Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and...

45
Finnish climate policy – towards a low-carbon and energy-efficient future Ministry of the Environment, Ministry of Agriculture and Forestry and Ministry of Employment and the Economy 2015

Transcript of Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and...

Page 1: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

1

Finnish climate policy – towards a low-carbon and energy-efficient future

Ministry of the Environment, Ministry of Agriculture and Forestry and Ministry of Employment and the Economy 2015

Page 2: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

2

PART IPrinciples of climate policy

PART IISector-specific mitigation of climate change

PART III Impacts of climate change and adaptation to them

Page 3: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

3

PART I Principles of climate policy

Page 4: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

4

Climate change is a global problem, and active, shared measures should be taken to mitigate it.

The carbon dioxide content of the atmosphere has increased by 43% since 1750. The reason for this is the use of fossil fuels and deforestation.

As a consequence of the rise in carbon dioxide content, the atmosphere has already grown warmer by 0.85 degrees compared to the preindustrial era. The oceans have become warmer, snow and ice cover have decreased, and sea levels have risen.The effects are already seen on all the continents.

Climate policy helps in mitigating global warming and adapting to the effects of climate change. Finland’s national climate policy is closely linked to the international agreements on climate change and the shared climate policy of the EU.

The target is to keep the earth’s average temperature from rising more than

2°C

19971992 20082005 2012

2015

2020

2020

1. velvoitekausi 2. velvoitekausi

Uusi kansainvälinen sopimus 2020

Kioton pöytäkirjaSitoutuneiden maiden päästöt kattavat alle15 % maailman kasvihuonekaasupäästöistä

YK:n ilmastosopimus

Why do we need climate policy?

PART I: Principles of climate policy

Page 5: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

5

0

20

40

60

80

Waste managementAgricultureIndustrial processesEnergy production and consumption

Source-specific greenhouse gas emissions in Finland between 1990 and 2012million tonnes CO2e.*

-80–95%1990 emission level 71.6 Mt CO2e

20122020

20302040

20502010

20001990

Milli

on to

nnes

CO

2eFinland’s goal is to reduce greenhouse gas emissions 80–95% compared to 1990 levels by 2050To achieve this goal, significant and comprehensive societal measures are required, especially concerning energy production and consumption.

*Carbon dioxide equivalent is a quantity used in climate science describing the amount of any greenhouse gas emissions in CO2 units.

PART I: Principles of climate policy Source: Statistics Finland and MEE/ Energy and Climate Roadmap 2050

Page 6: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

6

Finland has an active role in climate policy

INTERNATIONAL LEVELEU LEVEL

NATIONAL LEVEL

LOCAL LEVELmunicipalities

civil society

PART I: Principles of climate policy

INTERNATIONAL LEVELUnited Nations’ Framework Convention on Climate Change, 1992Kyoto Protocol, 1997Objective: United Nations new climate change agreement 2015

EU LEVELRatification of the Kyoto Protocol and the EU’s internal distribution of responsibility (effort sharing)The EU’s shared and coordinated policiesMonitoring system for greenhouse gas emissionsEU climate and energy package until 2020EU climate and energy targets until 2030Energy roadmap 2050

NATIONAL LEVELNational climate and energy strategies (2001, 2005, 2008, 2013)Government Foresight Report on Long-term Climate and Energy Policy (2009)Energy and Climate Roadmap 2050 (2014)Climate Change Adaptation Plan 2022 (2014)Climate Change Act (2015)National legislation and other policy instruments, programmes

Page 7: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

7

19971992 2008 2012

2015The United Nations Climate Change Conference in Paris

2020

2020

1st commitment period of Kyoto

2nd commitment period of Kyoto

New international agreement

Kyoto Protocol

United Nations Framework Convention on Climate Change

Total emissions of countries in 2011 (incl. land use sector) Greenhouse gas emissions of countries per capita in 2011

China USA EU28 India Russia China USA EU28 India Russia0

2000400060008000

1000012000

0

5

10

15

20

tonn

es C

O2e/

capit

a

milli

on to

nnes

CO

2eAll countries to be included in the new climate change agreement

PART I: Principles of climate policy Source: World Resources Institute 7

*Carbon dioxide equivalent is a quantity used in climate science describing the amount of any greenhouse gas emissions in CO2 units.

