extraction (acetonitrile pentane

acetone cyclohexane isooctane dichloromethane toluene and mixtures of these solvents

were used by laboratories even with the same extraction technique) with times from

minutes to 24 hours Clean-up was applied by most of the laboratories All analysis were

performed by multipoint calibration Internal standard method was applied to all GC-MS

analysis while only one laboratory used internal standard for HPLC

Analytical uncertainties from participating laboratories

Participating laboratories were requested to estimate the associated expanded

uncertainties of their analytical results These values are given in Table 12 Description of

the uncertainty evaluation provided by each laboratory is given in annex I

Several laboratories provided uncertainties on the basis of data from method validations

and analysis of reference material including the bias as an additional source of

uncertainty On the other hand the 3 analyses per sample requested can only provide an

idea about the analytical repeatability but other sources of uncertainty should be

considered in the calculations such as calibration and standard preparation blank level

reproducibility desorption efficiencies known biases etc Furthermore as the exercise

contains different filters with different concentration levels it is expected that the

analytical uncertainty will depend on the concentration level The lower the analysed

concentration the higher the uncertainty associated with the quantified value Similarly

the analytical uncertainty will be different from compound to compound depending on

its analytical reproducibility and response volatility desorption efficiency etc

Nevertheless these aspects not always considered in the reported uncertainties

Analytical uncertainties from the ERLAP

ERLAP participated in the exercise by analysing the filters using two different

techniques solvent extraction with GC-MS and thermal desorption with GC-MS

analysis

The evaluation of the concentration and the associated budget uncertainty reported by

JRC was based on the results of the averaging of three filter samples analysed in

triplicate by liquid extraction and gas chromatography The reproducibility uncertainties

of these analyses were combined with others sources of uncertainties derived from the

standards calibration and system blank In a similar way uncertainty for the thermal

desorption analyses was based on the reproducibility analysis of a number of cuts

18

randomly distributed around the whole high volume filter plus the corresponding sources

of uncertainties related to standards calibration and system blank This uncertainty

evaluation did not consider uncertainties attributed to biases with respect to the analysis

of reference materials

The overall uncertainty ou was calculated as follows

22

1

2

)(blankcl

m

i

jiuu

n

fstdevou

(1)

Where

jicl fu 0250 as an approach value for the uncertainty of the calibration and the

reference standard (see referencies BL Vand Drooge et al J Chromatogr A 1216

(2009) 4030-4039)

2

2)(

iblank

m

blankstdevu i

blank

(2)

fij is the concentration calculated for the injection j of the filter i

n is the number of injections (j= 1 to n)

m is the number of filters (i=1 to m)

jif is the average value of all injections and filters

blanki is the system blank level associated with the analysis of the filter i

Reference values

Due to the nature of this kind of inter-laboratory comparisons the reference value was

determined on the basis of the robust average results from the best performance

laboratories The selection of a best performance laboratory was based on the number of

outliers reported by each laboratory with respect to a robust average calculated on the

basis of the ISO-13528 Therefore robust average

iC and standard deviation s of the

p input laboratories are derived from a convergence process of the following equation

(3)

(4)

p

CC

i

i

)1(

)(1341

2

p

CCs

ii

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 12: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

12

Table 2ndash List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno(123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene+triphenylene

C Benzo(bjk)fluoranthene In highlighted print priority compounds for the inter-laboratory comparison

Filters management characterisation and homogeneity

Whatman QM-A Quartz microfiber filter [203x 254 cm (8x 10 in) Cat No 1851 865]

were used for sampling in the Andersen high volume PM10 samplers These filters

provide a sampling area of circa 406 cm2 to be subdivided into smaller filter sections

corresponding to low volume filter samples of diameter 4 cm

The high volume sampled filters that arrived directly from the sampling site were kept in

a freezer (at -16 ordmC) until the preparation for distribution among participating

laboratories Twenty filter samples of 4 cm diameter were available from each high

volume sampled filter They were systematically cut by means of a mould specifically

designed for this purpose (See Figure 1)

13

Figure 1ndash Mould and tools for the subdivision of the high volume sampled filter

The low volume dimension filters were carefully prepared for mailing according to a

particular procedure that considered the individual packing and sealing of each sample

(Detail of this packing can be observed in Annex I - Guide to operation)

The filters selected for the inter-laboratory comparison were previously tested for

homogeneity by means of a thermal desorption methodology which allowed the

quantification of small sections of filters with diameters from 25 to 6 mm (Van Drooge

et al)

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 2ndash Relative standard deviation with respect to priority compounds

The random analysis of a minimum four small filter sections by thermal desorption

shows content relative standard deviations compatible with the needs for the comparison

exercise The relative standard deviations associated with the sum of the priority

000

500

1000

1500

2000

2500

3000

1000 10000 100000 1000000 10000000

Σ(priority PAHs) pg

RS

DE

V

B3

B2

F30F21

F10

F3

14

compound concentrations for the sampled filters ranged between 32 and 65 This is in

agreement with previous studies of homogeneity on Andersen high volume sampled

filters (A Baeza et al)

Table 3 shows sampling parameters and average values for the main ambient variables

registered during the sampling of the PM10 in the corresponding locations As expected

PM10 and PM25 winter concentrations were higher than those for summer whilst the

highest levels were found in Prague during winter

Table 3ndash Sampling variables for the PM10 collection

Filter code F3 F21 F10 F30 B2 B3

Location Madrid Prague Madrid Prague Madrid Prague

Sampling Period 6-872009 27-2882009 25-27112009 21-22112009 - -

Sampling volume m3 3090 1590 3190 1708 - -

Temperature ordmC 249 228 92 728 - -

Relative Humidity 32 63 90 87 - -

PM10 microgm3 30 243 21 89 - -

PM25 microgm3 11 167 na 64 - -

O3 ppb 37 70 na 5 - -

na non available

With the exception of the winter Prague filter where the concentration of PAHs were

significantly high with concentrations of benzo(a)pyrene of about 75 ngm3 other filters

were much lower 02 ngm3 for the winter filter in Madrid and around 50 pgm

3 of BaP

for the summer period in both locations Graphs from Figure 3 show the estimated PAH

air concentration levels during the corresponding sampling days and locations

Figure 3ndash PAHs air concentration levels during sampling

249

41

000

10000

20000

30000

40000

50000

60000

70000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Madrid winter

Madrid Summer

7469

62

000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Prague winter

Prague summer

15

Filter stability

JRC retained three 4 cm diameter filters for analysis from each sampling batch One set

of filters was sent abroad and return to JRC by courier simultaneously to the filters of the

other participants The other two filters from the same sampling batch were analysed one

month before and one month after the circulating filters Those filters were stored in

freezer

The analysis of these filters showed variation within plusmn 10 of the average value

therefore validating the stability of the filters for the exercise The sum of the priority

PAHs quantified on the filters are shown in Figure 4 It is noted the lower uncertainty

associated with filters from Prague when compared to those from Madrid Similar

behaviour was also noted during the homogeneity tests which could be due to a more

volatile composition of the Madrid filters in comparison to Prague or a breakthrough on

the Madrid filters caused by the sampling volume being double that of Prague

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 4ndash Analysis of the filters before and after the exercise

100

110

120

130

140

150

160

170

180

190

F10

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

57

+10

-10

1500

1600

1700

1800

1900

2000

2100

2200

F30

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

33

+10

-10

14

16

18

20

22

24

F3

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

51

+10

- 10

16

17

18

19

20

21

22

23

24

F21

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

41

+10

-10

16

Analytical Methods

Each participant was free to choose the analytical method according to their own

experience As a consequence there were multiple combinations of different separation

techniques detectors extraction systems solvents extraction time clean up and other

analytical parameters No statistical differences could be associated with a specific

technique for extraction or analysis Table 4 shows the different techniques and relevant

analytical conditions used by the participating laboratories

Table 4ndash Analytical method used by the participating laboratories

LABORATORY ANALYTICAL

METHOD COLUMN EXTRACTION SOLVENT TIME CLEANUP

CORRELAT

ION

INTERNAL

STANDARD

IVL HPLC FLD CHROMSPHERE

PAH (VARIAN) SOXLHET PENTANE-ACETONE 24 H

SILICA GEL

MERK

Multipoint-

Linear bb-binapthyl

EPA-LT HPLC FLD SUPELCOSILlTM

LC-PAH SOXLHET HEXANE-ACETONE 4 H

SPE

CARTRIGE

Multipoint-

Linear external extandard

APA-LRA HPLC FLD C18 REVERSE

PHASE SOXLHET ACETONITRILE 16 H -

Multipoint-

Linear external extandard

VMM HPLC FLD ZORBAX ECLIPSE

PAH ASE DICHLOROMETHANE 35 MIN -

Multipoint-

Linear external extandard

LANUV HPLC FLD ZORBAX ECLIPSE

PAH ULTRASONIC TOLUENE 24 H

CHROMAB

ON

Multipoint-

Linear

through

origin

external extandard

AWEL GC-MS DB5-30 M SOXLHET

CYCLOHEXANE-

ISOOCTANE-

ACETONE

4 H - Multipoint-

Linear 111 dibromodecane

CHMU GC-MS DB5-30 M SOXLHET METHANOL-

DICHLOROMETHANE 1 H

SILICA GEL

SUPELCO

Multipoint-

Linear

through

origin

Phe-D Chry-D Per-D

EERC GC-MS DB5-30 M SOXLHET CYLCOHEXANE 16 h - Multipoint-

Linear Py-D Per-D

NERI GC-MS DB5-30 M na DICHLOROMETHANE na - Multipoint-

Linear

BaA-D Chry-D BaP-D

Per-D BghiPer-D

DBahA-D

EEA GC-MS DB-XLD- 30 M ULTRASONIC DICHLOROMETHANE 1 H SILICA GEL Multipoint-

Linear Phe-D Chry-D Per-D

ISSeP GC-MS DB-17 SOXHLET CYCLOHEXANE-

DIETHYLETHER 16 H -

Multipoint-

Linear Phe-D Chry-D BaP-D

EPA-ie GC-MS DB5-30 M ULTRASONIC DICHLOROMETHANE na FLORASIL Multipoint-

Linear Chry-D

ABUM GC-MS DB5-60 M ASE CYCLOHEXANE 30 MIN SILICA GEL Multipoint-

Linear corresponding deuterated

KAL GC-MS DB5-30 M MICROWAVE HEXANE-ACETONE 45 MIN SILICA Multipoint-

Linear

Phe-D Py-D BahA-D

BaP-D IndPy-D

FMI GC-MS DB5-50 M SOXLHET DICHLOROMETHANE 8 H FLORISIL Multipoint

Quadratic

Phe-D Chry-D DBahA-

D Per-D

AEAESG GC-MS ZB-5 30M ASE na na SPE

CARTRIGE

Multipoint-

Linear IS non expecified

ERLAP GC-MS DB-17 30 M MICROWAVE ACETANE-HEXANE 30 MIN

SPE

CARTRIGE

CUPS

Multipoint-

Linear corresponding deuterated

ERLAPT GC-MS DB-17 30 M THERMAL DESORPTION Multipoint-

Linear corresponding deuterated

17

25 of the participating laboratories used liquid chromatography and FLD detection

whilst the rest of the laboratories used gas chromatography separation and mass

spectrometry For gas chromatography separation a 30 m DB5 was the most frequently

used column other phases such as DB17 or longer lengths were rare Soxhlet was the

most common method for extraction used by 8 laboratories three laboratories used

ultrasonic extraction and another three accelerated soxhlet extraction 2 laboratories

extracted the filter by microwave whilst only one laboratory used thermal desorption

There was no agreement in the solvent or time for extraction (acetonitrile pentane

acetone cyclohexane isooctane dichloromethane toluene and mixtures of these solvents

were used by laboratories even with the same extraction technique) with times from

minutes to 24 hours Clean-up was applied by most of the laboratories All analysis were

performed by multipoint calibration Internal standard method was applied to all GC-MS

analysis while only one laboratory used internal standard for HPLC

Analytical uncertainties from participating laboratories

Participating laboratories were requested to estimate the associated expanded

uncertainties of their analytical results These values are given in Table 12 Description of

the uncertainty evaluation provided by each laboratory is given in annex I

Several laboratories provided uncertainties on the basis of data from method validations

and analysis of reference material including the bias as an additional source of

uncertainty On the other hand the 3 analyses per sample requested can only provide an

idea about the analytical repeatability but other sources of uncertainty should be

considered in the calculations such as calibration and standard preparation blank level

reproducibility desorption efficiencies known biases etc Furthermore as the exercise

contains different filters with different concentration levels it is expected that the

analytical uncertainty will depend on the concentration level The lower the analysed

concentration the higher the uncertainty associated with the quantified value Similarly

the analytical uncertainty will be different from compound to compound depending on

its analytical reproducibility and response volatility desorption efficiency etc

Nevertheless these aspects not always considered in the reported uncertainties

Analytical uncertainties from the ERLAP

ERLAP participated in the exercise by analysing the filters using two different

techniques solvent extraction with GC-MS and thermal desorption with GC-MS

analysis

The evaluation of the concentration and the associated budget uncertainty reported by

JRC was based on the results of the averaging of three filter samples analysed in

triplicate by liquid extraction and gas chromatography The reproducibility uncertainties

of these analyses were combined with others sources of uncertainties derived from the

standards calibration and system blank In a similar way uncertainty for the thermal

desorption analyses was based on the reproducibility analysis of a number of cuts

18

randomly distributed around the whole high volume filter plus the corresponding sources

of uncertainties related to standards calibration and system blank This uncertainty

evaluation did not consider uncertainties attributed to biases with respect to the analysis

of reference materials

The overall uncertainty ou was calculated as follows

22

1

2

)(blankcl

m

i

jiuu

n

fstdevou

(1)

Where

jicl fu 0250 as an approach value for the uncertainty of the calibration and the

reference standard (see referencies BL Vand Drooge et al J Chromatogr A 1216

(2009) 4030-4039)

2

2)(

iblank

m

blankstdevu i

blank

(2)

fij is the concentration calculated for the injection j of the filter i

n is the number of injections (j= 1 to n)

m is the number of filters (i=1 to m)

jif is the average value of all injections and filters

blanki is the system blank level associated with the analysis of the filter i

Reference values

Due to the nature of this kind of inter-laboratory comparisons the reference value was

determined on the basis of the robust average results from the best performance

laboratories The selection of a best performance laboratory was based on the number of

outliers reported by each laboratory with respect to a robust average calculated on the

basis of the ISO-13528 Therefore robust average

iC and standard deviation s of the

p input laboratories are derived from a convergence process of the following equation

(3)

(4)

p

CC

i

i

)1(

)(1341

2

p

CCs

ii

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 13: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

13

Figure 1ndash Mould and tools for the subdivision of the high volume sampled filter

The low volume dimension filters were carefully prepared for mailing according to a

particular procedure that considered the individual packing and sealing of each sample

(Detail of this packing can be observed in Annex I - Guide to operation)

The filters selected for the inter-laboratory comparison were previously tested for

homogeneity by means of a thermal desorption methodology which allowed the

quantification of small sections of filters with diameters from 25 to 6 mm (Van Drooge

et al)

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 2ndash Relative standard deviation with respect to priority compounds

The random analysis of a minimum four small filter sections by thermal desorption

shows content relative standard deviations compatible with the needs for the comparison

exercise The relative standard deviations associated with the sum of the priority

000

500

1000

1500

2000

2500

3000

1000 10000 100000 1000000 10000000

Σ(priority PAHs) pg

RS

DE

V

B3

B2

F30F21

F10

F3

14

compound concentrations for the sampled filters ranged between 32 and 65 This is in

agreement with previous studies of homogeneity on Andersen high volume sampled

filters (A Baeza et al)

Table 3 shows sampling parameters and average values for the main ambient variables

registered during the sampling of the PM10 in the corresponding locations As expected

PM10 and PM25 winter concentrations were higher than those for summer whilst the

highest levels were found in Prague during winter

Table 3ndash Sampling variables for the PM10 collection

Filter code F3 F21 F10 F30 B2 B3

Location Madrid Prague Madrid Prague Madrid Prague

Sampling Period 6-872009 27-2882009 25-27112009 21-22112009 - -

Sampling volume m3 3090 1590 3190 1708 - -

Temperature ordmC 249 228 92 728 - -

Relative Humidity 32 63 90 87 - -

PM10 microgm3 30 243 21 89 - -

PM25 microgm3 11 167 na 64 - -

O3 ppb 37 70 na 5 - -

na non available

With the exception of the winter Prague filter where the concentration of PAHs were

significantly high with concentrations of benzo(a)pyrene of about 75 ngm3 other filters

were much lower 02 ngm3 for the winter filter in Madrid and around 50 pgm

3 of BaP

for the summer period in both locations Graphs from Figure 3 show the estimated PAH

air concentration levels during the corresponding sampling days and locations

Figure 3ndash PAHs air concentration levels during sampling

249

41

000

10000

20000

30000

40000

50000

60000

70000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Madrid winter

Madrid Summer

7469

62

000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Prague winter

Prague summer

15

Filter stability

JRC retained three 4 cm diameter filters for analysis from each sampling batch One set

of filters was sent abroad and return to JRC by courier simultaneously to the filters of the

other participants The other two filters from the same sampling batch were analysed one

month before and one month after the circulating filters Those filters were stored in

freezer

The analysis of these filters showed variation within plusmn 10 of the average value

therefore validating the stability of the filters for the exercise The sum of the priority

PAHs quantified on the filters are shown in Figure 4 It is noted the lower uncertainty

associated with filters from Prague when compared to those from Madrid Similar

behaviour was also noted during the homogeneity tests which could be due to a more

volatile composition of the Madrid filters in comparison to Prague or a breakthrough on

the Madrid filters caused by the sampling volume being double that of Prague

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 4ndash Analysis of the filters before and after the exercise

