Finite Element Analysis by S.S. Bhavikatti, New Age Int. (2005)

download Finite Element Analysis by S.S. Bhavikatti, New Age Int. (2005)

of 6

Transcript of Finite Element Analysis by S.S. Bhavikatti, New Age Int. (2005)

  • 8/20/2019 Finite Element Analysis by S.S. Bhavikatti, New Age Int. (2005)

    1/11

    8

    =

    3

    Matrix Displacement Formulation

    3.1 INTRODUCTION

    Though mathematicians, physicists and stress analysts wored independently in the !ield o! "#$, it is the matri%

    displacement !ormulation o! the stress analysts which lead to !ast de&elopment o! "#$. In!act till the word "#$

     'ecame popular, stress analyst wored in this !ield in the name o! matri% displacement method. In matri%

    displacement method sti!!ness matri% o! an element is assem'led 'y direct approach while in "#$ though direct

    sti!!ness matri% may 'e treated as an approach !or assem'ling element properties (sti!!ness matri% as !ar as stress

    analysis is concerned), it is the energy approached which has re&olutioni*ed entire "#$.

    +ence in this chapter, a 'rie! e%planation o! matri% displacement method is presented and solution

    techniues !or simultaneous euations are discussed 'rie!ly.

    3.- $TRI/ DI02C#$#NT #UTION0

    The standard !orm o! matri% displacement euation is,

    456 {8} = {F}

    where 46 is sti!!ness matri%

    789 is displacement &ector and

    {F\ is !orce &ector in the coordinate directions

    The element k.. o! sti!!ness matri% may'e de!ined as the !orce at coordinate i due to unit displacement in

    coordinate direction j.The direct method o! assem'ling sti!!ness matri% !or !ew standard cases is 'rie!ly gi&en in this article.

    1. :ar #lement

    Common pro'lems in this category are the 'ars and columns with &arying cross section su';ected to a%ial !orces

    as shown in "ig. 3.1."or such 'ar with cross section ,

  • 8/20/2019 Finite Element Analysis by S.S. Bhavikatti, New Age Int. (2005)

    2/11

    8

    =

    "ig. 3.1(c)

    "ig. 3.-

     EA  ?  — o£

    If 5 = 1,  P =

    :y gi&ing unit displacement in coordinate direction 1, the

    !orces de&elopment in the coordinate direction 1 and - can 'e !ound ("ig. 3.- (')). +ence !rom the de!inition o!

    sti!!ness matri%,

     EA , EA —  and 5-i=~ — 

    0imilarly gi&ing unit displacement in coordinate direction - (re!er "ig. 3.- (c)), we get

    (a)

    4

    T L,

    ()

    1

    55

     A, E 

     L _ 

    ! "1~*

     L

    (a)

     P I-----► N----- P 

    I 1 I

    ()

     EA

     L

  • 8/20/2019 Finite Element Analysis by S.S. Bhavikatti, New Age Int. (2005)

    3/11

    8

    =

    -. Truss #lement

    $em'ers o! the trusses are su';ected to a%ial !orces only, 'ut their orientation in the plane may 'e at any angle to

    the coordinate directions selected. "igure 3.3 shows a typical case in a plane truss. "igure 3.@ (a) shows a typical

    mem'er o! the truss with

  • 8/20/2019 Finite Element Analysis by S.S. Bhavikatti, New Age Int. (2005)

    4/11

    8

    =

    "ig. 3.@

    (ii) Unit displacement in coordinate direction -G

    This case is shown in "ig. 3.@ (c). In this case a%ial de!ormation is 1 % sin 8 and the !orces de&eloped at

    each end #ire as shown in the !igure. EA . n

     P  E Fsin 6  L

    i  . EA .51- E P  cos EBBBBBBBsin cos

    H . B EA . 2 HHk 12 E P  sm E Fsin 8

     EAk ,, E —P  cos EBBBBBBBBBBsin cos3-  L

     KAk d2 - —P  sinO EBBBBBBBBBBsin

    - 8@-  L

    (iii) Unit displacement in coordinate direction 3,

    #%tension along the a%is is 1 % sin and hence the !orces de&eloped are as shown in the "ig. 3.@ (d) EA n

     P  E Fcos

     L

     EAh-i = —P  cos EBBBBBBBBBcos- 8

       I    N

       )

  • 8/20/2019 Finite Element Analysis by S.S. Bhavikatti, New Age Int. (2005)

    5/11

     EA,, E —P  sin EBBBBBBBBBcos sin

    -3  L1 -n .  FA 2 n

    E P  costJ EBBBBBBBcos 833  L

    i . .  EA . K  ABi E P  sin0 EBBBBBBBBBBBBBBBBBcos smd

     L

    (&i) Due to unit displacement in coordinate direction @,

    #%tension o! the 'ar is eual to l% sin, and hence the !orces de&eloped are as shown in "ig. 3.@ (e). EA . n

     P  E Fsin 6  L

     EA . n n-P  costJ E suitJ costJ

     L

     EA

    h,A = —P  sin EBBBBBBBBsin- 8-@  L

    7 . EA .%3@ E P  cos8 E Fsind cose

    7 . . EA . - k  AA = P  sind E

     Fsm 8 L

    The sti!!ness matri% is

    .(3.K)

    Lhere > and ! are the direction cosines o! the mem'er i.e. > E cos 8 and ! = cos (M B 8) E sin 8 " (&)

    I@

     L Bcos- 8-#$% 8 sin cos-  cos 8 

    Bcos 8 sinK

    sin- 8 #$% 8 sinK

    sin- 8

    P>-  &!-' 2

    - & 

     _ EA & 

    !2-

    ~ L -'  2  — ' -  & 

     —  -!2  & !