Page 8: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

8PART I: Principles of climate policy Source: Ministry for Foreign Affairs, Ministry of Employment and the Economy, the Ministry of the Environment

Finland supports the climate measures of developing countriesClimate finance is a key question in international climate change negotiations. The purpose is to share the expenses caused by climate change. This also generates innovations and business.

Finnish climate finance 2013

*Private climate finance includes those direct investments by Finnish companies, such as renewable energy projects in developing countries, which the state has intitiated with support from Finnfund, for instance.

PRIVATE FINANCE*Estimated €400 million – €1.5 billion

PUBLIC FINANCE €92 million

Cultivation methods

Renewable energy

Resource eciency

Construction and tra

nsport

Renewable energy

Weather stations

Resource eciency

Water t

echn

ology

Forestation

Weather stationsADAP

TATIO

N 43%

M

ITIG

ATIO

N 5

7%

Page 9: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

9

Path to the Paris Climate Change Conference in 2015

PART I: Principles of climate policy

The EU reports the emission reduction commitments to which it will commit in Paris (Finland included in the EU commitment)

Large economies are requested to report those climate measures to which they will commit in Paris

Climate change negotiations in Bonn

Climate change negotiations in Bonn

Deadline for reporting the national climate measures

Climate change negotiations in Bonn

UN synthesis report on the su�ciency of emission reduction commitments for keeping to the target of 2 °C (commitments sent by 1 October)

The United Nations Climate Change Conference in Paris, where the new agreement will be signed

6.3.

31.3.

1.–11.6

31.8.–4.9.

1.10.

19.–23.10.

1.11.

30.11.–11.12.

Page 10: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

10

at l e a s t

-20% -40% -80–95%by 2020 by 2030 by 2050

The EU has committed to reducing its greenhouse gas emissions

PART I: Principles of climate policy

Page 11: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

11

EU’s climate and energy targets for 2020 and 2030

to 20 %of final energy consumption

to 27 %of final energy consumption

20%compared to the estimated development in 2007

27%compared to the estimated development in 2007*

2020 2030

Reducing greenhouse gas emissions

The share of renewable energy

Improving energy efficiency

at l e a s t

-40%compared to 1990 levels

-20%compared to 1990 levels

PART I: Principles of climate policy

*Indicative target

Page 12: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

12

What is included in the EU’s emissions trading system?Emissions reduction targets for sectors covered by the emissions trading system and sectors not covered.

Emissions trading production of electricity and

district heating,metal processing industry,

pulp and paper industry,chemical industry, air traffic

and construction industry

Not included in emissions tradingtransportation, some agricultural emissions, use of fuels for the heating of buildings and for transportation, agriculture, and waste management

-16%by 2020

The emissions reduction target for Finland’s emissions from sectors not covered by the emissions

trading system, compared to 2020 levels.

-21% by 2020The emissions reduction target of the EU’s emissions trading system compared to 2005 levels

Approximately half of Finland’s emissions were covered by the emissions trading system in 2013.