100

110

120

130

140

150

160

170

180

190

F10

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

57

+10

-10

1500

1600

1700

1800

1900

2000

2100

2200

F30

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

33

+10

-10

14

16

18

20

22

24

F3

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

51

+10

- 10

16

17

18

19

20

21

22

23

24

F21

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

41

+10

-10

16

Analytical Methods

Each participant was free to choose the analytical method according to their own

experience As a consequence there were multiple combinations of different separation

techniques detectors extraction systems solvents extraction time clean up and other

analytical parameters No statistical differences could be associated with a specific

technique for extraction or analysis Table 4 shows the different techniques and relevant

analytical conditions used by the participating laboratories

Table 4ndash Analytical method used by the participating laboratories

LABORATORY ANALYTICAL

METHOD COLUMN EXTRACTION SOLVENT TIME CLEANUP

CORRELAT

ION

INTERNAL

STANDARD

IVL HPLC FLD CHROMSPHERE

PAH (VARIAN) SOXLHET PENTANE-ACETONE 24 H

SILICA GEL

MERK

Multipoint-

Linear bb-binapthyl

EPA-LT HPLC FLD SUPELCOSILlTM

LC-PAH SOXLHET HEXANE-ACETONE 4 H

SPE

CARTRIGE

Multipoint-

Linear external extandard

APA-LRA HPLC FLD C18 REVERSE

PHASE SOXLHET ACETONITRILE 16 H -

Multipoint-

Linear external extandard

VMM HPLC FLD ZORBAX ECLIPSE

PAH ASE DICHLOROMETHANE 35 MIN -

Multipoint-

Linear external extandard

LANUV HPLC FLD ZORBAX ECLIPSE

PAH ULTRASONIC TOLUENE 24 H

CHROMAB

ON

Multipoint-

Linear

through

origin

external extandard

AWEL GC-MS DB5-30 M SOXLHET

CYCLOHEXANE-

ISOOCTANE-

ACETONE

4 H - Multipoint-

Linear 111 dibromodecane

CHMU GC-MS DB5-30 M SOXLHET METHANOL-

DICHLOROMETHANE 1 H

SILICA GEL

SUPELCO

Multipoint-

Linear

through

origin

Phe-D Chry-D Per-D

EERC GC-MS DB5-30 M SOXLHET CYLCOHEXANE 16 h - Multipoint-

Linear Py-D Per-D

NERI GC-MS DB5-30 M na DICHLOROMETHANE na - Multipoint-

Linear

BaA-D Chry-D BaP-D

Per-D BghiPer-D

DBahA-D

EEA GC-MS DB-XLD- 30 M ULTRASONIC DICHLOROMETHANE 1 H SILICA GEL Multipoint-

Linear Phe-D Chry-D Per-D

ISSeP GC-MS DB-17 SOXHLET CYCLOHEXANE-

DIETHYLETHER 16 H -

Multipoint-

Linear Phe-D Chry-D BaP-D

EPA-ie GC-MS DB5-30 M ULTRASONIC DICHLOROMETHANE na FLORASIL Multipoint-

Linear Chry-D

ABUM GC-MS DB5-60 M ASE CYCLOHEXANE 30 MIN SILICA GEL Multipoint-

Linear corresponding deuterated

KAL GC-MS DB5-30 M MICROWAVE HEXANE-ACETONE 45 MIN SILICA Multipoint-

Linear

Phe-D Py-D BahA-D

BaP-D IndPy-D

FMI GC-MS DB5-50 M SOXLHET DICHLOROMETHANE 8 H FLORISIL Multipoint

Quadratic

Phe-D Chry-D DBahA-

D Per-D

AEAESG GC-MS ZB-5 30M ASE na na SPE

CARTRIGE

Multipoint-

Linear IS non expecified

ERLAP GC-MS DB-17 30 M MICROWAVE ACETANE-HEXANE 30 MIN

SPE

CARTRIGE

CUPS

Multipoint-

Linear corresponding deuterated

ERLAPT GC-MS DB-17 30 M THERMAL DESORPTION Multipoint-

Linear corresponding deuterated

17

25 of the participating laboratories used liquid chromatography and FLD detection

whilst the rest of the laboratories used gas chromatography separation and mass

spectrometry For gas chromatography separation a 30 m DB5 was the most frequently

used column other phases such as DB17 or longer lengths were rare Soxhlet was the

most common method for extraction used by 8 laboratories three laboratories used

ultrasonic extraction and another three accelerated soxhlet extraction 2 laboratories

extracted the filter by microwave whilst only one laboratory used thermal desorption

There was no agreement in the solvent or time for extraction (acetonitrile pentane

acetone cyclohexane isooctane dichloromethane toluene and mixtures of these solvents

were used by laboratories even with the same extraction technique) with times from

minutes to 24 hours Clean-up was applied by most of the laboratories All analysis were

performed by multipoint calibration Internal standard method was applied to all GC-MS

analysis while only one laboratory used internal standard for HPLC

Analytical uncertainties from participating laboratories

Participating laboratories were requested to estimate the associated expanded

uncertainties of their analytical results These values are given in Table 12 Description of

the uncertainty evaluation provided by each laboratory is given in annex I

Several laboratories provided uncertainties on the basis of data from method validations

and analysis of reference material including the bias as an additional source of

uncertainty On the other hand the 3 analyses per sample requested can only provide an

idea about the analytical repeatability but other sources of uncertainty should be

considered in the calculations such as calibration and standard preparation blank level

reproducibility desorption efficiencies known biases etc Furthermore as the exercise

contains different filters with different concentration levels it is expected that the

analytical uncertainty will depend on the concentration level The lower the analysed

concentration the higher the uncertainty associated with the quantified value Similarly

the analytical uncertainty will be different from compound to compound depending on

its analytical reproducibility and response volatility desorption efficiency etc

Nevertheless these aspects not always considered in the reported uncertainties

Analytical uncertainties from the ERLAP

ERLAP participated in the exercise by analysing the filters using two different

techniques solvent extraction with GC-MS and thermal desorption with GC-MS

analysis

The evaluation of the concentration and the associated budget uncertainty reported by

JRC was based on the results of the averaging of three filter samples analysed in

triplicate by liquid extraction and gas chromatography The reproducibility uncertainties

of these analyses were combined with others sources of uncertainties derived from the

standards calibration and system blank In a similar way uncertainty for the thermal

desorption analyses was based on the reproducibility analysis of a number of cuts

18

randomly distributed around the whole high volume filter plus the corresponding sources

of uncertainties related to standards calibration and system blank This uncertainty

evaluation did not consider uncertainties attributed to biases with respect to the analysis

of reference materials

The overall uncertainty ou was calculated as follows

22

1

2

)(blankcl

m

i

jiuu

n

fstdevou

(1)

Where

jicl fu 0250 as an approach value for the uncertainty of the calibration and the

reference standard (see referencies BL Vand Drooge et al J Chromatogr A 1216

(2009) 4030-4039)

2

2)(

iblank

m

blankstdevu i

blank

(2)

fij is the concentration calculated for the injection j of the filter i

n is the number of injections (j= 1 to n)

m is the number of filters (i=1 to m)

jif is the average value of all injections and filters

blanki is the system blank level associated with the analysis of the filter i

Reference values

Due to the nature of this kind of inter-laboratory comparisons the reference value was

determined on the basis of the robust average results from the best performance

laboratories The selection of a best performance laboratory was based on the number of

outliers reported by each laboratory with respect to a robust average calculated on the

basis of the ISO-13528 Therefore robust average

iC and standard deviation s of the

p input laboratories are derived from a convergence process of the following equation

(3)

(4)

p

CC

i

i

)1(

)(1341

2

p

CCs

ii

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 14: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

14

compound concentrations for the sampled filters ranged between 32 and 65 This is in

agreement with previous studies of homogeneity on Andersen high volume sampled

filters (A Baeza et al)

Table 3 shows sampling parameters and average values for the main ambient variables

registered during the sampling of the PM10 in the corresponding locations As expected

PM10 and PM25 winter concentrations were higher than those for summer whilst the

highest levels were found in Prague during winter

Table 3ndash Sampling variables for the PM10 collection

Filter code F3 F21 F10 F30 B2 B3

Location Madrid Prague Madrid Prague Madrid Prague

Sampling Period 6-872009 27-2882009 25-27112009 21-22112009 - -

Sampling volume m3 3090 1590 3190 1708 - -

Temperature ordmC 249 228 92 728 - -

Relative Humidity 32 63 90 87 - -

PM10 microgm3 30 243 21 89 - -

PM25 microgm3 11 167 na 64 - -

O3 ppb 37 70 na 5 - -

na non available

With the exception of the winter Prague filter where the concentration of PAHs were

significantly high with concentrations of benzo(a)pyrene of about 75 ngm3 other filters

were much lower 02 ngm3 for the winter filter in Madrid and around 50 pgm

3 of BaP

for the summer period in both locations Graphs from Figure 3 show the estimated PAH

air concentration levels during the corresponding sampling days and locations

Figure 3ndash PAHs air concentration levels during sampling

249

41

000

10000

20000

30000

40000

50000

60000

70000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Madrid winter

Madrid Summer

7469

62

000

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Phenan

thre

ne

Anthra

cene

Fluora

nthen

e

Pyrene

Benzo[a

]anth

race

ne

Chryse

ne

Benzo[b

]fluora

nthen

e

Benzo[j]

fluora

nthen

e

Benzo[k

]fluora

nthen

e

Benzo[e

]pyr

ene

Benzo[a

]pyr

ene

Peryle

ne

Inden

o[12

3-cd

]pyr

ene

Diben

zo[a

h]a

ntra

cene

Benzo[g

hi]

peryle

ne

Chry

sene+

Trip

henyle

ne

Benzo

[bjk

]fluora

nthen

e

pg

m3

Prague winter

Prague summer

15

Filter stability

JRC retained three 4 cm diameter filters for analysis from each sampling batch One set

of filters was sent abroad and return to JRC by courier simultaneously to the filters of the

other participants The other two filters from the same sampling batch were analysed one

month before and one month after the circulating filters Those filters were stored in

freezer

The analysis of these filters showed variation within plusmn 10 of the average value

therefore validating the stability of the filters for the exercise The sum of the priority

PAHs quantified on the filters are shown in Figure 4 It is noted the lower uncertainty

associated with filters from Prague when compared to those from Madrid Similar

behaviour was also noted during the homogeneity tests which could be due to a more

volatile composition of the Madrid filters in comparison to Prague or a breakthrough on

the Madrid filters caused by the sampling volume being double that of Prague

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 4ndash Analysis of the filters before and after the exercise

100

110

120

130

140

150

160

170

180

190

F10

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

57

+10

-10

1500

1600

1700

1800

1900

2000

2100

2200

F30

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

33

+10

-10

14

16

18

20

22

24

F3

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

51

+10

- 10

16

17

18

19

20

21

22

23

24

F21

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

41

+10

-10

16

Analytical Methods

Each participant was free to choose the analytical method according to their own

experience As a consequence there were multiple combinations of different separation

techniques detectors extraction systems solvents extraction time clean up and other

analytical parameters No statistical differences could be associated with a specific

technique for extraction or analysis Table 4 shows the different techniques and relevant

analytical conditions used by the participating laboratories

Table 4ndash Analytical method used by the participating laboratories

LABORATORY ANALYTICAL

METHOD COLUMN EXTRACTION SOLVENT TIME CLEANUP

CORRELAT

ION

INTERNAL

STANDARD

IVL HPLC FLD CHROMSPHERE

PAH (VARIAN) SOXLHET PENTANE-ACETONE 24 H

SILICA GEL

MERK

Multipoint-

Linear bb-binapthyl

EPA-LT HPLC FLD SUPELCOSILlTM

LC-PAH SOXLHET HEXANE-ACETONE 4 H

SPE

CARTRIGE

Multipoint-

Linear external extandard

APA-LRA HPLC FLD C18 REVERSE

PHASE SOXLHET ACETONITRILE 16 H -

Multipoint-

Linear external extandard

VMM HPLC FLD ZORBAX ECLIPSE

PAH ASE DICHLOROMETHANE 35 MIN -

Multipoint-

Linear external extandard

LANUV HPLC FLD ZORBAX ECLIPSE

PAH ULTRASONIC TOLUENE 24 H

CHROMAB

ON

Multipoint-

Linear

through

origin

external extandard

AWEL GC-MS DB5-30 M SOXLHET

CYCLOHEXANE-

ISOOCTANE-

ACETONE

4 H - Multipoint-

Linear 111 dibromodecane

CHMU GC-MS DB5-30 M SOXLHET METHANOL-

DICHLOROMETHANE 1 H

SILICA GEL

SUPELCO

Multipoint-

Linear

through

origin

Phe-D Chry-D Per-D

EERC GC-MS DB5-30 M SOXLHET CYLCOHEXANE 16 h - Multipoint-

Linear Py-D Per-D

NERI GC-MS DB5-30 M na DICHLOROMETHANE na - Multipoint-

Linear

BaA-D Chry-D BaP-D

Per-D BghiPer-D

DBahA-D

EEA GC-MS DB-XLD- 30 M ULTRASONIC DICHLOROMETHANE 1 H SILICA GEL Multipoint-

Linear Phe-D Chry-D Per-D

ISSeP GC-MS DB-17 SOXHLET CYCLOHEXANE-

DIETHYLETHER 16 H -

Multipoint-

Linear Phe-D Chry-D BaP-D

EPA-ie GC-MS DB5-30 M ULTRASONIC DICHLOROMETHANE na FLORASIL Multipoint-

Linear Chry-D

ABUM GC-MS DB5-60 M ASE CYCLOHEXANE 30 MIN SILICA GEL Multipoint-

Linear corresponding deuterated

KAL GC-MS DB5-30 M MICROWAVE HEXANE-ACETONE 45 MIN SILICA Multipoint-

Linear

Phe-D Py-D BahA-D

BaP-D IndPy-D

FMI GC-MS DB5-50 M SOXLHET DICHLOROMETHANE 8 H FLORISIL Multipoint

Quadratic

Phe-D Chry-D DBahA-

D Per-D

AEAESG GC-MS ZB-5 30M ASE na na SPE

CARTRIGE

Multipoint-

Linear IS non expecified

ERLAP GC-MS DB-17 30 M MICROWAVE ACETANE-HEXANE 30 MIN

SPE

CARTRIGE

CUPS

Multipoint-

Linear corresponding deuterated

ERLAPT GC-MS DB-17 30 M THERMAL DESORPTION Multipoint-

Linear corresponding deuterated

17

25 of the participating laboratories used liquid chromatography and FLD detection

whilst the rest of the laboratories used gas chromatography separation and mass

spectrometry For gas chromatography separation a 30 m DB5 was the most frequently

used column other phases such as DB17 or longer lengths were rare Soxhlet was the

most common method for extraction used by 8 laboratories three laboratories used

ultrasonic extraction and another three accelerated soxhlet extraction 2 laboratories

extracted the filter by microwave whilst only one laboratory used thermal desorption

There was no agreement in the solvent or time for extraction (acetonitrile pentane

acetone cyclohexane isooctane dichloromethane toluene and mixtures of these solvents

were used by laboratories even with the same extraction technique) with times from

minutes to 24 hours Clean-up was applied by most of the laboratories All analysis were

performed by multipoint calibration Internal standard method was applied to all GC-MS

analysis while only one laboratory used internal standard for HPLC

Analytical uncertainties from participating laboratories

Participating laboratories were requested to estimate the associated expanded

uncertainties of their analytical results These values are given in Table 12 Description of

the uncertainty evaluation provided by each laboratory is given in annex I

Several laboratories provided uncertainties on the basis of data from method validations

and analysis of reference material including the bias as an additional source of

uncertainty On the other hand the 3 analyses per sample requested can only provide an

idea about the analytical repeatability but other sources of uncertainty should be

considered in the calculations such as calibration and standard preparation blank level

reproducibility desorption efficiencies known biases etc Furthermore as the exercise

contains different filters with different concentration levels it is expected that the

analytical uncertainty will depend on the concentration level The lower the analysed

concentration the higher the uncertainty associated with the quantified value Similarly

the analytical uncertainty will be different from compound to compound depending on

its analytical reproducibility and response volatility desorption efficiency etc

Nevertheless these aspects not always considered in the reported uncertainties

Analytical uncertainties from the ERLAP

ERLAP participated in the exercise by analysing the filters using two different

techniques solvent extraction with GC-MS and thermal desorption with GC-MS

analysis

The evaluation of the concentration and the associated budget uncertainty reported by

JRC was based on the results of the averaging of three filter samples analysed in

triplicate by liquid extraction and gas chromatography The reproducibility uncertainties

of these analyses were combined with others sources of uncertainties derived from the

standards calibration and system blank In a similar way uncertainty for the thermal

desorption analyses was based on the reproducibility analysis of a number of cuts

18

randomly distributed around the whole high volume filter plus the corresponding sources

of uncertainties related to standards calibration and system blank This uncertainty

evaluation did not consider uncertainties attributed to biases with respect to the analysis

of reference materials

The overall uncertainty ou was calculated as follows

22

1

2

)(blankcl

m

i

jiuu

n

fstdevou

(1)

Where

jicl fu 0250 as an approach value for the uncertainty of the calibration and the

reference standard (see referencies BL Vand Drooge et al J Chromatogr A 1216

(2009) 4030-4039)

2

2)(

iblank

m

blankstdevu i

blank

(2)

fij is the concentration calculated for the injection j of the filter i

n is the number of injections (j= 1 to n)

m is the number of filters (i=1 to m)

jif is the average value of all injections and filters

blanki is the system blank level associated with the analysis of the filter i

Reference values

Due to the nature of this kind of inter-laboratory comparisons the reference value was

determined on the basis of the robust average results from the best performance

laboratories The selection of a best performance laboratory was based on the number of

outliers reported by each laboratory with respect to a robust average calculated on the

basis of the ISO-13528 Therefore robust average

iC and standard deviation s of the

p input laboratories are derived from a convergence process of the following equation

(3)

(4)

p

CC

i

i

)1(

)(1341

2

p

CCs

ii

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 15: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

15

Filter stability

JRC retained three 4 cm diameter filters for analysis from each sampling batch One set

of filters was sent abroad and return to JRC by courier simultaneously to the filters of the

other participants The other two filters from the same sampling batch were analysed one

month before and one month after the circulating filters Those filters were stored in

freezer

The analysis of these filters showed variation within plusmn 10 of the average value

therefore validating the stability of the filters for the exercise The sum of the priority