     EA

    cos- 8 #$% 8 sin Bcos- 8 cos8 sin8 sin- 

    8 Bcos8 sin8

    Bcos 8 sin

    Bsin- 8

  • 8/20/2019 Finite Element Analysis by S.S. Bhavikatti, New Age Int. (2005)

    6/11

    :eam #lement

    In the analysis o! continuous 'eams normally a%ial de!ormation is negligi'le (small de!lection theory)

    and hence only two unnowns may 'e taen at each end o! a element ("ig. 3.8). Typical element and

    the coordinates o! displacements selected are shown in "ig. 3.8 ('). The end !orces

  • 8/20/2019 Finite Element Analysis by S.S. Bhavikatti, New Age Int. (2005)

    7/11

    de&eloped due to unit displacement in all the !our coordinate directions are shown in "ig. 3.K (a, ', c, d).

    "ig. 3.K

    "rom the de!inition o! sti!!ness matri% and looing at positi&e senses indicated, we can write (a) Due to

    unit displacement in coordinate direction 1,

    (d) Due to unit displacement in coordinate direction @,

    I! a%ial de!ormations in the 'eam elements are to 'e considered as in case o! columns o! !rames, etc. ("ig. 3.H),

    it may 'e o'ser&ed that a%ial !orce do not a!!ect &alues o! 'ending moment and shear !orce and &ice &ersa is also

    true. +ence sti!!ness matri% !or the element shown in "ig. 3.Q is o'tained 'y com'ining the sti!!ness matrices o!

     'ar element and 'eam element and arranging in proper locations. "or this case

     EA

     L

    ##

     y 1 3 8 H M(a)

    1 3

    "ig. 3.8

    1-#H  AE&  )  6 

     E& 

    1- E'  A K E'    2 L)  (a)  L2 K E'  ()  L

     L2

    1- E' 6E& 2E&  K E' 

    1} L L2

    . ...................... ! A $l +  A.  

    6E&  

     2 . .11-H

    y BK E' 

     AE&  & 

    , ? 12E&  , _6E&  , ? 12E& k u-—- 531? 

    (') Due to unit displacement in coordinate direction-,

     , _6E&  G  ? AE& 6E& S1- ~ - S-- B  —  S3- B -

    (c) Due to unit displacement in coordinate direction

    3,

    , ? 1-H , ? 6E&  , ? 1-HS13

     ? S-3

     ? S33

     ?  ~y~ L L L

    k  A/  -

    k 02 ~

    K>H

     &

    2E& 

     L

     _ 6 E' 

     L2

    , 2E& 

    %!4 E  &F A-@  L

    P 1" & ' & 

    r  , F&  &  0L2 '&  21

    LB '1"'& 

     L1"

    '&  L

    &  21 '&  01

    A3@ VV6E& 

    A@@ 0E& 

    ...(3.H)

     E  A

    2E& 6  

    1- K

    1} L2 1}  L

    6E 0

    6E 2

     L-  L L2  L

     E  A

    2 6 

    2E 6  

     L2  L2  L2  L

    6 2

    6E 0

     L2  L L2  L

    ...(3.Q)

  • 8/20/2019 Finite Element Analysis by S.S. Bhavikatti, New Age Int. (2005)

    8/11

     EA

     L

    ##

    (a)

    "ig. 3.H

    1 113B(')

  • 8/20/2019 Finite Element Analysis by S.S. Bhavikatti, New Age Int. (2005)

    9/11

    The !ollowing special !eatures o! matri% displacement euations are worth notingW

    (i) The matri% is ha&ing diagonal dominance and is positi&e de!inite. +ence in the solution process there is

    no need to rearrange the euations to get diagonal dominance.(ii) The matri% is symmetric. It is o'&ious !rom $a%well=s reciprocal theorem. +ence only upper or lower

    triangular elements may 'e !ormed and others o'tained using symmetry.

    (iii) The matri% is ha&ing 'anded nature i.e. the non*ero elements o! sti!!ness matri% are concentrated near

    the diagonal o! the matri%. The elements away !rom the diagonal are *ero. Considera'le sa&ing is

    e!!ected in storage reuirement o! sti!!ness matri% in the memory o! computers 'y a&oiding storage o!

    *ero &alues o! sti!!ness matrices. The 'anded nature o! matri% is shown in "ig. 3.M.

    "ig. 3.M

    In this case instead o! storing   /    si*e matri% only   % 3 si*e matri% can 'e stored.

    3.3 0O2UTION O" $TRI/ DI02C#$#NT #UTION0

    The matri% displacement euations are linear simultaneous euations. These euations can 'e sol&ed using

    Xaussian elimination method. 2et the euations to 'e sol&ed 'e

  • 8/20/2019 Finite Element Analysis by S.S. Bhavikatti, New Age Int. (2005)

    10/11

    ...(3.-)

    i.e. 4A5{} = 7!t9

    The Xauss elimination method consists in reducing matri% to upper triangular matri% and then !inding the

    &aria'les n , % ...,  ...., 2 , %, 'y 'ac su'stitution

    7( 1: To eliminate %, in the lower euationsW

    (i) "irst euation is maintained as it is

    (ii) "or euations 'elow 1,

    and bjp E !t, B F ft

    t the end o! this, the euations will 'e

    The a'o&e process is called pi&otal operation onan. "or pi&otal operation on ;, no changes are made in 5 row

     'ut !or the rows 'elow

    >,(5B1) t

    and

  • 8/20/2019 Finite Element Analysis by S.S. Bhavikatti, New Age Int. (2005)

    11/11

    "rom the last euation, and then,

    n