PART I: Principles of climate policy Source: Statistics Finland

Page 13: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

13

Current emission ceilingThe new emission ceiling agreed in the EU’s 2030 package

*1 emission unit = 1 tonne of carbon dioxide

Milli

on em

ission

unit

s* M

tCO

2

500

1 000

1 500

2 000

2 500

20102005 2015 2020 2025 2030 2035 2040 2045 2050

-43%Emission level 2005

The number of emission allowances decreases annually in the EU’s emissions trading system

PART I: Principles of climate policy Source: EEA 2014

Page 14: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

14

Improving air quality

Securing ecosystem

services

Aordable housing

Developing new business opportunities

E�ciency of transport

Securing food production

CompetitivenessSecurity of

energy supply

Reducing greenhouse gas emissions

Emissions reduction targets and measures are integrated with several other policy targets

PART I: Principles of climate policy

Page 15: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

15

Finland has decoupled greenhouse gas emissions from economic growthGreenhouse gas emissions have decreased in Finland while the gross national product has increased. Some of the production causing greenhouse gas emissions now takes place abroad, however, and imports have grown. On the other hand, some of Finland’s emissions are generated in the manufacturing of products for export abroad. For example, our paper industry produces paper for 100 million people.

PART I: Principles of climate policy Source: Statistics Finland

50%

100%

150%

200%

Gross domestic product(comparison reference 2010 prices), year 1990 = 100

Greenhouse gas emissions of production

1990 1995 2000 2005 2010

1990 level

Page 16: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

16

PART II Sector-specific mitigation of climate change

Page 17: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

17

Energy production 35%

Domestic transportation 19%

Industrial production and construction 14%includes electricity and heat production utilised by industry

Other energy* 9%

Total emissions in 2013:

63.2 million t of CO2e

9% Industrial processes

77% Energy production and consumption

10% AgricultureWaste management 4%

*For example, heating of buildings, agriculture, forestry and fishing industries and associated machinery used in the sectors, other uses of fuel and fugitive emissions of fuels, for example. Carbon dioxide equivalent is a quantity used in climate science describing the amount of any greenhouse gas emissions in CO2 units.

Most of Finland’s greenhouse gas emissions are generated by energy production and consumptionEmissions can be reduced in all sectors by switching from fossil fuels to emission-free energy sources, by improving energy efficiency and by carbon sequestration.

PART II: Sector-specific mitigation of climate change Source: Statistics Finland

Page 18: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

18

Energy production and consumption

In order to achieve the emissions reduction targets, a transition to a zero-emission energy system by 2050 is needed. Energy must also be used more efficiently.

Page 19: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

19

Finland has a diverse energy systemThe diversity of energy sources improves the security of supply and enhances the opportunitites to work effectively in changing conditions. The share of renewables and other zero-emission forms of energy is high in Finland in international comparisons.

Total consumption* of energy in Finland in 2013 In total 381 terawatthours (TWh)

*Total consumption includes the fuels utilised in energy production and processing as well as energy used directly in the final consumption, including transportation fuel and fuels utilised for heating buildings.

PART II: Sector-specific mitigation of climate change Source: Statistics Finland

Peat 4.1%

Hydro and wind power 3.5%

Wood fuels, in total 24.7%

Others 3.7%

Natural gas 7.8%

Coal 11.0%

Oil 23.1%

Nuclear energy 18.0%

Net imports of electricity 4.1%

Page 20: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

20

Heating of buildings

46% Industry

Transportation16%25%

Others 12%

Most of the energy in Finland is used in industry and for heating buildingsUse of energy can be made more efficient in all sectors, especially in construction, housing and transportation.In Finland, the industrial sector is already quite energy efficient in its operations, and through this strong energy efficiency competence it is possible to develop and commercialise cleantech solutions.

Sector-specific final consumption of energy in Finland in 2013In total 308 terawatthours (TWh)

The Others sector includes the use of electricity and fuel by households, the public and private service sector, agriculture and forestry, and in construction operations.

PART II: Sector-specific mitigation of climate change Source: Statistics Finland

Page 21: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

21

Bioenergy accounts for 80% of Finland’s renewable forms of energyFinland is boosting its share of renewable energy by using more wood fuels, in particular. The goal is also to sharply increase the amount of electricity produced through wind power.