PAHs quantified on the filters are shown in Figure 4 It is noted the lower uncertainty

associated with filters from Prague when compared to those from Madrid Similar

behaviour was also noted during the homogeneity tests which could be due to a more

volatile composition of the Madrid filters in comparison to Prague or a breakthrough on

the Madrid filters caused by the sampling volume being double that of Prague

Priority PAHs benzo(a)anthracene benzo(bjk)fluoranthene benzo(a)pyrene Indeno(123-cd)pyrene

dibenzo(ah)anthracene

Figure 4ndash Analysis of the filters before and after the exercise

100

110

120

130

140

150

160

170

180

190

F10

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

57

+10

-10

1500

1600

1700

1800

1900

2000

2100

2200

F30

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

33

+10

-10

14

16

18

20

22

24

F3

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

51

+10

- 10

16

17

18

19

20

21

22

23

24

F21

ΣP

rio

rity

co

mp

ou

nd

s

pg

m3

Apr-10 May-10 Jun-10 Average Value

U(x)

41

+10

-10

16

Analytical Methods

Each participant was free to choose the analytical method according to their own

experience As a consequence there were multiple combinations of different separation

techniques detectors extraction systems solvents extraction time clean up and other

analytical parameters No statistical differences could be associated with a specific

technique for extraction or analysis Table 4 shows the different techniques and relevant

analytical conditions used by the participating laboratories

Table 4ndash Analytical method used by the participating laboratories

LABORATORY ANALYTICAL

METHOD COLUMN EXTRACTION SOLVENT TIME CLEANUP

CORRELAT

ION

INTERNAL

STANDARD

IVL HPLC FLD CHROMSPHERE

PAH (VARIAN) SOXLHET PENTANE-ACETONE 24 H

SILICA GEL

MERK

Multipoint-

Linear bb-binapthyl

EPA-LT HPLC FLD SUPELCOSILlTM

LC-PAH SOXLHET HEXANE-ACETONE 4 H

SPE

CARTRIGE

Multipoint-

Linear external extandard

APA-LRA HPLC FLD C18 REVERSE

PHASE SOXLHET ACETONITRILE 16 H -

Multipoint-

Linear external extandard

VMM HPLC FLD ZORBAX ECLIPSE

PAH ASE DICHLOROMETHANE 35 MIN -

Multipoint-

Linear external extandard

LANUV HPLC FLD ZORBAX ECLIPSE

PAH ULTRASONIC TOLUENE 24 H

CHROMAB

ON

Multipoint-

Linear

through

origin

external extandard

AWEL GC-MS DB5-30 M SOXLHET

CYCLOHEXANE-

ISOOCTANE-

ACETONE

4 H - Multipoint-

Linear 111 dibromodecane

CHMU GC-MS DB5-30 M SOXLHET METHANOL-

DICHLOROMETHANE 1 H

SILICA GEL

SUPELCO

Multipoint-

Linear

through

origin

Phe-D Chry-D Per-D

EERC GC-MS DB5-30 M SOXLHET CYLCOHEXANE 16 h - Multipoint-

Linear Py-D Per-D

NERI GC-MS DB5-30 M na DICHLOROMETHANE na - Multipoint-

Linear

BaA-D Chry-D BaP-D

Per-D BghiPer-D

DBahA-D

EEA GC-MS DB-XLD- 30 M ULTRASONIC DICHLOROMETHANE 1 H SILICA GEL Multipoint-

Linear Phe-D Chry-D Per-D

ISSeP GC-MS DB-17 SOXHLET CYCLOHEXANE-

DIETHYLETHER 16 H -

Multipoint-

Linear Phe-D Chry-D BaP-D

EPA-ie GC-MS DB5-30 M ULTRASONIC DICHLOROMETHANE na FLORASIL Multipoint-

Linear Chry-D

ABUM GC-MS DB5-60 M ASE CYCLOHEXANE 30 MIN SILICA GEL Multipoint-

Linear corresponding deuterated

KAL GC-MS DB5-30 M MICROWAVE HEXANE-ACETONE 45 MIN SILICA Multipoint-

Linear

Phe-D Py-D BahA-D

BaP-D IndPy-D

FMI GC-MS DB5-50 M SOXLHET DICHLOROMETHANE 8 H FLORISIL Multipoint

Quadratic

Phe-D Chry-D DBahA-

D Per-D

AEAESG GC-MS ZB-5 30M ASE na na SPE

CARTRIGE

Multipoint-

Linear IS non expecified

ERLAP GC-MS DB-17 30 M MICROWAVE ACETANE-HEXANE 30 MIN

SPE

CARTRIGE

CUPS

Multipoint-

Linear corresponding deuterated

ERLAPT GC-MS DB-17 30 M THERMAL DESORPTION Multipoint-

Linear corresponding deuterated

17

25 of the participating laboratories used liquid chromatography and FLD detection

whilst the rest of the laboratories used gas chromatography separation and mass

spectrometry For gas chromatography separation a 30 m DB5 was the most frequently

used column other phases such as DB17 or longer lengths were rare Soxhlet was the

most common method for extraction used by 8 laboratories three laboratories used

ultrasonic extraction and another three accelerated soxhlet extraction 2 laboratories

extracted the filter by microwave whilst only one laboratory used thermal desorption

There was no agreement in the solvent or time for extraction (acetonitrile pentane

acetone cyclohexane isooctane dichloromethane toluene and mixtures of these solvents

were used by laboratories even with the same extraction technique) with times from

minutes to 24 hours Clean-up was applied by most of the laboratories All analysis were

performed by multipoint calibration Internal standard method was applied to all GC-MS

analysis while only one laboratory used internal standard for HPLC

Analytical uncertainties from participating laboratories

Participating laboratories were requested to estimate the associated expanded

uncertainties of their analytical results These values are given in Table 12 Description of

the uncertainty evaluation provided by each laboratory is given in annex I

Several laboratories provided uncertainties on the basis of data from method validations

and analysis of reference material including the bias as an additional source of

uncertainty On the other hand the 3 analyses per sample requested can only provide an

idea about the analytical repeatability but other sources of uncertainty should be

considered in the calculations such as calibration and standard preparation blank level

reproducibility desorption efficiencies known biases etc Furthermore as the exercise

contains different filters with different concentration levels it is expected that the

analytical uncertainty will depend on the concentration level The lower the analysed

concentration the higher the uncertainty associated with the quantified value Similarly

the analytical uncertainty will be different from compound to compound depending on

its analytical reproducibility and response volatility desorption efficiency etc

Nevertheless these aspects not always considered in the reported uncertainties

Analytical uncertainties from the ERLAP

ERLAP participated in the exercise by analysing the filters using two different

techniques solvent extraction with GC-MS and thermal desorption with GC-MS

analysis

The evaluation of the concentration and the associated budget uncertainty reported by

JRC was based on the results of the averaging of three filter samples analysed in

triplicate by liquid extraction and gas chromatography The reproducibility uncertainties

of these analyses were combined with others sources of uncertainties derived from the

standards calibration and system blank In a similar way uncertainty for the thermal

desorption analyses was based on the reproducibility analysis of a number of cuts

18

randomly distributed around the whole high volume filter plus the corresponding sources

of uncertainties related to standards calibration and system blank This uncertainty

evaluation did not consider uncertainties attributed to biases with respect to the analysis

of reference materials

The overall uncertainty ou was calculated as follows

22

1

2

)(blankcl

m

i

jiuu

n

fstdevou

(1)

Where

jicl fu 0250 as an approach value for the uncertainty of the calibration and the

reference standard (see referencies BL Vand Drooge et al J Chromatogr A 1216

(2009) 4030-4039)

2

2)(

iblank

m

blankstdevu i

blank

(2)

fij is the concentration calculated for the injection j of the filter i

n is the number of injections (j= 1 to n)

m is the number of filters (i=1 to m)

jif is the average value of all injections and filters

blanki is the system blank level associated with the analysis of the filter i

Reference values

Due to the nature of this kind of inter-laboratory comparisons the reference value was

determined on the basis of the robust average results from the best performance

laboratories The selection of a best performance laboratory was based on the number of

outliers reported by each laboratory with respect to a robust average calculated on the

basis of the ISO-13528 Therefore robust average

iC and standard deviation s of the

p input laboratories are derived from a convergence process of the following equation

(3)

(4)

p

CC

i

i

)1(

)(1341

2

p

CCs

ii

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 16: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

16

Analytical Methods

Each participant was free to choose the analytical method according to their own

experience As a consequence there were multiple combinations of different separation

techniques detectors extraction systems solvents extraction time clean up and other

analytical parameters No statistical differences could be associated with a specific

technique for extraction or analysis Table 4 shows the different techniques and relevant

analytical conditions used by the participating laboratories

Table 4ndash Analytical method used by the participating laboratories

LABORATORY ANALYTICAL

METHOD COLUMN EXTRACTION SOLVENT TIME CLEANUP

CORRELAT

ION

INTERNAL

STANDARD

IVL HPLC FLD CHROMSPHERE

PAH (VARIAN) SOXLHET PENTANE-ACETONE 24 H

SILICA GEL

MERK

Multipoint-

Linear bb-binapthyl

EPA-LT HPLC FLD SUPELCOSILlTM

LC-PAH SOXLHET HEXANE-ACETONE 4 H

SPE

CARTRIGE

Multipoint-

Linear external extandard

APA-LRA HPLC FLD C18 REVERSE

PHASE SOXLHET ACETONITRILE 16 H -

Multipoint-

Linear external extandard

VMM HPLC FLD ZORBAX ECLIPSE

PAH ASE DICHLOROMETHANE 35 MIN -

Multipoint-

Linear external extandard

LANUV HPLC FLD ZORBAX ECLIPSE

PAH ULTRASONIC TOLUENE 24 H

CHROMAB

ON

Multipoint-

Linear

through

origin

external extandard

AWEL GC-MS DB5-30 M SOXLHET

CYCLOHEXANE-

ISOOCTANE-

ACETONE

4 H - Multipoint-

Linear 111 dibromodecane

CHMU GC-MS DB5-30 M SOXLHET METHANOL-

DICHLOROMETHANE 1 H

SILICA GEL

SUPELCO

Multipoint-

Linear

through

origin

Phe-D Chry-D Per-D

EERC GC-MS DB5-30 M SOXLHET CYLCOHEXANE 16 h - Multipoint-

Linear Py-D Per-D

NERI GC-MS DB5-30 M na DICHLOROMETHANE na - Multipoint-

Linear

BaA-D Chry-D BaP-D

Per-D BghiPer-D

DBahA-D

EEA GC-MS DB-XLD- 30 M ULTRASONIC DICHLOROMETHANE 1 H SILICA GEL Multipoint-

Linear Phe-D Chry-D Per-D

ISSeP GC-MS DB-17 SOXHLET CYCLOHEXANE-

DIETHYLETHER 16 H -

Multipoint-

Linear Phe-D Chry-D BaP-D

EPA-ie GC-MS DB5-30 M ULTRASONIC DICHLOROMETHANE na FLORASIL Multipoint-

Linear Chry-D

ABUM GC-MS DB5-60 M ASE CYCLOHEXANE 30 MIN SILICA GEL Multipoint-

Linear corresponding deuterated

KAL GC-MS DB5-30 M MICROWAVE HEXANE-ACETONE 45 MIN SILICA Multipoint-

Linear

Phe-D Py-D BahA-D

BaP-D IndPy-D

FMI GC-MS DB5-50 M SOXLHET DICHLOROMETHANE 8 H FLORISIL Multipoint

Quadratic

Phe-D Chry-D DBahA-

D Per-D

AEAESG GC-MS ZB-5 30M ASE na na SPE

CARTRIGE

Multipoint-

Linear IS non expecified

ERLAP GC-MS DB-17 30 M MICROWAVE ACETANE-HEXANE 30 MIN

SPE

CARTRIGE

CUPS

Multipoint-

Linear corresponding deuterated

ERLAPT GC-MS DB-17 30 M THERMAL DESORPTION Multipoint-

Linear corresponding deuterated

17

25 of the participating laboratories used liquid chromatography and FLD detection

whilst the rest of the laboratories used gas chromatography separation and mass

spectrometry For gas chromatography separation a 30 m DB5 was the most frequently

used column other phases such as DB17 or longer lengths were rare Soxhlet was the

most common method for extraction used by 8 laboratories three laboratories used

ultrasonic extraction and another three accelerated soxhlet extraction 2 laboratories

extracted the filter by microwave whilst only one laboratory used thermal desorption

There was no agreement in the solvent or time for extraction (acetonitrile pentane

acetone cyclohexane isooctane dichloromethane toluene and mixtures of these solvents

were used by laboratories even with the same extraction technique) with times from

minutes to 24 hours Clean-up was applied by most of the laboratories All analysis were

performed by multipoint calibration Internal standard method was applied to all GC-MS

analysis while only one laboratory used internal standard for HPLC

Analytical uncertainties from participating laboratories

Participating laboratories were requested to estimate the associated expanded

uncertainties of their analytical results These values are given in Table 12 Description of

the uncertainty evaluation provided by each laboratory is given in annex I

Several laboratories provided uncertainties on the basis of data from method validations

and analysis of reference material including the bias as an additional source of

uncertainty On the other hand the 3 analyses per sample requested can only provide an

idea about the analytical repeatability but other sources of uncertainty should be

considered in the calculations such as calibration and standard preparation blank level

reproducibility desorption efficiencies known biases etc Furthermore as the exercise

contains different filters with different concentration levels it is expected that the

analytical uncertainty will depend on the concentration level The lower the analysed

concentration the higher the uncertainty associated with the quantified value Similarly

the analytical uncertainty will be different from compound to compound depending on

its analytical reproducibility and response volatility desorption efficiency etc

Nevertheless these aspects not always considered in the reported uncertainties

Analytical uncertainties from the ERLAP

ERLAP participated in the exercise by analysing the filters using two different

techniques solvent extraction with GC-MS and thermal desorption with GC-MS

analysis

The evaluation of the concentration and the associated budget uncertainty reported by

JRC was based on the results of the averaging of three filter samples analysed in

triplicate by liquid extraction and gas chromatography The reproducibility uncertainties

of these analyses were combined with others sources of uncertainties derived from the

standards calibration and system blank In a similar way uncertainty for the thermal

desorption analyses was based on the reproducibility analysis of a number of cuts

18

randomly distributed around the whole high volume filter plus the corresponding sources

of uncertainties related to standards calibration and system blank This uncertainty

evaluation did not consider uncertainties attributed to biases with respect to the analysis

of reference materials

The overall uncertainty ou was calculated as follows

22

1

2

)(blankcl

m

i

jiuu

n

fstdevou

(1)

Where

jicl fu 0250 as an approach value for the uncertainty of the calibration and the

reference standard (see referencies BL Vand Drooge et al J Chromatogr A 1216

(2009) 4030-4039)

2

2)(

iblank

m

blankstdevu i

blank

(2)

fij is the concentration calculated for the injection j of the filter i

n is the number of injections (j= 1 to n)

m is the number of filters (i=1 to m)

jif is the average value of all injections and filters

blanki is the system blank level associated with the analysis of the filter i

Reference values

Due to the nature of this kind of inter-laboratory comparisons the reference value was

determined on the basis of the robust average results from the best performance

laboratories The selection of a best performance laboratory was based on the number of

outliers reported by each laboratory with respect to a robust average calculated on the

basis of the ISO-13528 Therefore robust average

iC and standard deviation s of the

p input laboratories are derived from a convergence process of the following equation

(3)

(4)

p

CC

i

i

)1(

)(1341

2

p

CCs

ii

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 17: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

17

25 of the participating laboratories used liquid chromatography and FLD detection

whilst the rest of the laboratories used gas chromatography separation and mass

spectrometry For gas chromatography separation a 30 m DB5 was the most frequently

used column other phases such as DB17 or longer lengths were rare Soxhlet was the

most common method for extraction used by 8 laboratories three laboratories used

ultrasonic extraction and another three accelerated soxhlet extraction 2 laboratories

extracted the filter by microwave whilst only one laboratory used thermal desorption

There was no agreement in the solvent or time for extraction (acetonitrile pentane

acetone cyclohexane isooctane dichloromethane toluene and mixtures of these solvents

were used by laboratories even with the same extraction technique) with times from

minutes to 24 hours Clean-up was applied by most of the laboratories All analysis were

performed by multipoint calibration Internal standard method was applied to all GC-MS

analysis while only one laboratory used internal standard for HPLC

Analytical uncertainties from participating laboratories

Participating laboratories were requested to estimate the associated expanded

uncertainties of their analytical results These values are given in Table 12 Description of

the uncertainty evaluation provided by each laboratory is given in annex I

Several laboratories provided uncertainties on the basis of data from method validations

and analysis of reference material including the bias as an additional source of

uncertainty On the other hand the 3 analyses per sample requested can only provide an

idea about the analytical repeatability but other sources of uncertainty should be

considered in the calculations such as calibration and standard preparation blank level

reproducibility desorption efficiencies known biases etc Furthermore as the exercise

contains different filters with different concentration levels it is expected that the

analytical uncertainty will depend on the concentration level The lower the analysed

concentration the higher the uncertainty associated with the quantified value Similarly

the analytical uncertainty will be different from compound to compound depending on

its analytical reproducibility and response volatility desorption efficiency etc

Nevertheless these aspects not always considered in the reported uncertainties

Analytical uncertainties from the ERLAP

ERLAP participated in the exercise by analysing the filters using two different

techniques solvent extraction with GC-MS and thermal desorption with GC-MS

analysis

The evaluation of the concentration and the associated budget uncertainty reported by

JRC was based on the results of the averaging of three filter samples analysed in

triplicate by liquid extraction and gas chromatography The reproducibility uncertainties

of these analyses were combined with others sources of uncertainties derived from the

standards calibration and system blank In a similar way uncertainty for the thermal

desorption analyses was based on the reproducibility analysis of a number of cuts

18

randomly distributed around the whole high volume filter plus the corresponding sources

of uncertainties related to standards calibration and system blank This uncertainty

evaluation did not consider uncertainties attributed to biases with respect to the analysis

of reference materials

The overall uncertainty ou was calculated as follows

22

1

2

)(blankcl

m

i

jiuu

n

fstdevou

(1)

Where

jicl fu 0250 as an approach value for the uncertainty of the calibration and the

reference standard (see referencies BL Vand Drooge et al J Chromatogr A 1216

(2009) 4030-4039)

