Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology,...

23
Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University of Technology, the Netherlands.
  • date post

    22-Dec-2015
  • Category

    Documents

  • view

    220
  • download

    0

Transcript of Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology,...

Page 1: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

Finite Buffer Fluid Networks with Overflows

Yoni Nazarathy,Swinburne University of Technology, Melbourne.

Stijn Fleuren and Erjen Lefeber,Eindhoven University of Technology, the Netherlands.

Page 2: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

Talk Outline

• Background: Open Jackson networks

• Introducing finite buffers and overflows

–Interlude: How I got to this problem

• Fluid networks as limiting approximations

• Traffic equations and their solution

• Almost discrete sojourn times

Page 3: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

Open Jackson NetworksJackson 1957, Goodman & Massey 1984, Chen & Mandelbaum 1991

1

1

'

( ')

M

i i j j ij

p

P

I P

, ,P

1

'

( ') , ( ')

M

i i j j j ij

p

P

LCP I P I P

ii

Traffic Equations (Stable Case):

Traffic Equations (General Case):

i jp

1

M

1

1M

i jij

p p

Problem Data:

Assume: open, no “dead” nodes

Page 4: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

Open Jackson NetworksJackson 1957, Goodman & Massey 1984, Chen & Mandelbaum 1991

1

1

'

( ')

M

i i j j ij

p

P

I P

, ,P

ii

Traffic Equations (Stable Case):

i jp

1

M

1

1M

i jij

p p

Problem Data:

Assume: open, no “dead” nodes

1 11

lim ( ) ,..., ( ) 1jk

Mj j

M Mt

j j j

P X t k X t k

Product Form “Miracle”:

Page 5: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

Modification: Finite Buffers and Overflows

ii

Exact Traffic Equations:

i jp

M

1

1M

i jij

p p

Problem Data:

, , , ,P K Q

Explicit Solutions:

Generally NoiK

MK1

1M

i jij

q q

i jq

11K

Generally No

Assume: open, no “dead” nodes, no “jam” (open overflows)

A Practical (Important) Model:

Yes

Page 6: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

Our Contribution (in progress)

ii

Efficient Algorithm for Unique Solution:

i jp

M

1

1M

i jij

p p

Limiting Traffic Equations:

iK

MK1

1M

i jij

q q

i jq

11K

Limiting Sojourn Time Distribution

' '( )P Q

( ) ( )lim sup ( ) 0

N

tN

X tx t

N

Limiting Deterministic Trajectories

P( ) 1 1kS k T

( )NS S

Page 7: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

Interlude: How I got to this problem

Output process, D(t), asymptotic variance:

Control of queueing networks:

BRAVO effect for M/M/1/K

( )lim

.

( )lim

t

t

E D t

tvs

Var D t

t

load

23

1 1

22

Server 2Server 1

PUSH

PULL

PULL

PUSH

Page 8: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

When K is Big, Things are “Simpler”

out rate overflow rate ( )

for big,K

Page 9: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

Scaling Yields a Fluid System( )

( )

( )

N

N

N

N

N K

1,2,...N A sequence of systems:

Make the jobs fast and the buffers big by taking N

The proposed limiting model is a deterministic fluid system:

Page 10: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

Fluid Trajectories as an Approximation

( ) ( )lim sup ( ) 0

N

tN

X tx t

N

Page 11: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

Traffic Equations (at equib. point)

1 1

M M

i i j j ji j j jij j

p q

out rate

overflow rate ( )

' '( )P Q or

1 1( ') ( ( ') ) , ( ') ( ')LCP I Q I P I Q I P

or

Page 12: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

LCP,

( , ) :Find , such that,

,

0, 0,

' 0.

M M M

M

a G

LCP a G z w

w Gz a

w z

w z

The last (complemenatrity) condition reads:

0 0 and 0 0.i i i iw z z w

(Linear Complementarity Problem)

Page 13: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

Min-Linear Equations as LCP( )B

0

0

( ) '( ) 0

B

,w z ( ) ( )

0, 0

' 0

w I B z I B

z w

w z

( ( ) , )LCP I B I B

Find :

Page 14: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

Existence, Uniqueness and SolutionDefinition: A matrix, is a "P"-matrix if the

determinants of all (2 1) principal submatrices are positive.

M M

n

G

Theorem (1958): ( , ) has a unique solution

for all a if and only if is a "P"-matrix.M

LCP a G

G

{1,2}C

1

0

0

1

12

22

g

g

11

21

g

g

1

2

a

a

{1}C

{2}C

C

"P"-matrix means that the complementary cones "parition" n

Immediate naive algorithm with 2M steps

We essentially assume that our matrix ( ) is a “P”-Matrix

We have an algorithm(for our type of G)taking M2 steps

1( ') ( ')G I Q I P

1 11 12 1 1

2 21 22 2 2

1 0

0 1

w g g z a

w g g z a

Page 15: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.
Page 16: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

Sojourn Time Time in system of customer arriving

to steady state FCFS system

( ) Sojourn time of customer in 'th scaled systemNS N

( )We want to find the limiting distribution of NS

Page 17: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

Sojourn Times Scale to a Discrete Distribution!!!

( )NP S x

x

Page 18: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

“Molecule” Sojourn Times

time through i F i

i

K

{1,..., }

{ 1,..., }

F s

F s M

i i

i i

for i F

for i F

Observe,

time through i F 0 For job at entrance of buffer :

. . enters buffer i

. . 1 routed to entrace of buffer j

. . 1 leaves the system

i

i

iij

i

ii

i

w p

w p q

w p q

i F

A “fast” chain and “slow” chain…

A job at entrance of buffer : routed almost immediately according toi F P

Page 19: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

The “Fast” Chain and “Slow” Chain

1’

2’

3’

4’

1

2

0

4

41 21, 1,

11 2

{1, 2}, {3, 4}

Example: ,

:

M

K K

ii

F F

11

1

1 iq

4p

4

1 011

j jj

p p a

4

1 11

j jj

p a

Absorbtion probability

in {0,1,2} starting in i'

i ja

j

“Fast” chain on {0, 1, 2, 1’, 2’, 3’, 4’}:

“Slow” chain on {0, 1, 2}

start

4

1 21

j jj

p a

1

1

11

1

1 q

4 ip

4

1j ji

j

a

4

01

j jj

a

DPH distribution (hitting time of 0)transitions based on “Fast” chain

E.g: Moshe Haviv (soon) book: Queues, Section on “Shortcutting states”

Page 20: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

The DPH Parameters (Details)

1~ ( , )s s sS DPH T

{1,..., }, { 1,..., }F s F s M

1P( ) 1 1ksS k T

1

1

1

00 0

1

0

s M sM M M M s M s

s M s

s

M s s

C Q PI

1

10

0

0

M ss

s

M s s

B

1( )M sA I C B

0s s s s M sT I P A 1

1

1 Ts M

jj

A

“Fast” chain

“Slow” chain

Page 21: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

Sojourn Times Scale to a Discrete Distribution!!!

Page 22: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

“Almost Discrete” Sojourn Time Phenomena

Taken from seminar of Avi Mandelbaum, MSOM 2010 (slide 82).

Page 23: Finite Buffer Fluid Networks with Overflows Yoni Nazarathy, Swinburne University of Technology, Melbourne. Stijn Fleuren and Erjen Lefeber, Eindhoven University.

Summary

– Trend in queueing networks in past 20 years: “When don’t have product-form…. don’t give up: try asymptotics”

– Limiting traffic equations and trajectories

– Molecule sojourn times (asymptotic) – Discrete!!!

– Future work on the limits.