Sources of renewable forms of energy in 2013

The share of renewable energy in the final consumption of energy

Share 2013 The EU’s objective for Finland 2020

36.8% 38%PART II: Sector-specific mitigation of climate change Source: Statistics Finland, Eurostat

Uusiutuvan energian lähteet 2013

11% Hydropower

11% Others

Other bioenergy (e.g. transport biofuels) 4%Recycled fuel (bio) 2%

Biogas 0.6%Heat pumps 4%

Wind power 0.4%

14% Small-scale use of wood

32% Wood fuels from industrial and energy production

33% Waste sludge from the wood processing industry

Page 22: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

22

ElectricityHeat

Biofuels fortransport and

machinery

Side streams and waste sludge from forestry

Saw dust and bark from sawmills Biowaste

Firewood

Energy plants and other vegetation biomass

Manure

Side streams from the food industry

Forest residue

Bionenergy sources in Finland

PART II: Sector-specific mitigation of climate change

Page 23: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

23

Sweden

Austria

Finland

Denmark

Spain

EU28

Germany

France

Great Britain

0 20 40 60 80 100

bioenergy otherssolar energywind powerhydropower

24.2%

14.6%

11.8%

10.3%

9%

5%

29.2%

29.6%

34.8%

The share of renewable forms of energy in Finland is one of the highest in the EU countriesShare of renewable forms of energy in total energy consumption in 2013

PART II: Sector-specific mitigation of climate change Source: Eurostat

Page 24: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

24

IndiaChinaWorld

USAGermany

Great BritainEU28

DenmarkAustriaFinlandFrance

SwedenNorway

0 200 400 600 800 1000

Sähköntuotannon ominaispäästöt

Electricity produced in Finland has low emissionsGreenhouse gas emissions in electricity production are caused by the use of fossil fuels and peat. The proportion of these in electricity production is globally around 68%, in the EU 49% and in Finland 33%.

PART II: Sector-specific mitigation of climate change Source: International Energy Agency IEA

* Average value between 2010 and 2012

Specific emissions of electricity production, gCO2/kWh*

Page 25: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

25

TransportationTransportation emissions are reduced by improving the energy efficiency of transportation and utilising renewable forms of energy or electricity instead of fossil fuels.

Page 26: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

26

Road tra�c 89%

Rail tra�c 1%Domestic air tra�c 2%Waterway transport 4%

Machinery 5%

Passenger cars, buses, motorcycles and similar

Vans and trucks31%

5%Passenger cars

53%

Road transportation causes the majority of greenhouse gas emissionsApproximately 90 per cent of domestic transportation emissions are caused by road traffic. If international transportation is examined, the amount of emissions caused by aviation and, in particular, shipping increases. The emissions of international transportation are not currently regulated by international agreements, and are not, therefore, officially monitored.

Greenhouse gas emissions from domestic transportation in 2013

PART II: Sector-specific mitigation of climate change Source: Statistics Finland

Page 27: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

27

8%by 2015

20%by 2020

New alternatives to oil can be used as transportation fuelsIn transportation, fossil fuels can be replaced by, for example, electricity, hydrogen, liquid biofuels and renewable diesel, i.e. natural gas and biogas.

PART II: Sector-specific mitigation of climate change Source: VTT Technical Research Centre of Finland/ Nylund 2015

Carbon dioxide emissions of passenger cars with di�erent fuels (fuel emissions from production to use are included)

Petrol

Natural gas

Diesel

Flexifuel vehicles (high blend ethanol vehicle)

Biogas

Electric vehicle with a battery, average electricity

Renewable diesel/waste grease

Electric vehicle with a battery, renewable electricity

300g/km

60 90 120 150

139 g/km

49 g/km

102 g/km

32 g/km

28 g/km

0 g/km

119 g/km

17 g/km

*C category car, manufactured without performance data, Renewable Energy Directive 2009/28/EC

In its legislation, Finland is committed to the following percentages of biocomponents in road traffic fuels

A so-called double counting will be taken into account

Page 28: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

28

Construction and housingThe emissions from the built environment are reduced by improving the energy efficiency of buildings, making the urban structure denser, and reducing emissions of transportation and housing. In addition, the production method of energy needed for the operations and housing of communities has a large impact on emissions.