2

2)(

iblank

m

blankstdevu i

blank

(2)

fij is the concentration calculated for the injection j of the filter i

n is the number of injections (j= 1 to n)

m is the number of filters (i=1 to m)

jif is the average value of all injections and filters

blanki is the system blank level associated with the analysis of the filter i

Reference values

Due to the nature of this kind of inter-laboratory comparisons the reference value was

determined on the basis of the robust average results from the best performance

laboratories The selection of a best performance laboratory was based on the number of

outliers reported by each laboratory with respect to a robust average calculated on the

basis of the ISO-13528 Therefore robust average

iC and standard deviation s of the

p input laboratories are derived from a convergence process of the following equation

(3)

(4)

p

CC

i

i

)1(

)(1341

2

p

CCs

ii

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 18: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

18

randomly distributed around the whole high volume filter plus the corresponding sources

of uncertainties related to standards calibration and system blank This uncertainty

evaluation did not consider uncertainties attributed to biases with respect to the analysis

of reference materials

The overall uncertainty ou was calculated as follows

22

1

2

)(blankcl

m

i

jiuu

n

fstdevou

(1)

Where

jicl fu 0250 as an approach value for the uncertainty of the calibration and the

reference standard (see referencies BL Vand Drooge et al J Chromatogr A 1216

(2009) 4030-4039)

2

2)(

iblank

m

blankstdevu i

blank

(2)

fij is the concentration calculated for the injection j of the filter i

n is the number of injections (j= 1 to n)

m is the number of filters (i=1 to m)

jif is the average value of all injections and filters

blanki is the system blank level associated with the analysis of the filter i

Reference values

Due to the nature of this kind of inter-laboratory comparisons the reference value was

determined on the basis of the robust average results from the best performance

laboratories The selection of a best performance laboratory was based on the number of

outliers reported by each laboratory with respect to a robust average calculated on the

basis of the ISO-13528 Therefore robust average

iC and standard deviation s of the

p input laboratories are derived from a convergence process of the following equation

(3)

(4)

p

CC

i

i

)1(

)(1341

2

p

CCs

ii

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 19: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

19

Where recurrent values are calculated from these equations

(5)

The initial values are calculated as

(6)

By assuming normal distribution for the bias

ii CC the associated standard

uncertainty is estimated as

22 )251(

icbias up

su

(7)

where icu is the uncertainty of the reported value from laboratory i

The null hypothesis for a bias equal to zero can be evaluated using the two tails statistical

test of normal distribution of the random variable Z defined as

bias

ii

u

CCZ

(8)

In light of this statistic where Z values higher than 3 were considered as outliers a first

evaluation of results was carried out The output of this first evaluation in terms of overall

reported data and outliers are shown in Table 5

Laboratories with an overall ratio outlierreported higher than 025 were excluded from

the estimation of the robust average value ie the reference value of the inter-laboratory

comparison Robust average values from the best performance laboratories and

associated expanded uncertainties (k=2) are given in Table 6 Those values were

considered as reference values for the final evaluation purpose of the exercise

otherwise

51 if 51

51 if 51

i

iii

iii

i

C

sCCsC

sCCsC

C

2p) 1 (i ofmedian 4831

2p) 1 (i ofmedian

i

ii

i

CCs

CC

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 20: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

20

Table 5ndash Outliers versus reported data for all compounds and participating laboratory

Laboratory Compounds

reported outliers Reported outlierreported

IVL 47 11 68 25

EPA-LT 36 9 52 25

APA-LRA 40 9 58 23

VMM 44 9 64 20

LANUV 32 1 46 3

AWEL 29 8 42 28

CHMU 44 25 64 57

EERC 40 3 58 8

NERI 36 11 52 31

EEA 40 24 58 60

ISSeP 52 21 75 40

EPA-ie 31 16 45 52

ABUM 60 8 87 13

KAL 40 4 58 10

FMI 44 8 64 18

AEAESG 49 30 71 61

ERLAP LIQUID 64 0 93 0

ERLAP THERMAL 64 2 93 3

Table 6ndash Reference values and associated expanded uncertainties

F21 F3 F10 F30

Amount ng EU () Amount ng EU () Amount ng EU () Amount ng EU ()

Phenanthrene 39 399 61 230 154 202 1013 127

Anthracene 06 639 07 408 24 300 160 198

Fluoranthene 42 118 72 121 253 133 3049 75

Pyrene 46 159 111 106 319 152 3202 77

Benzo(a)anthracene 22 299 37 362 222 161 3360 52

Chrysene 51 575 120 1013 319 314 3815 183

Benzo(b)fluoranthene 50 186 33 557 316 180 3355 120

Benzo(j)fluoranthene 22 59 18 55 164 153 2237 247

Benzo(k)fluoranthene 22 358 17 291 150 241 1913 127

Benzo(e)pyrene 55 752 39 654 341 331 2450 38

Benzo(a)pyrene 29 167 37 192 232 266 3730 71

Perylene 05 570 06 254 53 452 650 71

Indeno(123-cd)pyrene 42 145 42 161 240 114 2987 112

Dibenzo(ah)anthracene 13 663 11 871 33 367 437 154

Benzo(ghi)perylene 54 199 77 201 342 140 2589 149

Chrysene+triphenylene 37 306 59 384 386 162 4577 149

Benzo(bjk)fluoranthene 87 289 88 369 588 159 7562 160

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 21: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

21

Evaluation of the laboratory results

Laboratory results were treated according to ISO 5725 to have representative

repeatability and reproducibility values for the inter-comparison exercise Furthermore in

order to evaluate the average results reported by the different laboratories the En number

as recommended by ISOEC Guide 43-11997 A214 item E was calculated

22

reflab

reflab

n

UU

CCE

(9)

where Ulab and Uref are the expanded uncertainties for the reported and reference value

respectively

En number expresses the validity of the expanded uncertainty estimate associated with

each result The critical value for En number is 1 En numbers higher than 1 identify

results that are incompatible with the reference value after allowing for the stated

uncertainties The overall evaluation of the laboratory results should consider both bias

and En value because a low En value could be due to a large stated uncertainty

Therefore to indicate performance an overall expanded uncertainty (OEU) representing

the sum of the expanded uncertainty of the reported result Ulab and the absolute value of

its bias with respect to the reference value is used the relative OEU being calculated

according to the following expression

OEU =[(Ulab labC )+(| labC - Cref |)refC ]

100 (10)

Results and discussion

All the 15 PAHs under consideration in the reporting list were not fully reported by all

the laboratories According to Figure 5 compounds like BaP BaA BghiPe (Chr and

Chr+TPhe) and IndPy were reported by 90 of the laboratories While 80 of

laboratories reported Phe Anth DBahA Flu Py and only 60 of the laboratories

reported results for BbFlu BkFlu and BbjkFlu As a result less than 30 of the

laboratories provided results for BjF Per and BeP

These reporting percentages are indicative of difficulties linked to the analytical method

as well as the capability of these laboratories to analyse these compounds It is also noted

that the highest percentages of reporting correspond to those compounds mentioned in the

EU directive 2004107EC in which the laboratories have invested most of their

analytical effort

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 22: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

22

The blank filters analysed by the participants show the noise level associated with the

analytical methodology Figure 6 shows the average value of the blank level (B)

quantified by the participating laboratories in the two filters as well as the value defined

by the best performance laboratories (Blank REF) It is noted that blank levels are

generally higher for the more volatile PAHs which acts as a potential source of

contamination for the material of analysis

Figure 5ndash Percentage of laboratories reporting data for each compound

00

200

400

600

800

1000

1200

Benzo

[j]flu

orant

hene

Perylen

e

Benzo

[e]p

yren

e

Chr

ysen

e+Trip

henylene

Benzo

[b]fl

uora

nthe

ne

Benzo

[k]fl

uora

nthen

e

Ben

zo[b

jk]

fluor

anthe

ne

Chr

ysen

e

Phena

nthre

ne

Anthr

acen

e

Dibenz

o[a

h]an

trace

ne

Fluor

anth

ene

Pyren

e

Inde

no[1

23

-cd

]pyr

ene

Benzo

[gh

i]pe

ryle

ne

Benzo

[a]a

nthra

cene

Benzo

[a]p

yren

e

L

ab

ora

tory

re

po

rtin

g d

ata

of reported data

00

100

200

300

400

500

600

700

800

900

1000

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluorantheneBenzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]antracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

F21 F3 F10 F30

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 23: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

23

100

100

)deviation(1

100

)deviation(

bias()

Figure 6ndash Average PAH levels for the blank filters of the comparison exercise

Figure 7 shows the amount of compounds quantified in each filter in comparison with the

one determined on the blanks by the best performance laboratories It is noted that filters

F21 and F3 corresponding to the summer period in Prague and Madrid respectively

were probably close to the quantification limit of the method in particular for the lighter

compounds like phenathrene or anthracene where the amounts quantified on the blank

and on the filter were similar

Overall results of the inter-laboratory comparison can be represented in terms of bias

with respect to the reference value or deviation of the reference value with respect to the

laboratory when the reference value is higher This can be represented as follows

bias () = deviation () if Laboratory value gt Reference value (11)

or

if Laboratory value lt Reference value (12)

Consequently the sign lsquo+rsquo and lsquo-rsquo makes reference to the lsquooverrsquo and lsquounderrsquo estimation of

the reference value

000

200

400

600

800

1000

1200

1400

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]antra

cene

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF B N of laboratories

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 24: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

24

|-----| standard deviation of the inter-laboratory average value

Figure 7ndash Blanks versus sampled Filters

Figures 8 to 11 shows the results of the inter-laboratory comparison for the different

filters and analysed compounds The figures include outliers and are expressed in terms

of deviation These figures show how some laboratories are systematically over- or

under-estimating the reference concentration On the other hand it is evident that the

scattering of the results increase with the decrease in the amount of compounds on the

filter

In order to calculate reproducibility and repeatability for the inter-laboratory exercise

this data was treated according to ISO5725 The results are represented in Figures 12 and

13 These figures show the increase of the repeatability and reproducibility values with

the decrease in the concentrations on the filters Repeatability values over 10 were

observed in compounds like anthracene chrysene benzo(b)fluoranthene benzo(a)pyrene

perylene indeno(123-cd)pyrene dibenzo(ah)anthracene for the lower concentrations

Reproducibility values over the 50 were systematically obtained for the two summer

filters with the lower concentrations The best reproducibility values were obtained with

the filter of highest concentration with average values of circa 20

0

2

4

6

8

10

12

14

16

18

20

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F21

0

5

10

15

20

25

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F3

0

20

40

60

80

100

120

140

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F10

0

200

400

600

800

1000

1200

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Am

ou

nt

ng

Blank REF

F30

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 25: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

25

Figure 8ndash Inter-laboratory results ndash Filter F21 ndash Prague summer period

Figure 9ndash Inter-laboratory results ndash Filter F3 ndash Madrid summer period

F21

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

-500

500

-250

250

100

-100

-50

50

-25

2510

0

10

F3

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-

25

10

0

10

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 26: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

26

Figure 10ndash Inter-laboratory results ndash Filter F10 ndash Madrid winter period

Figure 11ndash Inter-laboratory results ndash Filter F30 ndash Prague winter period

F10

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

Devia

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

500

-250

250

100

-100

-50

50

-25

10

0

10

F30

IVL

EP

A-L

T

AP

A-L

RA

VM

M

LA

NU

V

AW

EL

CH

MU

EE

RC

NE

RI

EE

A

ISS

eP

EP

A-ie

AB

UM

KA

L

FM

I

AE

AE

SG

ER

LA

P

ER

LA

P

T

Laboratory

De

via

tio

n

Phenanthrene

Anthracene

Fluoranthene

Pyrene

Benzo[a]anthracene

Chrysene

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Perylene

Indeno[123-cd]pyrene

Dibenzo[ah]anthracene

Benzo[ghi]perylene

Chrysene+Triphenylene

Benzo[bjk]fluoranthene

25

-500

250

100

50

10

0

10 -25

500

-250

-100

-50

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 27: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

27

Figure 12ndash Repeatability of the inter-laboratory comparison exercise

Figure 13ndash Reproducibility of the inter-laboratory comparison exercise

Figure 14 represents the median for the repeatability and reproducibility values of all the

analysed compounds In this figure it is possible to see how the repeatability and

reproducibility improve with the increase in the concentration levels on the filter Such an

improvement is more significant for the reproducibility values The robustness of the

method is consequently enhanced at higher concentrations

000

500

1000

1500

2000

2500

3000

3500

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pe

ata

bilit

y S

tan

da

rd D

ev

iati

on

F30 Repeatability F10 Repeatability

F3 Repeatability F21 Repeatability

000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

Re

pro

du

cib

ilit

y S

tan

da

rd D

ev

iati

on

F30 Reproducibility F10 Reproducibility

F3 Reproducibility F21 Reproducibility

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 28: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

28

Figure 14ndash Median reproducibility and repeatability values versus PAH concentration

Figure 15ndash Median overall expanded uncertainty ndash excluding outliers

An overall analytical performance for the analysis of each compound on the basis of this

exercise is given by the median value of the overall expanded uncertainty (OEU)

excluding outliers determined by laboratory according to equation (11) These values are

represented in figure 15 for the four filters of the inter-laboratory comparison The

highest concentration filter (F30) shows the lower OEUs ranging from 10 to 50 Those

000

1000

2000

3000

4000

5000

6000

7000

10 100 1000 10000 100000

Sum PAHs ng

Rep

eata

bil

ity

Rep

rod

ucib

ilit

y

median (repeatability ) Median (reproducibility )

Power (median (repeatability )) Power (Median (reproducibility ))

F30

F30

F10

F10

F3

F3

F21

F21

00

100

200

300

400

500

600

700

800

900

1000

Phe

nant

hren

e

Ant

hrac

ene

Fluor

anth

ene

Pyr

ene

Ben

zo[a

]ant

hrac

ene

Chry

sene

Ben

zo[b

]fluo

rant

hene

Ben

zo[j]flu

orant

hene

Ben

zo[k]fluo

ranth

ene

Ben

zo[e

]pyr

ene

Ben

zo[a

]pyr

ene

Per

ylen

e

Inde

no[123

-cd

]pyr

ene

Dib

enzo

[ah

]anth

race

ne

Ben

zo[g

hi]pe

rylene

Chry

sene+

Triphe

nylene

Ben

zo[b

jk]flu

orant

hene

OE

U

F21 F3 F10 F30

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 29: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

29

with uncertainties increase with decreasing concentration on the filter Therefore from

average OEU of circa 29 for F30 increase to circa 40 for F10 51 for F3 and 52

for F21 (see table 7)

The results of the inter-laboratory comparison exercise have been evaluated according to

ISO 13528 to test the proficiency of each laboratory All this data was collected from

Tables 8 to 12 which shows the average values expanded uncertainties bias En values

and OEU In addition an evaluation according to the criteria of En value has been

established warning Engt1 and Action Engt15 En values higher than one imply

underestimations of the associated uncertainty or a significant bias of the reported value

with respect to the referencersquos one not covered by the associated uncertainties

In general En values are lower for the higher concentrations ie there is probably a

general underestimation of the uncertainty values for the lower concentrations Excluding

outliers median En values are generally under 1 which represent robust results Only for

a few PAHs (phenanthrene fluranthene and pyrene) median values were occasionally

higher than 1 for the lower concentrations (see Figure 16)

Table 7ndash Inter-laboratory median overall expanded uncertainties for compounds without

outliers

median OEU F21 F3 F10 F30

Phenanthrene 898 599 536 317

Anthracene 838 570 629 488

Fluoranthene 356 433 410 224

Pyrene 391 430 364 262

Benzo(a)anthracene 461 544 436 237

Chrysene 553 779 425 397

Benzo(b)fluoranthene 262 580 308 314

Benzo(j)fluoranthene 83 113 164 257

Benzo(k)fluoranthene 376 478 386 297

Benzo(e)pyrene 665 492 316 114

Benzo(a)pyrene 458 502 492 297

Perylene 522 329 419 94

Indeno(123-cd)pyrene 474 418 381 371

Dibenzo(ah)anthracene 919 948 573 332

Benzo(ghi)perylene 506 459 430 406

Chrysene + triphenylene 278 370 161 136

Benzo(bjk)fluoranthene 515 690 314 313

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 30: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

30

Figure 16ndash Median of the absolute En values

Histograms of the results of compounds for the four filters under comparison can be

found in the Annex It is noted that compounds like perylene benzo(j)fluranthene and

benzo(e)pyrene were reported by a very limited number of laboratories Therefore no

generic conclusions can be draw from these compounds

00

02

04

06

08

10

12

14

Phena

nthr

ene

Anthr

acen

e

Fluor

anthen

e

Pyren

e

Benzo

[a]a

nthr

acen

e

Chr

ysen

e

Benzo

[b]fluo

rant

hene

Benzo

[j]flu

oran

then

e

Benzo

[k]fluo

ranthe

ne

Benzo

[e]p

yren

e

Benzo

[a]p

yren

e

Perylen

e

Inde

no[1

23

-cd]p

yren

e

Diben

zo[ah

]anthr

acen

e

Benzo

[gh

i]pe

rylene

Chr

ysen

e+Tr

iphe

nylene

Ben

zo[b

jk]flu

oran

then

e

Me

dia

n |

En

|

F21 F3 F10 F30

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 31: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

31

Table 8ndash Results of the concentrations analysed by each laboratory

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 26 43 116 879 14 38 102 1012 66 81 170 1282

Anthracene 03 05 16 120 02 05 14 146 05 06 22 156

Fluoranthene 40 61 225 2637 31 55 199 3088 48 74 271 3409

Pyrene 37 98 277 2813 32 92 246 3087 49 129 329 3516

Benzo[a]anthracene 13 187 2673 14 26 204 3333 52 51 422 5443 17 20 183 3431 22 29 246 3391

Chrysene 29 56 319 3520 28 36 282 4229

Benzo[b]fluoranthene 47 40 318 3063 45 51 302 3337 55 45 319 3899

Benzo[j]fluoranthene 183 2667 22 19 158 2116

Benzo[k]fluoranthene 19 15 137 1540 16 18 128 1948 15 12 106 1741 28 24 178 2382

Benzo[e]pyrene 101 64 414 3663 29 29 224 2523 38 44 317 2418

Benzo[a]pyrene 27 28 230 3277 26 33 227 4193 142 51 441 6780 24 27 180 3918 28 34 279 3807

