Finite Element Analysis of Composite Hip Prosthesis M. Sivasankar, D.Chakraborty, S.K.Dwivedy...

download Finite Element Analysis of Composite Hip Prosthesis M. Sivasankar, D.Chakraborty, S.K.Dwivedy Department of Mechanical Engineering Indian Institute of

of 34

  • date post

  • Category


  • view

  • download


Embed Size (px)

Transcript of Finite Element Analysis of Composite Hip Prosthesis M. Sivasankar, D.Chakraborty, S.K.Dwivedy...

  • Slide 1

Finite Element Analysis of Composite Hip Prosthesis M. Sivasankar, D.Chakraborty, S.K.Dwivedy Department of Mechanical Engineering Indian Institute of Technology, Guwahati Slide 2 2 Scope of the Present Work An overview of hip replacement References on total hip replacement (THR) Objective Material selection Finite element model Comparison of results Slide 3 3 An Overview of Hip Replacement Anatomy of hip joint Hip prosthesis Types of prosthesis fixation Reasons for hip failure A Typical Hip Prosthesis A Typical Hip Prosthesis Slide 4 4 Anatomy of Hip Joint Largest weight bearing joint Composed of rounded head of the femur joining the acetabulum of pelvis in a ball and socket arrangement Slide 5 5 Reasons for Hip Failure Long-term aseptic loosening. Primary hip arthoplasties are subjected to failure due to bone resorption i.e. bone loss. Failure due to fatigue loading of hip joint. Relative micro motions resulting from improper implant fitting in the bone cavity. Slide 6 6 In cementless implants load transfer between a stiff implant and relatively flexible bone results in extremely unnatural stress distribution in bone, i.e. excessive stress concentrations near to the implant ends. Stress shielding followed by bone resorption in the other areas of bone- implant interface. Reasons for Hip Failure Cont.. Slide 7 7 Hip failure due to bone loss is caused by the production of wear particles associated with the deterioration of the prosthesis For an average hip patient, the prosthesis have to resist thirty-four million blows Slide 8 8 Damaged Femoral Head Femoral head cartilage The neck is cut-off as in figure Marrow cavity is made inside the femur Hip prosthesis is fitted either by PMMA cement or press fitted Slide 9 9 References on Total Hip Replacement Many researchers carried out advanced researches in the field of THR using Finite Element Method and other methods Slide 10 10 Literature Review Researches in this area has been carried out in: Cemented Joint Cement less Joint Finite Element Analysis Experimental with design models Slide 11 11 Researches Carried Out S.N o. Experiment BasedFEM basedCemented JointCementless Joint 1G.Bergmann(2001)C.F.Scifert (1999)S.K.Senapathi (2002)P.Kowalczyk (2001) 2G.Selvaduray(2002)A.Philips (2001)P.Colombi (2002) 3H.Katoozian (2001)P.Kovalczyk(2001)A.B.Lennon (2003) 4J.A.Simoes (2000)P.B.Chang (2001)Sheryl Zimmarman (2002) 5M.Baleani(2000)R.Huiskes (1992)V.Waide (2004) 6C.Kaddick (1997)C.Li (2002)P.J.Prendergast (1997) 7N.H.Tai (1995)W.Van Papegem (2001)A.Philips (2001) 8G.Dillon (1995)S.Srinivasan (2000)C.Li (2002) 9X.Diao (1997)H.F.El.Sheikh (2003) 10B.W.Stansfield (2003)S.Gross (2001) 11M.PawlikowwskiS.H.Teoh (2002) 12S.L.Evans (1998)Bernard Weisse (2003) 13R.P.MorrisH.Katoozian (2001) 14M.T.Raimondi (1999) 15C.M.Styles (1998) 16I.Hilal (1999) 17Darryl.D 18S.Srinivasan (2000) 19L.J.Lee (1996) 20W.Vanpaepegem (2002) 21S.Ramakrishna (2001) 22K.L.Reifs nider (1991) 23S.K.Roy Choudhury (2004) 24A.Rajadurai (2002) 25R.De.Santis (2004) 26Vesa Saikko (2002) 27Debera.E Hurwitz (2003) 28B.Mavcic (2002) Slide 12 12 Recent Work Few researchers like A.Phillips[1], P.J.Prendergast [2],H.Katoozian [6], C.Li [9] etc., work in the area of cemented prosthesis. Slide 13 13 Biomaterials Stainless Steel Alloys Cobalt-Chrome alloys (Vitallium) Titanium alloys Composites Slide 14 14 Comparison of Characteristics CharacteristicS-SteelCo-Cr alloyTitanium Alloy Stiffness HighMediumLow Strength Medium High Corrosion -resistance LowMediumHigh Biocompatibility LowMediumHigh Slide 15 15 Need of Composites The isotropic alloys used for stem have much higher stiffness than that of the bone Almost all monoclinic implants have 5 to 20 times more stiffness than the bone A stiff shaft of a total hip prosthesis stress shields the upper part of the thigh bone The shielded bone does not thrive, loses its substance and becomes weak The total hip joint has weak anchorage in a weak skeleton and may fail The remedy is a prosthetic shaft manufactured from metal alloys with stiffness similar to bone Slide 16 16 Advantages of Composites Low stiffness of composite stems can enhance proximal bone ingrowths Tailorability property in strength and stiffness. Excellent biocompatibility A controlled stiffness prosthesis can reduce stress shielding and bone resorption Less weight of the prosthesis Slide 17 17 Composite Prosthesis Clinical studies reported early fatigue fracture of a femoral component made from laminated fiber reinforced composites. The new designs are Constructed