Page 29: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

29

To reduce emissions, the various levels, from the infrastructure planning to the user’s choices, must be taken into accountThe planning of sustainable, well-functioning communities is the basis for energy-smart housing. With regard to climate change, the most significant solutions related to land use are made in growing urban areas.

Urban planning- Services nearby- Functional public transport- Local energy production

Life-style and consumer actions- Use of buildings

Buildings- Energy efficiency- Maintenance and repair work

PART II: Sector-specific mitigation of climate change

Page 30: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

30

Towards more energy-efficient buildings

About 40% of Finland’s total energy consumption is attributable to buildings. They generate around 35% of greenhouse gas emissions, which can be reduced significantly by improving the energy efficiency of buildings.

•Nearly zero-energy buildings by 2020•Energy provisions for building renovation 2013•Energy certificate in use since 2008

What is a nearly zero-energy building like?

Healthy room microclimate warmth, humidity, sound, lighting, air qualityLow heat loss good insulation, integrity andheat recovery of ventilationLow total energy consumptionEfficient use of electricity and management of electricity’s peak consumptionUse of renewable energy

PART II: Sector-specific mitigation of climate change

Page 31: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

31

50% Heating

20% Heating of water

30% Lighting and other electricity consumption

In Finland, most of the greenhouse gas emissions of housing are caused by heatingApproximately half of household emissions are caused by heating living spaces, a fifth by heating water and a third by lighting and other electricity consumption. Reducing emissions and energy consumption is, however, easy as even the smallest changes in routines and habits have an effect.

PART II: Sector-specific mitigation of climate change

Distribution of household emissions in Finland.

Page 32: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

32

Waste sectorGreenhouse gas emissions caused by waste are reduced by improving the utilisation of waste and decreasing the quantity of waste transported to landfill sites. In recent years, emissions have dropped so swiftly that it could be called a success story.

Page 33: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

33

In Finland, most of the greenhouse gas emissions from the waste sector are generated in landfill sitesOnly about three per cent of waste generated in Finland is municipal waste, but it accounts for nearly all of the greenhouse gas emissions from the waste sector.

Greenhouse gas emissions of landfill sites in 2013

Municipal solid waste 61%

Municipal wastewater sludge 1%Industrial sludge 6%

Industrial solid waste 17%

Construction waste 15%

PART II: Sector-specific mitigation of climate change Source: Finnish Environment Institute

The proportion of landfill site emissions is 83% of the greenhouse gas emissions of the waste sector.Recovery of methane: 36 thousand tonnes

Page 34: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

34

In Finland, emissions from landfill sites have dropped radicallyThe goal of 85% emission reduction in the waste sector will be achieved by 2050 through the current measures that restrict the disposal of organic waste in landfills.

PART II: Sector-specific mitigation of climate change Source: Finnish Environment Institute and SYKE

year

Gre

enho

use g

as em

ission

s of l

andfi

ll site

s in

tota

l Mt C

O2-e

.

1997 Waste Tax Act and a decision by the Finnish Government on landfill sites.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1990 2000 2010 2020 2030 2040 2050

*Reduction calculation has not taken into account the carbon dioxide emissions created during the energy production when waste is utilised as fuel, as the energy produced with waste is used to replace energy produced with some other fuel and the net effect of the waste utilised as fuel on the greenhouse gas emissions is included in the emissions of the energy sector.

Page 35: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

35

In Finland, less and less municipal waste ends up in landfillsLandfill disposal of organic waste will be ended by 2016 and waste will gradually be utilised more as both material and energy. According to the data from early 2015, the goals set for 2016 will be exceeded.