Perylene 22 08 67 1050 04 05 28 616 08 07 48 680

Indeno[123-cd]pyrene 45 33 259 2473 34 51 263 3652 143 56 450 5860 35 38 197 2899 48 43 271 3012

Dibenzo[ah]anthracene 07 05 38 608 04 03 21 471 21 06 56 847 05 04 27 416 05 02 23 488

Benzo[ghi]perylene 61 73 387 2957 124 101 501 4113 39 57 280 2839 49 68 334 2430

Chrysene+Triphenylene 77 101 621 6810 38 54 364 5075 49 84 428 4542

Benzo[bjk]fluoranthene 60 69 612 9049 365 150 1365 15873 70 61 430 6841 105 88 656 8398

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1014 215 579 2036 39 69 147 1057 43 79 228 1038

Anthracene 12 20 34 196 167 206 112 215 269 30 35 185 08 03 44 124

Fluoranthene 226 195 429 3000 346 200 655 4858 41 71 230 3070 46 81 310 3348

Pyrene 289 294 560 3003 293 283 795 5013 39 107 276 3107 50 126 391 3507

Benzo[a]anthracene 36 224 403 3413 301 3487 60 29 410 5226 207 3280 18 27 275 3337

Chrysene 51 223 369 3887 526 4640 89 73 622 6117

Benzo[b]fluoranthene 77 200 430 3290 174 723 6180 142 104 956 8135 49 42 308 3706

Benzo[j]fluoranthene 21 18 150 1929

Benzo[k]fluoranthene 34 101 218 1857 175 2087 22 24 265 1866 19 16 167 2104

Benzo[e]pyrene 20 18 412 2408

Benzo[a]pyrene 40 162 363 4017 325 3933 47 37 316 3682 214 3367 27 32 429 3956

Perylene 05 05 70 655

Indeno[123-cd]pyrene 74 193 300 2983 311 3060 255 3233 38 33 239 2808

Dibenzo[ah]anthracene 28 38 50 486 498 50 465 04 02 16 380

Benzo[ghi]perylene 82 137 313 2650 439 2530 43 46 517 2823 55 90 332 2497 48 70 445 3172

Chrysene+Triphenylene 35 60 425 4864

Benzo[bjk]fluoranthene 207 138 897 8267 131 135 587 6877 79 75 624 7740

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 50 73 197 743 97 111 187 813 1005 905 957 2250 26 50 135 914

Anthracene 20 220 04 08 16 120 623 464 561 1168 03 07 24 211

Fluoranthene 40 73 220 2663 37 54 182 2457 323 267 443 3928 42 75 302 3270

Pyrene 60 100 333 3640 27 56 252 2129 377 311 579 4183 46 119 395 3159

Benzo[a]anthracene 30 197 3703 30 23 183 2687 82 54 278 4171 21 28 267 3537

Chrysene 20 20 240 3040 35 44 262 3689 142 109 462 5462

Benzo[b]fluoranthene 40 20 237 2833 146 74 379 4309

Benzo[j]fluoranthene 123 54 270 3067

Benzo[k]fluoranthene 120 1647 104 42 203 2490

Benzo[e]pyrene

Benzo[a]pyrene 20 37 120 3847 17 16 112 2141 74 49 262 4393 23 27 249 3025

Perylene

Indeno[123-cd]pyrene 50 33 220 3097 19 24 142 2134 119 54 251 2851 36 30 249 2672

Dibenzo[ah]anthracene 220 05 04 21 279 84 35 128 936 04 02 24 334

Benzo[ghi]perylene 47 67 287 1820 29 37 204 1544 131 92 359 2988 34 46 270 1854

Chrysene+Triphenylene 27 40 325 3828

Benzo[bjk]fluoranthene 46 36 352 3927 60 52 473 5237

REPORTED RESULT

ng F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 63 70 168 1161 21 44 138 1033 31 125 850 107 154 365 1540

Anthracene 03 07 14 115 02 05 23 126 226 328 257

Fluoranthene 56 92 233 2919 38 66 289 3034 173 222 3692 126 183 674 4333

Pyrene 52 125 254 2829 45 102 372 3163 107 172 3339 94 205 615 4263

Benzo[a]anthracene 26 334 122 2053 17 31 234 3599 161 176 4464 56 56 722 4617

Chrysene 82 313 217 3294 45 73 504 4918 153 157 4198 122 129 2173 7860

Benzo[b]fluoranthene 16 03 4563

Benzo[j]fluoranthene

Benzo[k]fluoranthene 84 2027 51 1783 3507

Benzo[e]pyrene 90 64 2413 4427

Benzo[a]pyrene 34 48 127 4023 29 36 192 3493 55 4577 97 98 468 4407

Perylene 91 180 938

Indeno[123-cd]pyrene 31 45 155 4696 42 45 205 2289 101 104 3125 81 46 2230 4823

Dibenzo[ah]anthracene 05 05 20 369 26 22 81 525 580 306 602

Benzo[ghi]perylene 70 96 348 3228 64 92 428 2440 41 21 4078 97 105 1607 3813

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 102 137 553 8650 361 114 7507 13967

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

ISSeP FMI

VMM EERC EPA-ie AEAESG

APA-LRA CHMU

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 32: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

32

Table 9ndash Expanded uncertainties reported by each laboratory

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 300 300 300 300 609 249 108 35 329 271 57 99

Anthracene 300 300 300 300 610 98 99 38 369 279 221 129

Fluoranthene 300 300 300 300 51 48 15 47 125 404 118 114

Pyrene 300 300 300 300 83 77 24 51 116 272 127 67

Benzo[a]anthracene 300 00 243 243 243 243 96 90 43 72 102 118 131 83

Chrysene 300 300 300 300 100 72 28 41

Benzo[b]fluoranthene 300 300 300 300 148 148 148 148 80 87 122 79

Benzo[j]fluoranthene 132 132 63 127 131 81

Benzo[k]fluoranthene 300 300 300 300 105 105 105 105 122 242 150 207 105 155 138 90

Benzo[e]pyrene 187 231 80 63 210 298 152 107

Benzo[a]pyrene 300 300 300 300 145 145 145 145 124 306 161 57 135 151 149 78

Perylene 561 820 244 41 90 232 109 103

Indeno[123-cd]pyrene 300 300 300 300 98 98 98 98 426 445 158 73 95 115 153 84

Dibenzo[ah]anthracene 300 300 300 300 217 217 217 217 537 415 152 110 140 424 277 159

Benzo[ghi]perylene 300 300 300 300 77 45 24 33 133 94 152 100

Chrysene+Triphenylene 47 56 33 41 110 178 201 115

Benzo[bjk]fluoranthene 137 137 134 116 342 622 46 53 47 67 77 50

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 172 172 172 172 104 83 60 73

Anthracene 258 258 258 258 215 215 215 215 200 368 73 163

Fluoranthene 200 200 200 200 69 69 69 69 62 69 58 54

Pyrene 200 200 200 200 170 170 170 170 62 128 56 55

Benzo[a]anthracene 220 220 220 220 200 200 120 120 120 120 188 189 65 54 68 55

Chrysene 208 208 208 208 199 200 302 302 302 302

Benzo[b]fluoranthene 193 193 193 193 201 201 276 276 276 276 55 52 58 54

Benzo[j]fluoranthene 56 55 68 53

Benzo[k]fluoranthene 259 259 259 259 200 200 335 335 335 335 59 64 60 54

Benzo[e]pyrene 132 149 110 97

Benzo[a]pyrene 261 261 261 261 200 200 282 282 282 282 229 229 75 73 110 85

Perylene 74 67 104 87

Indeno[123-cd]pyrene 223 223 223 223 200 200 342 340 56 77 69 55

Dibenzo[ah]anthracene 212 212 212 212 200 380 380 67 84 110 58

Benzo[ghi]perylene 173 173 173 173 200 200 290 290 290 290 54 71 78 61

Chrysene+Triphenylene 65 91 59 54

Benzo[bjk]fluoranthene 200 199 20 328 327 330 330 40 34 37 33

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 373 373 373 373 233 233 233 233 850 850 850 250

Anthracene 77 77 77 77 289 289 289 289 540 540 540 470

Fluoranthene 328 328 328 328 191 191 191 191 350 350 350 160

Pyrene 147 147 147 147 214 214 214 214 730 730 730 190

Benzo[a]anthracene 239 239 239 239 281 280 281 281 400 400 400 280

Chrysene 149 149 149 149 240 239 239 239

Benzo[b]fluoranthene 256 257 256 256

Benzo[j]fluoranthene 188 171 167 181

Benzo[k]fluoranthene 267 292 299 277

Benzo[e]pyrene

Benzo[a]pyrene 203 203 203 203 274 273 263 274 250 250 250 110

Perylene

Indeno[123-cd]pyrene 198 198 198 198 251 251 251 251 530 530 530 480

Dibenzo[ah]anthracene 97 97 97 97 282 282 260 282 400 400 400 260

Benzo[ghi]perylene 199 199 199 199 263 263 263 263 470 470 470 480

Chrysene+Triphenylene 300 300 300 140

Benzo[bjk]fluoranthene 234 234 234 234 210 210 210 190

EXPANDED UNCERTAINTY F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 140 140 140 140 120 120 123 116 200 200 200 200

Anthracene 210 210 210 210 1030 1026 1027 1034 200

Fluoranthene 147 147 147 147 50 50 48 49 200 200 200 200

Pyrene 158 158 158 158 80 80 81 79 200 200 200 200

Benzo[a]anthracene 164 164 164 164 119 119 119 119 200 201 199 200

Chrysene 168 168 168 168 139 137 141 140 200 200 200 200

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 201 200 200

Benzo[e]pyrene 200 200 200 200

Benzo[a]pyrene 184 184 184 184 482 471 468 469 200 200 200 200

Perylene 200 200 200

Indeno[123-cd]pyrene 149 149 149 149 210 210 205 218 200 200 200 200

Dibenzo[ah]anthracene 167 167 167 167 2073 2058 2092 2075 200 199

Benzo[ghi]perylene 191 191 191 191 346 347 350 348 200 200 200 200

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 208 208 208 208 200 200 200 200

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 33: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

33

Table 10ndash bias with respect to the reference value

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -323 -288 -251 -133 -643 -377 -341 -01 708 328 99 265

Anthracene -538 -272 -329 -250 -646 -311 -417 -84 -173 -132 -98 -23

Fluoranthene -59 -147 -110 -135 -262 -241 -213 13 139 34 69 118

Pyrene -192 -120 -132 -121 -308 -172 -229 -36 71 167 31 98

Benzo[a]anthracene -389 -157 -204 -342 -310 -83 -08 1350 352 899 620 -240 -465 -178 21 -21 -213 109 09

Chrysene -437 -531 01 -77 -453 -700 -115 109

Benzo[b]fluoranthene -67 184 08 -87 -114 529 -45 -05 98 354 12 162

Benzo[j]fluoranthene 118 192 23 22 -33 -54

Benzo[k]fluoranthene -127 -144 -86 -195 -269 77 -151 18 -322 -270 -292 -90 270 408 185 245

Benzo[e]pyrene 825 656 212 495 -478 -261 -344 30 -320 151 -73 -13

Benzo[a]pyrene -53 -246 -08 -121 -111 -99 -21 124 3946 402 900 818 -161 -268 -224 51 -24 -84 202 21

Perylene 3001 239 256 615 -341 -192 -466 -52 432 97 -104 45

Indeno[123-cd]pyrene 53 -209 81 -172 -201 228 99 222 2387 347 878 962 -167 -80 -180 -30 144 30 131 08

Dibenzo[ah]anthracene -433 -537 153 391 -702 -672 -356 78 633 -401 695 936 -580 -590 -178 -48 -605 -788 -286 115

Benzo[ghi]perylene 122 -53 130 142 1288 310 464 589 -279 -254 -182 97 -91 -116 -23 -61

Chrysene+Triphenylene 1063 709 610 488 25 -96 -56 109 315 411 110 -08

Benzo[bjk]fluoranthene -305 -215 41 197 3199 696 1321 1099 -194 -308 -268 -95 209 -06 116 110

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25246 2545 2750 1009 19 131 -46 43 123 296 477 25

Anthracene 1129 1760 419 228 42 36126 14184 7893 685 4397 441 155 454 -563 816 -227

Fluoranthene 4344 1715 693 -16 7190 1789 1585 594 -28 -14 -92 07 94 134 224 98

Pyrene 5339 1649 753 -62 5444 1554 1488 565 -145 -32 -135 -30 107 141 223 95

Benzo[a]anthracene 654 4970 813 16 356 38 1724 -215 846 555 -69 -24 -190 -276 239 -07

Chrysene -13 854 157 19 651 216 729 -388 950 604

Benzo[b]fluoranthene 536 5003 362 -19 2463 1290 842 1819 2121 2029 1425 -25 245 -26 105

Benzo[j]fluoranthene -23 -22 -86 -138

Benzo[k]fluoranthene 577 4928 453 -30 162 91 26 422 766 -25 -129 -72 111 100

Benzo[e]pyrene -645 -547 206 -17

Benzo[a]pyrene 376 3417 563 77 399 55 645 15 361 -13 -77 -97 -66 -128 847 61

Perylene -91 -144 315 07

Indeno[123-cd]pyrene 758 3651 251 -01 297 24 63 82 -93 -214 -02 -60

Dibenzo[ah]anthracene 1191 2598 532 112 140 522 64 -699 -806 -526 -130

Benzo[ghi]perylene 503 787 -87 24 283 -23 -216 -398 511 91 10 169 -29 -36 -122 -88 299 226

Chrysene+Triphenylene -66 10 102 63

Benzo[bjk]fluoranthene 1385 568 526 93 507 526 -01 -91 -86 -149 62 24

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 294 208 273 -267 1498 829 211 -198 24998 13905 5195 1220 -335 -179 -125 -99

Anthracene -173 376 -226 134 -355 -248 111131 61629 22196 6305 -469 -28 -24 319

Fluoranthene -53 21 -131 -126 -126 -249 -282 -194 6652 2722 748 289 03 48 194 73

Pyrene 318 -98 44 137 -418 -494 -211 -335 7287 1807 813 306 11 71 238 -13

Benzo[a]anthracene -199 -115 102 345 -399 -177 -200 2722 447 252 241 -61 -255 199 53

Chrysene -609 -833 -247 -203 -308 -637 -178 -33 1773 -95 448 432

Benzo[b]fluoranthene -204 -401 -250 -155 1909 1218 202 284

Benzo[j]fluoranthene 4630 1979 650 371

Benzo[k]fluoranthene -202 -139 3774 1464 351 302

Benzo[e]pyrene

Benzo[a]pyrene -305 02 -483 31 -402 -575 -518 -426 1574 339 126 178 -208 -266 72 -189

Perylene

Indeno[123-cd]pyrene 181 -198 -82 37 -553 -426 -406 -286 1817 294 45 -46 -139 -288 40 -106

Dibenzo[ah]anthracene -497 -632 -663 -356 -362 5554 2323 2881 1140 -704 -782 -263 -237

Benzo[ghi]perylene -141 -132 -163 -297 -471 -518 -403 -404 1417 196 49 154 -377 -402 -211 -284

Chrysene+Triphenylene -274 -325 -156 -164

Benzo[bjk]fluoranthene -468 -591 -401 -481 -305 -406 -196 -307

bias F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 619 150 85 146 -462 -270 -107 20 -205 1061 -161 1769 1537 1361 520

Anthracene -460 -14 -430 -280 -598 -302 -34 -214 29548 1053 607

Fluoranthene 336 281 -82 -43 -96 -82 141 -05 3096 2091 211 1976 1553 1660 421

Pyrene 147 123 -206 -117 -10 -80 166 -12 1353 551 43 1054 846 924 331

Benzo[a]anthracene 201 7924 -453 -389 -237 -171 54 71 6335 3697 328 1547 504 2250 374

Chrysene 606 1605 -318 -136 -130 -394 580 289 1998 304 101 1384 71 5819 1061

Benzo[b]fluoranthene -682 -911 360

Benzo[j]fluoranthene

Benzo[k]fluoranthene 3936 60 1362 10866 833

Benzo[e]pyrene 618 659 6068 807

Benzo[a]pyrene 164 303 -452 79 10 -14 -172 -63 506 227 2377 1668 1015 181

Perylene 15835 2398 442

Indeno[123-cd]pyrene -279 89 -354 572 -08 75 -144 -234 1385 1493 46 913 109 8307 615

Dibenzo[ah]anthracene -585 -514 -387 -156 989 1068 1474 202 326 8325 376

Benzo[ghi]perylene 279 243 15 247 172 201 251 -57 -250 -727 575 777 364 3693 473

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 173 556 -60 144 3149 296 11767 847

KAL ERLAPT

IVL LANUV NERI ABUM ERLAP

EPA-LT AWEL EEA

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 34: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

34

Table 11ndash En values

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene -07 -09 -08 -05 -14 -14 -16 00 10 08 05 15

Anthracene -08 -06 -09 -08 -10 -08 -14 -04 -02 -03 -03 -01

Fluoranthene -02 -05 -04 -05 -21 -19 -16 01 08 01 04 08

Pyrene -07 -04 -04 -04 -18 -14 -15 -04 04 05 02 09

Benzo[a]anthracene -05 -40 -10 -08 -03 00 -08 -13 -11 02 -01 -06 05 01

Chrysene -07 -05 00 -02 -08 -07 -04 06

Benzo[b]fluoranthene -02 03 00 -03 -05 09 -02 00 05 06 01 11

Benzo[j]fluoranthene 06 07 03 02 -02 -02

Benzo[k]fluoranthene -03 -04 -02 -07 -07 02 -06 01 -09 -08 -11 -04 07 11 06 14

Benzo[e]pyrene -06 -04 -10 04 -04 02 -02 -01

Benzo[a]pyrene -02 -08 00 -04 -05 -04 -01 07 -08 -09 -08 05 -01 -04 06 02

Perylene -05 -03 -10 -06 07 03 -02 04

Indeno[123-cd]pyrene 02 -07 02 -06 -12 11 06 14 -04 -02 -10 -02 08 01 06 01

Dibenzo[ah]anthracene -06 -06 03 09 -11 -08 -09 03 -08 -07 -05 -03 -09 -09 -07 05