of short glass fibers/epoxy resin and CF/PEEK composites. Slide 18 18 SOLID 92 Element Slide 19 19 Composite Model Basic Composite Model With Elements Slide 20 20 Conical Stem Cemented prosthesis model contains three main parts: Conical Stem with head Cement layer Cortical bone Basic Model Slide 21 21 Chopped Fiber Core Model With Chopped Fiber Core Slide 22 22 Material Properties Material Properties Used for Analysis of Total Hip Prosthesis PartsMaterial Youngs Modulus (MPa) Poisson's Ratio Geometrical Parameter (All dimensions are in mm) Head and Stem Ti 6 Al 4 V110x10 3 0.33Sphere radius 25 Stem radius 10 Stem outer radius 10 Stem inner radius 7.5 Cement Layer UHMWPE- AL 2 O 3 1x10 3 0.39Inner radius 10.5 Outer radius 12.2182 Length 100 Cortical Bone AS4/PEEK3x10 3 0.30Inner radius 20.5 Outer radius 30 Slide 23 23 Maximum Shear Stress Region Enlarged View of the Deformed Stem and Cortical Bone Showing the Maximum Shear Stress Region (Path Aa) Slide 24 24 Variation of Shear Stresses Variation of Maximum Shear Stress With System Parameters Stem Length (in mm) Maximum Shear Stress (in MPa) 14517.314 145.515.522 147.521.033 15020.919 152.517.144 15520.262 Neck Inclination (in degree) Maximum Shear Stress (in MPa) 4517.314 47.520.383 5022.964 Neck Length (in mm) Maximum Shear Stress (in MPa) 4513.337 47.517.376 5017.314 52.525.363 Stem Inner Radius (in mm) Maximum Shear Stress (in MPa) 7.517.314 820.655 8.519.443 Slide 25 25 The variation in the above parameters do not show a particular trend Hence the design optimization has been carried out to minimize the magnitude of maximum shear stress Continued... Slide 26 26 Hip Prosthesis PartsState VariablesDesign Variables Femur Sphere Radius 25 mm Stem Outer Radius 10 mm Stem Inner Radius 7.5 mm Neck Inclination 45 0 Stem Length145.5 mm Neck length50 mm Dimensions of Hip Prosthesis Before Optimization Slide 27 27 Femoral Components Design Variables of Femoral Components After Optimisation Design VariablesDimension (mm) Stem outer radius9.9301 Stem inner radius8.0405 Stem length153.22 Neck length 50.975 Slide 28 28 Shear Stresses SXY x-y component SYZ y-z component SXZ z-x component Shear Stresses in the Interface of Stem and Cortical Bone Slide 29 29 Shear Stresses - Continued SXY x-y component SYZ y-z component SXZ z-x component Shear Stresses in the Interface of Stem and Cortical Bone Slide 30 30 Conclusion A 3D finite element analysis has been done for analysis of composite hip prosthesis which consists of a conical stem with a cement layer. Location and magnitude of shear stresses show the region of failure which is in agreement with the earlier published results. Slide 31 31 Continued As the variation of the parameters do not show a particular trend, design optimization has been carried out to minimize the magnitude of maximum shear stress The optimum dimensions obtained from the present analysis show considerable reduction in shear stress Slide 32 32 References [1] A. Phillips, 2001, Finite element analysis of the acetabulum after impaction grafting, The University of Edinburgh. [2] P.J.Prendergast, 1997, Review paper Finite element models in tissue mechanics and orthopaedic implant design, Clinical Biomechanics, Vol. 12, No. 6, 343-366. [3] C. F. Scifert, T. D.Brown, J. D.Lipman, 1999, Finite element analysis of a novel design approach to resisting total hip dislocation, Clinical Biomechanics, 14, 697-703. [4] M.Baleani, M.Viceconti, R. Muccini, M. Ansaloni, 2000, Endurance verification of custom- made hip prostheses, International journal of fatigue 22, 865-871. [5] P. B. Chang, B. J. Williams, K.S. B.Bhalla, T. W. Belknap, T. J. Santner, W. I. Notz, D. L. Bartel, 2001, Design and analysis of robust total joints replacements: Finite element model experiments with environmental variables, ASME, Journal of Biomechanical.Engineering, 123, 239-246. [6] H. Katoozian, D. T. Davy, A. Arshi, U. Saadati, 2001, Material Optimization of femoral component of total hip prosthesis using fiber reinforced polymeric composites, Medical Engineering and Physics, 23, 503-509. [7] S. K. Senapati, S. Pal, 2002, UHMWPE-ALUMINA ceramic composite, an improved prosthesis material for an artificial cemented hip joint, Trends in Biomaterials Artificial. Organs, 16(1), 5-7. [8] J.Stolk, N. Verdonschot, L. Cristofolini, A. Toni, R. Huiskes, 2002, Finite element and experimental models of cemented hip joint reconstructions can produce similar bone and cement strains in pre-clinical tests, ASME, Journal of Biomechanics 35, 499-510. [9] C. Li, C. Granger, H. D. Schutte Jr, S. B. Biggers Jr, J. M. Kennedy, R. A. Latour Jr, 2003, Failure analysis of composite femoral components for hip arthroplasty, Journal of Rehabilitation Research and Development, 40(2), 131146. Slide 33 33 Questions? Slide 34 34 Thank You for Attending A copy of my slides will be available on my website My email address is: IITG Biomechanics center: Work supported by Department of Mechanical Engineering, contact +91 (361) 2582697