Distribution of municipal waste to utilisation and processing between 2006 and 2012 and the goal set for 2016

Goal for 2016

201320122011

20102009200820072006

Share of community waste, %0 20 40 60 80 100

20 30 2030

21 11 42 25

22 12 34 33

22 13 25 40

20 13 22 45

24 12 18 46

24 8 17 51

24 11 12 53

24 9 9 58

Utilisation as material, excluding composting and digestion

Composting and digestion Utilisation as energy Disposal in landfill site

PART II: Sector-specific mitigation of climate change Source: Statistics Finland and VALTSU

Page 36: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

36

Agriculture and forestryAgriculture and forestry generate greenhouse gas emissions.On the other hand, forests and vegetation sequester a significant amount of carbon dioxide. By managing forests, ensuring good growth conditions of soil, and improving production methods, greenhouse gas emissions can be reduced and carbon sequestration by agriculture and forestry can be enhanced.

Page 37: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

37

forest domestic animals

manure machineryfieldclearing fieldssoil energy production wood construction and wood products

Agriculture and forestry: emissions and sequestration of greenhouse gases

PART II: Sector-specific mitigation of climate change

Page 38: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

38

Heathlands -8.4 million t of CO2e.

Mires8.8 million t of CO2e.

Increase in storage -24.5 million t of CO2e.

Removal of forest stock 20.1 million t of CO2e.

Removal of the growing stock

104.6 million t of CO2e.

Increment of the growing stock

-131.1 million t of CO2e.

Forests and wood products can be used to sequester and store carbonCarbon sinks of forests refer to the difference between annually sequestered carbon by forests and carbon removals from them. At the the European scale, forest carbon sinks in Finland rank very high volume-wise. By using wood in products and as energy, greenhouse gas emissions and use of non-renewable energy can be reduced.

FOREST CARBON SINkS in total: -26.1 million t of CO2e

WOOD PRODUCTS in total: -4.4 million t of CO2e

PART II: Sector-specific mitigation of climate change Source: Statistics Finland 2013

CO2e = Carbon dioxide equivalent is a quantity used in climate science describing the amount of any greenhouse gas emissions in CO2 units.

Page 39: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

39

Forests sequester a large volume of Finland’s greenhouse gas emissionsAll countries report on the impacts of forests and land use on climate under the international agreement on climate change. One inventory sector covers emissions resulting from land use, land use change and forestry (LULUCF). In Finland, forests sequester annually around 30–60% of greenhouse gas emissions. The most significant reason for the variations in the carbon sinks of our forests are the changes in the annual volume of felling.

CO2e. = Carbon dioxide equivalent is a quantity used in climate science that describes the amount of all greenhouse gas emissions produced by human actions.LULUCF= Land use, land-use change and forestry

PART II: Sector-specific mitigation of climate change Source: statistics Finland

Greenhouse gas emissions (other sectors)Greenhouse gas emissions from the LULUCF sector minus the sinks, i.e. net sinkEmissions minus net sinks

9080706050403020100

-10-20-30-40-50 1990 1995 2000 2005 2010 2012

Milli

on to

nnes

CO

2e.

+

-

Page 40: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

40

Sources of emissions from agriculture in FinlandMost of the agricultural emissions come from the soil (e.g. from decomposition of organic matter and fertilisation).

PART II: Sector-specific mitigation of climate change

CH4 = methaneN2O = nitrous oxideCO2 = carbon dioxide

2. Digestion bydomestic animalsCH4

3. Treatment of manureN2O, CH4

4. Liming and controlled burningN2O, CH4, CO2

5. Fuel consumptionof agricultureCO2

1. SoilN2O, CO2

Page 41: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

41

Food production and consumption and related climate measures in Finland

M: Measure for mitigation of climate change A: Measure for adaptation to climate change

Plant varieties that are better adapted to the new conditions are bred, such as turnip rape and oilseed rape (A)

Nutrients in manure are recovered and nitrogen fertiliser is applied according to requirements of plants (M)

Vegetables will be utilised more in diets (M)