Benzo[ghi]perylene 03 -02 04 04 -14 -12 -13 06 -04 -05 -01 -03

Chrysene+Triphenylene 01 -02 -03 07 09 09 04 00

Benzo[bjk]fluoranthene -10 -06 02 09 -05 -05 -17 -06 07 00 06 07

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 56 39 41 27 03 12 22 02

Anthracene 13 21 09 06 45 43 41 17 06 -13 25 -10

Fluoranthene 40 31 19 -01 124 78 71 44 07 09 15 10

Pyrene 42 31 20 -03 49 35 33 20 06 08 13 10

Benzo[a]anthracene 14 37 19 01 11 02 39 -06 31 29 -03 -01 -06 -08 13 -01

Chrysene 00 08 04 01 14 07 09 -04 14 12

Benzo[b]fluoranthene 15 39 11 -01 26 22 23 21 24 21 -01 04 -01 08

Benzo[j]fluoranthene -03 -03 -05 -05

Benzo[k]fluoranthene 11 32 10 -01 05 04 01 08 12 -01 -04 -02 04 07

Benzo[e]pyrene -09 -08 06 -02

Benzo[a]pyrene 09 29 12 03 10 02 13 00 08 00 -02 -04 -04 -06 25 05

Perylene -02 -06 07 01

Indeno[123-cd]pyrene 18 35 08 00 10 01 02 02 -06 -12 00 -05

Dibenzo[ah]anthracene 15 22 11 04 05 08 01 -11 -09 -14 -08

Benzo[ghi]perylene 15 21 -04 01 10 -01 -07 -15 11 03 -06 -04 17 14

Chrysene+Triphenylene -02 00 06 04

Benzo[bjk]fluoranthene 25 15 06 09 08 00 -03 -03 -04 04 01

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 15 12 04 -06 41 40 36 23 -05 -02 -02 -04

Anthracene -04 03 -12 -12 34 34 33 30 -07 00 00 05

Fluoranthene -04 -09 -10 -07 45 38 21 11 00 01 04 04

Pyrene -23 -38 -11 -27 41 30 20 11 00 01 03 -01

Benzo[a]anthracene 08 -10 -07 -10 25 08 07 07 -01 -05 04 02

Chrysene -05 -06 -05 -01 20 -01 10 11

Benzo[b]fluoranthene 25 15 06 08

Benzo[j]fluoranthene 44 39 21 11

Benzo[k]fluoranthene 28 19 07 08

Benzo[e]pyrene

Benzo[a]pyrene -19 -27 -18 -31 22 08 03 05 -08 -10 02 -17

Perylene

Indeno[123-cd]pyrene -33 -22 -25 -16 25 08 02 -02 -03 -07 01 -02

Dibenzo[ah]anthracene -10 -08 -10 -22 28 18 27 18 -10 -09 -06 -09

Benzo[ghi]perylene -21 -23 -22 -21 21 05 02 05 -11 -12 -05 -08

Chrysene+Triphenylene -07 -07 -05 -09

Benzo[bjk]fluoranthene -15 -16 -19 -24 -09 -10 -08 -15

En F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 14 05 03 07 -11 -11 -05 01 26 28 27 16

Anthracene -07 00 -13 -11 -08 -04 00 -03 16

Fluoranthene 15 13 -04 -03 -08 -06 10 -01 33 30 30 14

Pyrene 06 06 -10 -07 -01 -06 09 -01 24 22 22 12

Benzo[a]anthracene 06 53 -25 -35 -08 -05 03 05 26 11 34 13

Chrysene 10 15 -10 -06 -02 -04 15 11 19 01 42 24

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 23 46 21

Benzo[e]pyrene 08 09 42 22

Benzo[a]pyrene 06 10 -16 04 00 00 -04 -01 34 29 21 07

Perylene 46 29 15

Indeno[123-cd]pyrene -15 04 -24 22 00 03 -07 -12 22 04 45 18

Dibenzo[ah]anthracene -09 -06 -10 -07 02 02 03 01 44 12

Benzo[ghi]perylene 09 08 01 09 04 04 05 -02 19 11 39 14

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 05 11 -02 05 36 07 46 21

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 35: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

35

Table 12ndash Overall expanded uncertainty

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 623 588 551 433 1252 626 449 36 1037 599 156 364

Anthracene 838 572 629 550 1256 409 516 122 542 411 319 152

Fluoranthene 359 447 410 435 313 289 229 60 264 437 187 233

Pyrene 492 420 432 421 391 249 253 87 187 439 158 165

Benzo[a]anthracene 457 204 585 553 326 251 336 555 221 93 123 331 239 93

Chrysene 737 831 301 377 553 772 144 150

Benzo[b]fluoranthene 367 484 308 387 262 677 193 153 178 441 134 242

Benzo[j]fluoranthene 250 324 86 150 164 135

Benzo[k]fluoranthene 427 444 386 495 374 182 256 123 444 512 442 297 376 564 324 335

Benzo[e]pyrene 665 492 425 93 530 449 225 120

Benzo[a]pyrene 353 546 308 421 256 244 166 269 286 574 385 108 159 236 351 98

Perylene 902 1012 710 93 522 329 214 148

Indeno[123-cd]pyrene 353 509 381 472 299 326 197 320 593 525 337 102 239 144 284 92

Dibenzo[ah]anthracene 733 837 453 691 919 889 573 295 1117 1005 330 158 745 1212 562 274

Benzo[ghi]perylene 422 353 430 442 355 300 206 130 224 210 175 161

Chrysene+Triphenylene 72 152 89 149 425 589 311 123

Benzo[bjk]fluoranthene 442 351 176 313 536 930 314 148 256 73 193 160

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 25418 2717 2922 1181 227 380 536 97

Anthracene 1387 2017 677 485 36341 14399 8108 900 653 931 889 389

Fluoranthene 4545 1915 893 216 7259 1859 1654 663 155 203 281 152

Pyrene 5539 1849 953 262 5614 1724 1657 735 169 268 279 150

Benzo[a]anthracene 874 5190 1033 235 556 238 1844 336 967 676 257 213 255 331 307 62

Chrysene 221 1062 365 227 851 416 1032 691 1252 906

Benzo[b]fluoranthene 729 5196 556 213 1490 1043 2095 2397 2305 1701 80 297 84 159

Benzo[j]fluoranthene 79 77 154 191

Benzo[k]fluoranthene 836 5187 711 288 362 291 361 756 1100 359 189 136 171 154

Benzo[e]pyrene 777 695 316 114

Benzo[a]pyrene 637 3678 825 338 599 254 927 297 642 294 306 326 142 201 956 146

Perylene 164 211 419 94

Indeno[123-cd]pyrene 981 3875 474 225 496 224 404 422 149 291 71 115

Dibenzo[ah]anthracene 1403 2810 744 323 340 902 445 766 891 635 187

Benzo[ghi]perylene 676 960 260 197 483 223 506 688 800 380 177 159 377 287

Chrysene+Triphenylene 132 101 161 117

Benzo[bjk]fluoranthene 1585 726 113 835 853 331 421 126 183 98 56

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 1871 1202 585 571 25231 14138 5428 1453 1185 1029 975 349

Anthracene 304 212 433 326 111420 61918 22485 6594 1009 568 564 789

Fluoranthene 454 577 610 522 6843 2913 939 480 353 398 544 233

Pyrene 565 641 358 482 7501 2021 1028 520 741 801 968 203

Benzo[a]anthracene 583 638 416 439 3003 727 533 522 461 655 599 333

Chrysene 457 786 327 182 2013 334 687 671

Benzo[b]fluoranthene 2166 1475 458 541

Benzo[j]fluoranthene 4817 2151 818 552

Benzo[k]fluoranthene 4041 1755 650 579

Benzo[e]pyrene

Benzo[a]pyrene 605 778 721 629 1848 612 390 452 458 516 322 299

Perylene

Indeno[123-cd]pyrene 751 623 603 483 2068 545 297 297 669 818 570 586

Dibenzo[ah]anthracene 729 760 453 460 5837 2605 3141 1422 1104 1182 663 497

Benzo[ghi]perylene 669 717 601 602 1680 459 312 417 847 872 681 764

Chrysene+Triphenylene 574 625 456 304

Benzo[bjk]fluoranthene 702 825 636 715 515 616 406 497

OEU

F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene 759 290 225 286 582 390 230 136 1969 1737 1561 720

Anthracene 670 224 640 490 1628 1328 1061 1249 807

Fluoranthene 483 428 229 190 146 132 190 54 2176 1753 1861 621

Pyrene 305 281 364 275 89 161 246 91 1254 1046 1124 531

Benzo[a]anthracene 365 8088 617 553 357 290 174 191 1747 704 2450 574

Chrysene 774 1773 486 304 269 532 721 429 1584 271 6019 1260

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene 1562 11066 1033

Benzo[e]pyrene 818 858 6268 1007

Benzo[a]pyrene 348 487 636 263 492 485 640 533 2577 1868 1215 381

Perylene 16034 2598 643

Indeno[123-cd]pyrene 428 238 503 721 218 286 349 452 1113 309 8507 815

Dibenzo[ah]anthracene 752 681 554 323 3062 3126 3566 2276 8525 576

Benzo[ghi]perylene 470 434 206 438 517 548 601 406 977 564 3893 673

Chrysene+Triphenylene

Benzo[bjk]fluoranthene 381 764 268 352 3349 496 11967 1047

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

APA-LRA CHMU ISSeP FMI

VMM EERC EPA-ie AEAESG

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 36: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

36

Table 13ndash Evaluation of individual results

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene OK OK OK OK warning warning Action OK warning OK OK warning

Anthracene OK OK OK OK OK OK warning OK OK OK OK OK

Fluoranthene OK OK OK OK Action Action Action OK OK OK OK OK

Pyrene OK OK OK OK Action warning warning OK OK OK OK OK

Benzo[a]anthracene OK Action warning OK OK OK OK warning warning OK OK OK OK OK

Chrysene OK OK OK OK OK OK OK OK

Benzo[b]fluoranthene OK OK OK OK OK OK OK OK OK OK OK warning

Benzo[j]fluoranthene OK OK OK OK OK OK

Benzo[k]fluoranthene OK OK OK OK OK OK OK OK OK OK warning OK OK warning OK warning

Benzo[e]pyrene OK OK warning OK OK OK OK OK

Benzo[a]pyrene OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Perylene OK OK OK OK OK OK OK OK

Indeno[123-cd]pyrene OK OK OK OK warning warning OK warning OK OK warning OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK OK warning OK OK OK OK OK OK OK OK OK OK OK

Benzo[ghi]perylene OK OK OK OK warning warning warning OK OK OK OK OK

Chrysene+Triphenylene OK OK OK OK OK OK OK OK

Benzo[bjk]fluoranthene warning OK OK OK OK OK Action OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene Action Action Action Action OK warning Action OK

Anthracene warning Action OK OK Action Action Action Action OK warning Action OK

Fluoranthene Action Action Action OK Action Action Action Action OK OK warning warning

Pyrene Action Action Action OK Action Action Action Action OK OK warning OK

Benzo[a]anthracene warning Action Action OK warning OK Action OK Action Action OK OK OK OK warning OK

Chrysene OK OK OK OK warning OK OK OK warning warning

Benzo[b]fluoranthene Action Action warning OK Action Action Action Action Action Action OK OK OK OK

Benzo[j]fluoranthene OK OK OK OK

Benzo[k]fluoranthene warning Action warning OK OK OK OK OK warning OK OK OK OK OK

Benzo[e]pyrene OK OK OK OK

Benzo[a]pyrene OK Action warning OK warning OK warning OK OK OK OK OK OK OK Action OK

Perylene OK OK OK OK

Indeno[123-cd]pyrene Action Action OK OK warning OK OK OK OK warning OK OK

Dibenzo[ah]anthracene warning Action warning OK OK OK OK warning OK warning OK

Benzo[ghi]perylene Action Action OK OK OK OK OK warning warning OK OK OK Action warning

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene Action Action OK OK OK OK OK OK OK OK OK

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning warning OK OK Action Action Action Action OK OK OK OK

Anthracene OK OK warning warning Action Action Action Action OK OK OK OK

Fluoranthene OK OK warning OK Action Action Action warning OK OK OK OK

Pyrene Action Action warning Action Action Action Action warning OK OK OK OK

Benzo[a]anthracene OK warning OK warning Action OK OK OK OK OK OK OK

Chrysene OK OK OK OK Action OK OK warning

Benzo[b]fluoranthene Action Action OK OK

Benzo[j]fluoranthene Action Action Action warning

Benzo[k]fluoranthene Action Action OK OK

Benzo[e]pyrene

Benzo[a]pyrene Action Action Action Action Action OK OK OK OK warning OK Action

Perylene

Indeno[123-cd]pyrene Action Action Action Action Action OK OK OK OK OK OK OK

Dibenzo[ah]anthracene OK OK OK Action Action Action Action Action warning OK OK OK

Benzo[ghi]perylene Action Action Action Action Action OK OK OK warning warning OK OK

Chrysene+Triphenylene OK OK OK OK

Benzo[bjk]fluoranthene warning Action Action Action OK warning OK warning

Evaluation Results F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30 F21 F3 F10 F30

Phenanthrene warning OK OK OK warning warning OK OK Action Action Action Action

Anthracene OK OK warning warning OK OK OK OK Action

Fluoranthene warning warning OK OK OK OK OK OK Action Action Action warning

Pyrene OK OK warning OK OK OK OK OK Action Action Action warning

Benzo[a]anthracene OK Action Action Action OK OK OK OK Action warning Action warning

Chrysene OK warning OK OK OK OK Action warning Action OK Action Action

Benzo[b]fluoranthene

Benzo[j]fluoranthene

Benzo[k]fluoranthene Action Action Action

Benzo[e]pyrene OK OK Action Action

Benzo[a]pyrene OK OK Action OK OK OK OK OK Action Action Action OK

Perylene Action Action warning

Indeno[123-cd]pyrene Action OK Action Action OK OK OK warning Action OK Action Action

Dibenzo[ah]anthracene OK OK warning OK OK OK OK OK Action warning

Benzo[ghi]perylene OK OK OK OK OK OK OK OK Action warning Action warning

Chrysene+Triphenylene

Benzo[bjk]fluoranthene OK warning OK OK Action OK Action Action

ERLAP

EPA-LT AWEL EEA KAL ERLAPT

IVL LANUV NERI ABUM

VMM EERC EPA-ie AEAESG

APA-LRA CHMU ISSeP FMI

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 37: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

37

Conclusions

The use of high volume samplers to organize inter-laboratory exercise as a valid method to

carry out proficiency tests and evaluate overall performance of PAHs analytical methods is

demonstrated

GC-MS is the predominant technique used in this exercise to analyses PAHs 75 of the

participating laboratories used GC-MS as the technique for quantification while the remaining

laboratories used HPLC

Non statistical differences were found between results reported by HPLC-FLD and GC-MS

techniques

Only one laboratory used thermal desorption as an extraction technique Liquid extraction by

soxhlet microwave ultrasonic or ASE was commonly used There was no agreement on the

use of a particular solvent for extraction Laboratories used different solvents or combination of

solvents to extract PAHs from the filter according to their own expertise

The performance of the laboratories improved for those compounds mentioned in the Directive

200407EC and for which CRM can be found on the market

A difficulty in separating isomers of benzo-fluoranthene in the reporting of results was noted

ie only three laboratories provided values for benzo(j)fluoranthene

Separation problems between chrysene and triphenylene were also reflected on their overall

expanded uncertainty where the uncertainty for chrysene quantification was higher than that of

sum of the two isomers

Although no particular analytical problems were highlighted benzo(e)pyrene and perylene were

only reported by four laboratories

The influence of the blank levels on the quantification of low concentrations generated

overestimations in particular for the more volatile PAHs

Some laboratories systematically provided over- or under-estimations of their results for all

compounds and filters

Repeatability reproducibility and robustness of the method improved with increased PAH

concentration level on the filter

Medians of overall expanded uncertainties ranged from 30 to 50 among filters and from

15 to 70 among compounds

As a median value for the inter-laboratory exercise the overall uncertainty for benzo(a)pyrene

was lower than 50 in all the analysed filters

With minor exceptions median En values were lower than 1 which suggests realistic

estimations of analytical uncertainties for the reported values

Remarks

This report does not comment on individual laboratories results as its purpose is to extract general

conclusions on the methodology and the state of the art of PAH measurements Each participating

laboratory is encouraged to interpret its own result To this respect comments on analysis or possible

interpretations from participating laboratories about outliers are included in the Annex ndash Comments

from laboratories

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 38: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

38

References

BL van Drooge I Nikolova and P Peacuterez Ballesta Thermal desorption gas chromatography-mass

spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from

ambient air particulate matter Journal of chromatography A 1216 (2009) 4030-4039

Baeza Caracena P Peacuterez Ballesta R Connolly Homogeneity of Polycyclic Aromatic Hydrocarbons

Concentrations in High Volume Air Sampler Filters Proceedings QAQC IN THE Field of Emission

and Air Quality Measurements Harmonisation Standardisation and Accreditation Ed A Borowiak

T Hafkensheid K Saunders and P Wood International Conference Prague 21-23 May 2003 pp

122-126

DIRECTIVE 2004107EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15

December 2004 relating to arsenic cadmium mercury nickel and polycyclic aromatic hydrocarbons

in ambient air 2612005 EN Official Journal of the European Union L 233

IARC Monographs on the Evaluation of carcinogenic Risks to Humans

httpmonographsiarcfrENGClassificationClassificationsAlphaOrderpdf

ISO 5725 ndash Accuracy (trueness and precision) of measurement methods and results 1994

ISOEC Guide 43-11997 ndash Proficiency testing by inter-laboratory comparisons Part 1 Development

and operation of proficiency testing schemes

ISO 135282005 Statistical methods for the use in proficiency testing by inter-laboratory comparison

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 39: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

39

ANNEX I

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Guide to operation

Short description of the uncertainty evaluation reported by the participating laboratories

Histogram of results by compounds

Comments from laboratories

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 40: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