Food loss is reduced through the whole food system (M)

Peatlands are cultivated in a climate-friendly manner (M+A)

Soil is managed carefully, for example by trenching and preserving organic matter (M+A)

The health of vegetation and animals is secured and the spreading of detrimental invasive species is prevented (A)

Energy efficiency is increased and fossil fuels are replaced with renewable energy (M+A)

PART II: Sector-specific mitigation of climate change

Page 42: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

42

PART III Impacts of climate change

and adaptation to them

Page 43: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

43

Transportation- E�ect of heavy rain on the usability of roads- Increased slipperiness

External threats- Global economic disturbances- More frequent conflicts- Conflicts over natural resources- Environmental migrants

The Baltic Sea- Rising sea level- Decrease in salt levels, eutrophication

Fish and fishing- Smaller fish stocks- Endangered species are threatened further

Health and wellbeing- Heat waves, heat islands of cities- Pollution of domestic water supply due to heavy rains- Changes in the prevalence of animal-borne diseases

Game management and reindeer herding- The quantity and quality of reindeer food- Greater risk of parasite epidemics - Snow-free winters are a risk for animals that grow a winter coat

Agriculture- Greater risk of diseases and pests- Extreme weather conditions cause harvest losses+ New species and more bountiful varieties

Energy and industry- Securing the electricity supply in exceptional conditions- Risk management in changing water conditions+ More hydropower and bioenergy

Buildings and use of areas- More flooding from stormwater runo�- Exterior cladding a�ected by increased humidity and wind stress- Higher moisture content of soil lowers the carrying capacity

Biodiversity- Changes in the prevalence of plants and animals- Greater numbers of invasive species- Higher number of threatened species

Water resources- Higher risk of flooding- Leaching of nutrients increases- Changes in the quantity and quality of groundwater

Tourism- Shorter winter tourism season+ The popularity of summer tourism may increase

Forestry- Increase in forest damage- Loss of frost makes felling more di�cult+ Trees grow faster

Risks and opportunities of climate change in Finland

Page 44: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

44

Finland has many ways of adapting to and preparing for climate change With the help of carefully planned adaptation measures the negative effects of climate change can be mitigated while the beneficial effects can be utilised better.

Agriculture- breeding plants and animals- improving the management of water resources- alarm systems for pests

Forestry- forest tree breeding- developing forest management- preparedness plans for forest damage

Transportation- warning systems and communication- improving operations during disturbances- improving the maintenance of transport routes

Biodiversity- developing the network of conservation areas- preventing harmful invasive species

Energy- measures for improving the security of electricity supply

Tourism- developing year-round tourism- developing tourist services

Floods- warning systems and communication-land use planning- flood embankments, protective structures

Health and wellbeing- heat wave warnings- managing the quality of drinking water

PART III: Impacts of climate change and adaptation to them Source: How can we be prepared for inevitable climate change? (Ministry of Agriculture and Forestry /2011)

Page 45: Finnish climate policy - Ilmasto-opas...Energy roadmap 2050 NATIONAL LEVEL National climate and energy strategies (2001, 2005, 2008, 2013) Government Foresight Report on Long-term

45

Flooding €4.7 million Centre of Kittilä, 2005

Flooding €0.9 million Vantaanjoki, 2004

Storms, over €100 million Summer 2010

Forest damage caused by storms over €60 million Eino storm 2013

Forest damage caused by storms around €40 million Seija storm 2013

Flooding €20 million Pori, 2007

Flooding €20 million Gulf of Finland, 2005

Flooding €6 million Southern Ostrobothnia, 2012

Droughts €100 millionwhole Finland 2002-2003

Forest damage caused by storms €120 million costs for electricity companies €48 million insurance compensations €102 millionHannu and Tapani storms 2011

Extreme weather conditions have already caused plenty of costs in FinlandBased on current experience, it pays to be prepared for extreme weather conditions.

PART III: Impacts of climate change and adaptation to them