40

Protocol for PAHs sampling in high volume samplers and inter-comparison schedule

Laboratories participating in the PM10 sampling collection

ISCIII

Rosaliacutea Fernandez-Patier

Spain

CHMI

Jiri Novak

Checz Republic

Material

- Andersen high volume sampler

- PM10 sampling head

- Quartz filters Whatman QM-A Quartz microfiber filter 203x 254 cm (8x 10 in) Cat No

1851 865

- pre-cleaned tweezers

- Petri-disks (Oslash 50 mm)

- Freezer -16degC

- Aluminium foil

Filter conditioning and handling

Filters are never to be handled

Filters are always handled with pre-cleaned tweezers or appropriated gloves and should never be bent

Tweezers are previously cleaned with hexane (GC quality) and paper tissue and dried in the oven 100

ordmC before use

The filters are heat-treated in an oven at 300 ordmC for a -minimum of 3 hours

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 41: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

41

Afterwards the filter is wrapped in aluminium foil by bending the edges of the aluminium foil (and not

the filter) around the filter The packet is left to cool to room temperature and placed in a dry

environment before sampling

A sticker over the aluminium foil should be attached indicating the date in which the filter was

cleaned the temperature used and duration of treatment

The filter is unwrapped only at the start of the sampling time Care must be taken not to place the

tweezers in contact with the sampling head

After sampling the filter is removed with the cleaned tweezers from the sampling head and wrapped in

the same way that was described previously with the aluminium foil

It is possible to use the same aluminium foils that were used previously if they have not been damaged

and if they have been kept in a clean and dry place and free from sources of contamination

After wrapping the filter sample another sticker is added with the sampling information

Date starting and ending time and sampling location

The filters are kept in freezers until the sampling campaign is terminated and are then sent to JRC

Ispra

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 42: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

42

Sampling frequency and location

Sampling should be preferably located in a traffic-oriented or urban background site in accordance

with the availability of additional information such as meteorological conditions (temperature relative

humidity and wind velocity) additional measurements as (PM10 level ozone and other pollutants)

The sampling will cover two different seasonal conditions where different concentration levels are

expected summer (between June ndash August 2009) and winter (between November 09ndash January 2010)

Sampling laboratories are requested to sample at least 5 filters for each seasonal batch Laboratories

should not weigh the filters although an indication of the overall sampled volume would be useful

It is up to the sampling laboratory to decide the date for each sampling which could be done

consecutively or spread over the corresponding seasonal period The following information could be

registered for each filter

Cleaning date

Cleaning time

Cleaning temperature

Starting time and date

Ending time and date

Sampling volume (ambient conditions)

Average atmospheric pressure KPa

Average sampling temperature K

Average relative humidity

Average inversion layer m

Rainfall mmh

Average ozone level (microgm3 at

standard conditions)

PM10 (from parallel measurements)

PM25 (from parallel measurements)

Other pollutants

NOxCOBTEXECOC etchellip

Description and location of the sampling site

(If available)

Expedition

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 43: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

43

Filters are wrapt and kept in the freezer until the campaign is concluded These filters are then placed

in a cardboard box without being bent This box is wrapped and sent by courier express to JRC Ispra

to the following address

Pascual Peacuterez Ballesta

Via Enrico Fermi 2749 - TP-441

Joint Research Centre

21027-Ispra (VA)

Italia

A blank filter should be included in each batch dispatched This blank has been cleaned treated and

wrapt in the same way as the sampled filters with the only difference that it has not been used for

sampling The filter will be kept in the freezer from the moment that the first sampled filter is

introduced until the seasonal sampling batch is completed

Filters from the summer period are expected to be at the JRC Ispra in September 2009 Whilst filters

from the winter period should be sent at the beginning of February 2010 at the latest

Distribution of material to participating laboratories

After receiving the second batch of filters ERLAP will perform the subdivision of the filters for

distribution amongst participants ERLAP will estimate the homogeneity of the different filters and

will select the best samples from each place and season to be subdivided and distributed amongst

participants

Each participant will consequently receive two sections of filters from each sampling location

corresponding to the summer and winter sampling batch

It is expected that the filters be distributed amongst the participating laboratories by April 2010 The

participating laboratories will have two months to carry out the corresponding analysis and report the

results to ERLAP according to the protocol which will be provided with the filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 44: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

44

Guide to operation

This envelope (Fig a) contains 6 PM10 filters pieces with the following characteristics

a) two blanks filters from the sampling campaigns in Spain and the Czech Republic

b) four loaded filters corresponding to the winter and summer campaigns in the afore-mentioned

cities

The filters have been carefully packed in such a way that they can be easily kept in the freezer until

analysis (Fig b) Each filter has been wrapped independently for easier management and protection

(Fig c)

Fig a Fig b

Fig c

Approximately the loading of the filters corresponds to the volume sampled by a typical LVS ie 50

m3 the expected BaP concentration for the loaded filters would range from 004 to 10 ngm

3

Procedure

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 45: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

45

Record and write the arrival date of the package at your laboratory Keep the filters in the freezer until

analysis

Each filter has been assigned a particular code written on the individual container The first letter

identifies loaded filters (F) or blanks (B)

To unwrap the filter the following material is needed gloves scissors and appropriate tweezers

(Fig1)

To unwrap the filters proceed carefully as described in Figures 2 to 5

Fig 1- Material Fig 2- Cut the plastic envelope by the edge

Fig 3- Take out the aluminium envelope from inside Fig 4- Unwrap the aluminium foil to get the filter

Fig 5- Unfold the filter and introduce it into your container for extraction

Note that the comparison exercise will be based on the amount of compound (ng) quantified on the

filter Therefore assure that the whole filter is extracted and analysed

Reporting of results

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 46: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

46

The following information will be requested from the participants (An excel file will be provided to

each participant for final reporting)

- Full description of the analytical methodology

- Masses of the quantified PAH compounds on the filter (according to the list below)

- Minimum number of replicate injections for each sample 3

- Associated expanded uncertainties for each concentration value reported

- Description and calculations of the measurement uncertainty

List of compounds to be quantified on the filter

Single compound Compounds

1 Phenanthrene

2 Anthracene

3 Fluoranthene

4 Pyrene

5 Benzo(a)anthracene

6 Chrysene

7 Benzo(b)fluoranthene

8 Benzo(j)fluoranthene

9 Benzo(k)fluoranthene

10 Benzo(e)pyrene

11 Benzo(a)pyrene

12 Perylene

13 Indeno[123-cd)pyrene

14 Dibenzo(ah)anthracene

15 Benzo(ghi)perylene

Combination of isomers Compounds

A Chrysene + triphenylene

C Benzo(bjk)fluoranthene In bolds priority compounds for the interlaboratory comparison

The deadline for submission of results is August 30th

2010 by forwarding the afore-mentioned

documents to the following e-mail address pascualballestajrceceuropaeu

Ispra 7 May 2010

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 47: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

47

Short description of the uncertainty evaluation reported by the participating laboratories

IVL

Description of the methodology- not provided

Uncertainty estimation They provided an overall estimation of 30 as expanded uncertainty for all

averaged measurement values

EPA-LT

Description of the methodology- 2 x reproducibility standard deviation was chosen for the

determination of measurement uncertainty The statistical data were taken from method validation

studies

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 17 to 25 depending on the compound

APA-LRA

Description of the methodology- not provided

Uncertainty estimation not provided

VMM

Description of the methodology- The calculation of the combined uncertainty is based on the results of

spiked duplo field samples over several years This procedure is used in general in our laboratory The

used formula is as follows U = b + 2 CV where b is bias (measured with certified reference material

and CV is the coefficient of variation The results are given in the table (at the left) with the

uncertainties in The table above gives the (+-) values in pg calculated from the average

concentrations

Uncertainty estimation Expanded uncertainty was defined as a percentage of the reported

concentration which ranged from 14 to 21 depending on the compound

LANUV

Description of the methodology- GUM Workbench Pro software was used (Version 232 beta

Metrodata GmbH)

Uncertainty estimation Expanded uncertainties were different from compound to compounds ranging

from 10 to 24

AWEL

Description of the methodology- For each series of measurement there is a qc-sample

The results of the qc-sample is reported on a qc-chart

The deviation of this sample is ca 10 for each PAH

The uncertainty is the deviation of the qc-sample multiplied with factor 2

This addicts a uncertainty of 20 each PAH

Combined standard uncertainty for homogeneous samples

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 48: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

48

________

urel = radicsum uirel2

urel = ~10 each PAH

Expanded uncertainty for each PAH

Urel = k urel (k = 2 probability 95)

Expanded uncertainty 20

Uncertainty estimation Expanded uncertainties were reported as 100 of the analysed value for all

compounds

Uncertainty estimation Expanded uncertainties were reported as 20 of the analysed value for all

compounds

CHMU

Description of the methodology- Software Effi Validation 30 Relative repeatability Measurements

They are weighing averages values

Uncertainty estimation Expanded uncertainties were different according to the analysed compound

ranging from 97 to 373

EERC

Description of the methodology- For the calculation of measurement uncertainty SRM 2585 (Organic

Contaminants in House Dust) was analysed repeatedly Uncertainty was calculated according to the

Nord test method Laboratory measurements repeatability standard deviation measurements bias and

standard uncertainty of certified concentration values were used to calculate the combined standard

uncertainty Values in the table above are presented as expanded combined uncertainty Some values

are quite high due to the high bias value However the matrix and the PAH compoundsrsquo concentration

ranges in SRM 2585 are to some extent different as compared with analysed filters and so the use of

these values with the determined PAH concentrations in filters may be questionable

Uncertainty estimation Expanded uncertainty ranged from approximately 5 to 100 depending on

the compound and concentration level

NERI

Description of the methodology- not provided

Uncertainty estimation not provided

EEA

Description of the methodology- The expanded uncertainty for the individual PAH compounds was

calculated based on the following uncertainties 1 uncertainty of the sub-sampling (weighting of SRM

1944 (U of balance U of unhomogeneity)) 2 uncertainty of the Internal standard addition ( U of IS

concentration U of the volume added) 3 uncertainty of the recovery (extraction clean-up

concentration) 4 uncertainty of repeatability of the measurements 5 Uncertainty of the GCMS

measurements (U of calibration standards U of repeated measurements)

Uncertainty estimation Expanded uncertainties ranged from approximately 7 to 34 of the reported

concentration depending on the compound

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 49: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

49

ISSeP

Description of the methodology Our extraction Qcs(1000 ppb) are reported on a Shewhart chart and

the given uncertainty equals 2Standard Deviation So this uncertainty takes into account also the

extraction and reconcentration phases In routine we are analysing samples with larger sampling

volumes and so larger concentrations The SD is given in and so to get uncertainty we have this

formula uncertainty(ng)=(2SD()mean of replicates(ng))100

Uncertainty estimation Expanded uncertainties ranged from approximately 16 to 30 of the reported

concentration depending on the compound

EPA-ei

Description of the methodology- not provided

Uncertainty estimation not provided

ABUM

Description of the methodology- calculated with the following software SQS 2000 - Software for

statistical Quality control of analytical data

Uncertainty estimation Reported expanded uncertainties ranged from approximately 2 to 60 of the

reported concentration depending on the compound and concentration level

KAL

Description of the methodology- Measurement uncertainty was assessed only for benzo(a)anthracene

benzo(a)pyrene benzo(bjk)fluoranthene indeno(123-cd)pyrene and dibenzo(ah)anthracene For the

assessment of measurement uncertainty the data from the method validation were used Two factors

were taken into account ie the precision of the method (repeatability and reproducibility) and the

bias of the method For repeatability studies 7-8 independent replicates of real filter samples were

measured in one day by one analyst For reproducibility studies 11 independent replicates of real

filter samples were measured in two months period by two analysts Repeatability and reproducibility

studies were performed for three concentration ranges ie at the lower end of the calibration curve

(around 10 pguL - at the limit of quantification) in the middle of the calibration curve (around 50

pguL) and at the upper end of the calibration curve (around 100 pguL) Relative standard deviations

were calculated for each concentration range Furthermore pooled relative standard deviations were

calculated for the whole concentration range (10-100 pguL) thus representing standard uncertainties

of repeatability and reproducibility To assess the bias of the method a Certified Reference Material

was used Trueness of the method was performed only for one concentration range around 50 pguL

(the middle of the calibration curve) by measuring 8 independent replicates in one day (for each

replicate around 50 mg of CRM was weighed) Standard uncertainty of bias was calculated by taking

into account standard deviation of the measured values average of the measured values standard

uncertainty of the certified value the certified value and recovery In the next step combined standard

uncertainty was obtained by calculating the square root of the sum-of-the-squares of individual

standard uncertainties of repeatability reproducibility and bias In the final step expanded uncertainty

was calculated by multiplying combined standard uncertainty with a coverage factor ie k=2 (for a

95 level of confidence)

Uncertainty estimation Reported expanded uncertainties ranged from approximately 20 to 40 of

the reported concentration depending on the compound and concentration level

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 50: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

50

FMI

Description of the methodology- Uncertainties are calculated according to prEN15549 for B(a)P

concentrations corresponding to the limit value (1 ngm-3) and low concentrations (01 ngm-3)

Uncertainty parameters are extraction efficiency compound mass in extracted sample B(a)P response

factor IS concentration response precision and mass of B(a)P in field blank See sheet uncertainty 2

Uncertainty estimation reported expanded uncertainties from 11 to 50 depending on concentration

level and compound

AEAT

Description of the methodology- not provided

Uncertainty estimation Expanded uncertainties were 20 of the reported concentration

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 51: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

51

Histogram of results by compounds

F30 Phenanthrene

0

50

100

150

200

250

300

AP

A-L

RA

CH

MU

EP

A-ie IV

L

FMI

AB

UM

RE

FV

AL

EE

RC

ER

LAP

T

KA

L

VM

M

ER

LAP

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F10 Phenanthrene

0

20

40

60

80

100

120

AB

UM IVL

FMI

EE

RC

KA

L

RE

FV

AL

VM

M

ER

LAP

CH

MU

AP

A-L

RA

ER

LAP

T

ES

GA

EA

T

EE

A

ISS

eP

Phen

anth

rene

ng

F3 Phenanthrene

1

10

100

1000

AB

UM IVL

EE

RC

FMI

RE

FV

AL

KA

L

VM

M

AP

A-L

RA

ER

LAP

T

ER

LAP

CH

MU

EP

A-ie

ES

GA

EA

T

EE

A

ISS

eP

Phe

nant

hren

e n

g

F21 Phenathrene

01

1

10

100

1000

AB

UM

EE

RC

FMI

IVL

EP

A-ie

RE

FV

AL

KA

L

ER

LAP

T

AP

A-L

RA

VM

M

ER

LAP

CH

MU

ES

GA

EA

T

ISS

eP

EE

A

Phe

nant

hren

e n

g

F30 Anthracene

0

20

40

60

80

100

120

140

160

VM

M

IVL

CH

MU

ER

LAP

T

EE

RC

AB

UM

ER

LAP

RE

FV

AL

AW

EL

KA

L

EP

A-L

T

FM

I

AP

A-L

RA

ES

GA

EA

T

EE

A

EP

A-ie

ISS

eP

An

thra

cen

e n

g

F10 Anthracene

1

10

100

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

ER

LAP

EE

RC

FM

I

RE

FV

AL

EP

A-L

T

KA

L

ER

LAP

T

EE

A

ISS

eP

An

thra

cen

e

ng

F3 Anthracene

01

1

10

100

ER

LAP

T

AB

UM

EE

RC

IVL

ER

LAP

FM

I

VM

M

RE

FV

AL

CH

MU

EP

A-L

T

KA

L

EE

A

EP

A-ie

ISS

eP

Ant

hra

cene

ng

F21 Anthracene

01

1

10

100

AB

UM

EE

RC

IVL

FM

I

VM

M

CH

MU

ER

LAP

RE

FV

AL

ER

LAP

T

EP

A-L

T

KA

L

EE

A

ISS

eP

Ant

hrac

ene

ng

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 52: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

52

F30 Fluoranthene

150

250

350

450

550

650

CH

MU

IVL

AP

A-L

RA

VM

M

AW

EL

EE

RC

RE

FV

AL

KA

L

AB

UM

FM

I

ER

LAP

T

ER

LAP

EP

A-ie

ISS

eP

ES

GA

EA

T

EE

A

Flu

ora

nth

ene

ng

F10 Fluoranthene

0

10

20

30

40

50

60

70

80

CH

MU

AB

UM

AP

A-L

RA

IVL

KA

L

VM

M

RE

FV

AL

ER

LAP

EE

RC

FM

I

ER

LAP

T

AW

EL

ISS

eP

EE

A

ES

GA

EA

T

Flu

ora

nth

ene

ng

F3 Fluoranthene

0

5

10

15

20

25

30

35

CH

MU

AB

UM

IVL

EE

RC

KA

L

RE

FV

AL

AP

A-L

RA

ER

LAP

FM

I

ER

LAP

T

VM

M

ES

GA

EA

T

AW

EL

EE

A

EP

A-ie

ISS

eP

Fluo

rant

hene

ng

F21 Fluoranthene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

EE

RC

IVL

AP

A-L

RA

KA

L

RE

FV

AL

FM

I

ER

LAP

T

ER

LAP

VM

M

ES

GA

EA

T

EP

A-ie

AW

EL

ISS

eP

EE

A

Fluo

rant

hene

ng

F30 Pyrene

150

250

350

450

550

650

CH

MU

IVL

VM

M

AW

EL

AB

UM

KA

L

FM

I

EE

RC

RE

FV

AL

EP

A-ie

ER

LAP

T

ER

LAP

AP

A-L

RA

ISS

eP

ES

GA

EA

T

EE

A

Pyr

ene

ng

F10 Pyrene

0

10

20

30

40

50

60

70

80

90

100

AB

UM

CH

MU

VM

M

KA

L

IVL

RE

FV

AL

ER

LAP

AP

A-L

RA

EE

RC

ER

LAP

T

FM

I

AW

EL

ISS

eP

ES

GA

EA

T

EE

A

)Pyr

ene

ng

F3 Pyrene

0

5

10

15

20

25

30

35

40

CH

MU

AB

UM

IVL

AP

A-L

RA

EE

RC

KA

L

RE

FV

AL

FM

I

VM

M

ER

LAP

T

ER

LAP

EP

A-ie

ES

GA

EA

T

EE

A

AW

EL

ISS

eP

Pyr

ene

ng

F21 Pyrene

0

5

10

15

20

25

30

35

40

45

CH

MU

AB

UM

IVL

KA

L

EE

RC

RE

FV

AL

FM

I

ER

LAP

ER

LAP

T

VM

M

AP

A-L

RA

ES

GA

EA

T

EP

A-ie

AW

EL

EE

A

ISS

eP

Pyr

ene

ng

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 53: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

53

F30 Benzo[a]Anthracene

150

250

350

450

550

650

VM

M

IVL

CH

MU

KA

L

LAN

UV

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

AB

UM

AW

EL

FM

I

EE

RC

AP

A-L

RA

ISS

eP

EP

A-ie

ES

GA

EA

T

EE

A

NE

RI

Ben

zo(a

)An

thra

cen

e n

g

F10 Benzo[a]Anthracene

0

10

20

30

40

50

60

70

80

90

VM

M

AB

UM

CH

MU

IVL

AP

A-L

RA

LAN

UV

KA

L

RE

FV

AL

EE

RC

ER

LAP

FM

I

ER

LAP

T

ISS

eP

AW

EL

EP

A-L

T

EE

A

NE

RI

ES

GA

EA

T

Ben

zo(a

)An

thra

cen

e n

g

F3 Benzo[a]Anthracene

0

5

10

15

20

25

30

35

40

AB

UM

CH

MU

LAN

UV

ER

LAP

T

FM

I

EE

A

ER

LAP

AP

A-L

RA

EE

RC

RE

FV

AL

KA

L

NE

RI

ISS

eP

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Ben

zo(a

)Ant

hrac

ene

ng

F21 Benzo[a]Anthracene

0

2

4

6

8

10

12

14

16

18

IVL

LAN

UV

AB

UM

EE

RC

ER

LAP

T

FM

I

ER

LAP

RE

FV

AL

VM

M

CH

MU

EP

A-L

T

KA

L

NE

RI

ES

GA

EA

T

EE

A

ISS

eP

EP

A-ie

Ben

zo(a

)Ant

hrac

ene

ng

F30 Chrysene

150

250

350

450

550

650

750

850

950

AP

A-L

RA

VM

M

IVL

CH

MU

RE

FV

AL

EP

A-L

T

EP

A-ie

AB

UM

AW

EL

EE

RC

ISS

eP

EE

A

ES

GA

EA

T

Ch

ryse

ne

ng

F10 Chrysene

0

50

100

150

200

250

300

VM

M

AP

A-L

RA

CH

MU

AB

UM

RE

FV

AL

IVL

EP

A-L

T

ISS

eP

EE

RC

AW

EL

EE

A

ES

GA

EA

T

Ch

ryse

ne

n

g

F3 Chrysene

0

5

10

15

20

25

30

35

40

AP

A-L

RA

AB

UM

CH

MU

IVL

EE

RC

EE

A

ISS

eP

RE

FV

AL

ES

GA

EA

T

EP

A-ie

EP

A-L

T

VM

M

Chr

ysen

e n

g

F21 Chrysene

0

2

4

6

8

10

12

14

16

18

AP

A-L

RA

AB

UM

IVL

CH

MU

EE

RC

EP

A-L

T

RE

FV

AL

VM

M

EE

A

ES

GA

EA

T

ISS

eP

EP

A-ie

Chr

ysen

e n

g

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 54: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

54

F 30 Benzo[b]Fluoranthene

250

350

450

550

650

750

850

950

AP

A-L

RA

IVL

EP

A-L

T

LAN

UV

RE

FV

AL

ER

LAP

T

ER

LAP

ISS

eP

EP

A-ie

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 10 Benzo[b]Fluoranthene

0

20

40

60

80

100

120

AP

A-L

RA

LAN

UV

ER

LAP

T

RE

FV

AL

IVL

ER

LAP

ISS

eP

EP

A-L

T

AW

EL

EE

A

Ben

zo(b

)Flu

ora

nth

ene

ng

F 3 Benzo[b]Fluoranthene

0

5

10

15

20

25

EP

A-ie

AP

A-L

RA

RE

FV

AL

IVL

ER

LAP

T

ER

LAP

LAN

UV

ISS

eP

EE

A

EP

A-L

T

Ben

zo(b

)Flu

oran

then

e n

g

F 21 Benzo[b]Fluoranthene

0

2

4

6

8

10

12

14

16

18

20

EP

A-ie

AP

A-L

RA

LAN

UV

IVL

ER

LAP

T

RE

FV

AL

ER

LAP

EP

A-L

T

EE

A

ISS

eP

AW

EL

Ben

zo(b

)Flu

oran

then

e n

g

F 30 Benzo(j)]Fluoranthene

0

50

100

150

200

250

300

350

400

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 10 Benzo(j]Fluoranthene

0

5

10

15

20

25

30

35

ER

LAP

T

ER

LAP

RE

FV

AL

LAN

UV

ISS

eP

Ben

zo(j

)Flu

ora

nth

ene

ng

F 3 Benzo(j]Fluoranthene

0

1

2

3

4

5

6

7

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

ng

F 21 Benzo(j]Fluoranthene

0

2

4

6

8

10

12

14

16

ER

LAP

T

RE

FV

AL

ER

LAP

ISS

eP

Be

nzo

(j)F

luo

ran

the

ne

n

g

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 55: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

55

F 30 Benzo(k)]Fluoranthene

0

50

100

150

200

250

300

350

400

450

IVL

AP

A-L

RA

AB

UM

EP

A-L

T

EE

A

RE

FV

AL

LAN

UV

EP

A-ie

AW

EL

ER

LAP

T

ER

LAP

ISS

eP

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 10 Benzo(k)Fluoranthene

0

50

100

150

200

250

AB

UM

AP

A-L

RA

LAN

UV

IVL

RE

FV

AL

ER

LAP

T

AW

EL

ER

LAP

ISS

eP

EP

A-L

T

EE

A

ES

GA

EA

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 3 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

AB

UM

IVL

ER

LAP

T

RE

FV

AL

LAN

UV

ER

LAP

EE

A

ISS

eP

EP

A-ie

EP

A-L

T

Ben

zo(k

)Flu

ora

nth

ene

ng

F 21 Benzo(k)Fluoranthene

0

2

4

6

8

10

12

14

AB

UM

LAN

UV

ER

LAP

T IVL

RE

FV

AL

EE

A

ER

LAP

EP

A-L

T

ES

GA

EA

T

ISS

eP

Ben

zo(k

)Flu

ora

nth

ene

ng

F30 Benzo(e]pyrene

150

250

350

450

550

650

ER

LAP

T

ER

LAP

RE

FV

AL

AB

UM

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

f10 Benzo(e]pyrene

0

50

100

150

200

250

300

AB

UM

ER

LAP

RE

FV

AL

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F3 Benzo(e]pyrene

0

1

2

3

4

5

6

7

8

ER

LAP

T

AB

UM

RE

FV

AL

ER

LAP

NE

RI

ES

GA

EA

T

Ben

zo(e

)Pyr

ene

ng

F21 Benzo(e]pyrene

0

2

4

6

8

10

12

ER

LAP

T

AB

UM

ER

LAP

RE

FV

AL

ES

GA

EA

T

NE

RI

Ben

zo(e

)Pyr

ene

ng

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 56: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

56

F30 Benzo[a]pyrene

150

250

350

450

550

650

CH

MU

FM

I

IVL

KA

L

EE

RC

EE

A

RE

FV

AL

ER

LAP

AP

A-L

RA

AB

UM

AW

EL

ER

LAP

T

EP

A-L

T

VM

M

LAN

UV

ISS

eP

ES

GA

EA

T

EP

A-ie

NE

RI

Ben

zo(a

)Pyr

ene

ng

F10 Benzo[a]pyrene

0

10

20

30

40

50

60

CH

MU

AP

A-L

RA

VM

M

AB

UM

EE

RC

KA

L

LAN

UV

IVL

RE

FV

AL

FM

I

ISS

eP

ER

LAP

EE

A

AW

EL

EP

A-L

T

ER

LAP

T

NE

RI

ES

GA

EA

T

Ben

zo(a

)Pyr

ene

ng

F3 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16

18

20

CH

MU

AB

UM

FM

I

IVL

ER

LAP

T

LAN

UV

ER

LAP

EE

RC

RE

FV

AL

AP

A-L

RA

EE

A

VM

M

ISS

eP

KA

L

NE

RI

EP

A-ie

ES

GA

EA

T

EP

A-L

T

Ben

zo(a

)Pyr

ene

ng

F21 Benzo[a]pyrene

0

2

4

6

8

10

12

14

16C

HM

U

AP

A-L

RA

FM

I

AB

UM

LAN

UV

ER

LAP

T IVL

ER

LAP

RE

FV

AL

EE

RC

VM

M

EP

A-L

T

EE

A

KA

L

ISS

eP

ES

GA

EA

T

NE

RI

Ben

zo(a

)Pyr

ene

ng

F30 Perylene

0

20

40

60

80

100

120

AB

UM ref

ER

LAP

T

ER

LAP

ES

GA

EA

T

NE

RI

Per

ylen

e n

g

F10 Perylene

0

5

10

15

20

25

AB

UM

ER

LAP ref

NE

RI

ER

LAP

T

ES

GA

EA

T

Per

ylen

e n

g

F3 Perylene

0

02

04

06

08

1

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

Per

ylen

e n

g

F21 Perylene

0

2

4

6

8

10

12

AB

UM

ER

LAP

T ref

ER

LAP

NE

RI

ES

GA

EA

T

Per

ylen

e n

g

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 57: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

57

F30 Dibenzo(ah)Anthracene

0

20

40

60

80

100

120

AP

A-L

RA

CH

MU

FMI

VM

M

ER

LAP

T

AB

UM

RE

FV

AL

KA

L

LAN

UV

EP

A-L

T

ER

LAP

AW

EL

EE

RC

EP

A-ie

ES

GA

EA

T

IVL

NE

RI

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F10 Dibenzo(ah)Anthracene

0

5

10

15

20

25

30

35

40

ER

LAP

T

VM

M

LAN

UV

CH

MU

ER

LAP

FMI

AB

UM

RE

FV

AL

IVL

KA

L

EP

A-L

T

NE

RI

EE

RC

ISS

eP

ES

GA

EA

T

Dib

enzo

(ah

)An

thra

cen

e n

g

F3 Dibenzo(ah)Anthracene

0

1

2

3

4

5

6

7

ER

LAP

T

ER

LAP

FMI

LAN

UV

CH

MU

AB

UM

IVL

VM

M

NE

RI

RE

FV

AL

EE

RC

ISS

eP

EP

A-L

T

KA

L

Dib

enzo

(ah

)An

thra

cen

e n

g

F21 Dibenzo(ah)Anthracene

-2

0

2

4

6

8

10

12FM

I

LAN

UV

ER

LAP

T

CH

MU

ER

LAP

VM

M

AB

UM

IVL

RE

FV

AL

NE

RI

EE

RC

EP

A-L

T

KA

L

ISS

eP

Dib

enzo

(ah

)An

thra

cen

e n

g

F30 Indene (123-cd) Pyrene

0

100

200

300

400

500

600

700

CH

MU

EE

RC

IVL

FMI

ER

LAP

T

ISS

eP

AB

UM

EP

A-L

T

RE

FV

AL

ER

LAP

AW

EL

AP

A-L

RA

EP

A-ie

KA

L

LAN

UV

VM

M

ES

GA

EA

T

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F10Indene (123-cd) Pyrene

0

50

100

150

200

250

300

CH

MU

VM

M

AB

UM

EE

RC

AP

A-L

RA

ER

LAP

T

RE

FV

AL

FMI

ISS

eP KA

L

IVL

LAN

UV

ER

LAP

EP

A-L

T

AW

EL

NE

RI

ES

GA

EA

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

0

5

10

15

20

25

CH

MU

FMI

ER

LAP

T IVL

AP

A-L

RA

AB

UM

RE

FV

AL

ER

LAP

EE

RC

VM

M

ES

GA

EA

T

KA

L

LAN

UV

ISS

eP

NE

RI

EP

A-ie

EP

A-L

T

Ind

ene

(12

3-c

d)

Pyr

ene

ng

F3 Indene (123-cd) Pyrene F21 Indene (123-cd) Pyrene

0

2

4

6

8

10

12

14

16

CH

MU

VM

M

LAN

UV

AB

UM

FMI

ER

LAP

T

EE

RC

RE

FV

AL

IVL

ER

LAP

AP

A-L

RA

KA

L

EP

A-L

T

ES

GA

EA

T

EP

A-ie

ISS

eP

NE

RI

Ind

ene

(12

3-c

d)

Pyr

ene

ng

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 58: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

58

F30 Benzo(ghi)perylene

0

50

100

150

200

250

300

350

400

450

CH

MU

AP

A-L

RA

FMI

ER

LAP

EE

RC

KA

L

AW

EL

RE

FV

AL

EP

A-L

T

EE

A

AB

UM

IVL

ISS

eP

ER

LAP

T

VM

M

ES

GE

SG

AE

AT

EP

A-ie

NE

RI

Ben

zo(g

hi)

per

ylen

e n

g

F10 Benzo(ghi)perylene

0

20

40

60

80

100

120

140

160

180

200

CH

MU

FMI

AB

UM

AP

A-L

RA

EP

A-L

T

KA

L

ER

LAP

RE

FV

AL

VM

M

ISS

eP IVL

EE

RC

AW

EL

ER

LAP

T

NE

RI

EE

A

ES

GE

SG

AE

AT

Ben

zo(g

hi)

per

ylen

e n

g

F3 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16

EP

A-ie

CH

MU

FMI

EE

A

AB

UM

AP

A-L

RA

ER

LAP

ER

LAP

T IVL

RE

FV

AL

KA

L

ISS

eP

EE

RC

VM

M

NE

RI

ES

GE

SG

AE

AT

EP

A-L

T

Ben

zo(g

hi)

per

ylen

e n

g

F21 Benzo(ghi)perylene

0

2

4

6

8

10

12

14

16C

HM

U

FMI

AB

UM

EP

A-ie

EE

A

AP

A-L

RA

ER

LAP

T

ER

LAP

RE

FV

AL

KA

L

IVL

EE

RC

VM

M

EP

A-L

T

ES

GE

SG

AE

AT

NE

RI

ISS

eP

Ben

zo(g

hi)

per

ylen

e n

g

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 59: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

59

Comments from laboratories

ERLAP

Chrysene and Triphenylene were reported together

Dibenzo-ah-Anthracene and Indene-123-cd-Pyrene were estimated by the deconvolution of their

corresponding overlapped ions 278 and 276

FM

Average results from 2 injections

LANUV

Sample F30-39-2-5 The peak of 6-Methylchrysene could not be seperated completely from two peaks

eluting shortly before and after the substance resulting in a too high peak area after integration We

know this phenomenon from other samples with high amounts of PAH Therefore external calibration

was used for quantification

EEA

Benzo[j]fluoranthene Benzo[e]pyrene Perylene Benzo[bjk]fluoranthene and

Chrysene+Triphenylene Not present in the calibration mix

Indeno[123-cd]pyrene Dibenzo[ah]anthracene Difficulties in separation

EERC

Benzo[a]anthracene B(a)a and Chry partly overlapping Chrysene B(a)a and Chry partly overlapping

Benzo[b]fluoranthene Overlapping peaks Benzo[j]fluoranthene Compound not calibrated

Benzo[k]fluoranthene Overlapping peaks Benzo[e]pyrene Compound not calibrated

Benzo[a]pyrene Partly overlapping with unidentified peak Perylene Compound not calibrated

Dibenzo[ah]anthracene Partly overlapping with unidentified peak

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 60: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

60

ISSeP

ISSeP sent new rectified values on 30112011 These were corrected from laboratory blanks They

suspected a possible contamination from low molecular PAHs The new results are listed below

Rectifficatif blancsxls

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 61: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

61

European Commission EUR 25170 EN ndash Joint Research Centre ndash Institute for Environment and Sustainability Title First EC-JRC PAHs Inter-laboratory comparison on PM10 quartz filters Author(s) E Grandesso K Kowaleski P Peacuterez Ballesta Luxembourg Office for Official Publications of the European Communities 2012 ndash 63 pp ndash 210 x 297 cm EUR ndash Scientific and Technical Research series ndash ISSN 1831-9424 (on-line) ISSN 1018-5593 (print) ISBN 978-92-79-22782-0 (pdf) ISBN 978-92-79-22781-3 (print) DOI 10278863064 Abstract This report presents the results of the first inter-laboratory comparison for PAHs analysed on quartz filters carried out by the JRC between April and December 2010 Seventeen national reference laboratories participated in this exercise Four different filters representing winter and summer periods in two different locations (Madrid and Prague) and two blanks were tested during the exercise 15 PAHs were considered for analysis from phenanthrene to benzo(ghi)perylene including benzo(a)pyrene In general the results of the exercise showed median overall uncertainties ranging from 10 to 90 depending on the compound and the analysed concentration Which in the case of benzo(a)pyrene varied between 30 and 50 The exercise demonstrates the validity of the current methodology for organising PAHs inter-laboratory comparison exercises on PM10 filters Laboratories exhibited better performance in the analysis of those compounds where reference material was found on the market The need for implementing a consistent traceability system for measurements is deduced from the systematic biases associated with laboratory behaviour

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 62: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

62

How to obtain EU publications Our priced publications are available from EU Bookshop (httpbookshopeuropaeu) where you can place an order with the sales agent of your choice The Publications Office has a worldwide network of sales agents You can obtain their contact details by sending a fax to (352) 29 29-42758

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N

Page 63: First EC-JRC PAHs inter-laboratory comparison on PM10 ...publications.jrc.ec.europa.eu/repository/bitstream/JRC67695/lbna25… · Figure 6. – Average PAH levels for the blank filters

63

The mission of the JRC is to provide customer-driven scientific and technical support for the conception development implementation and monitoring of EU policies As a service of the European Commission the JRC functions as a reference centre of science and technology for the Union Close to the policy-making process it serves the common interest of the Member States while being independent of special interests whether private or national

L

B- N

A- 2

51

70

- EN

- N