Final Report Pating School

download Final Report Pating School

of 56

Transcript of Final Report Pating School

  • 7/24/2019 Final Report Pating School

    1/56

    A Report on

    Structural Analysis and Design of

    Shree Pating L S School Block

    At

    Ichok-8, Sindhupalchwok

    Designed By:

    Entraspace Technical Consultant

    Anamnagar, Kathmandu

    Date: December, 2015

  • 7/24/2019 Final Report Pating School

    2/56

    GENERAL INFORMATION AND DESIGN SUMMERY REQUIRED FOR FORM

    FILLING FOR MUNICIPAL APPROVAL

    1. Type of the building School

    2. Total plinth area of the building 1820.00 Sqft.

    3. Total number of storey 2

    4. Total height of the building (considered during analysis): Hi 6.0m

    5. Typical storey Height 3.0 m

    6. Least lateral Base dimension of the building

    (Considered for time period calculation) : d 8.81 m (in X-direction)

    7. Height to Least Lateral base dimension: H/d

    8. Type of the soil considered

    9. Bearing capacity of the soil adopted

    10. Analysis software used for building design

    11. Code used for seismic analysis

    0.68

    Type III

    110 KN/m2

    SAP2000 (version 17)

    NBC 105:1994

    12. Total number of load combination considered 9

    13. Total no of mode considered 12

    14. Total seismic Weight of the building used: WI 2801.54 KN

    15. Fundamental translational period: T=0.06*H(3/4) 0.23 sec

    16. Basic seismic coefficient for translational period: C 0.08

    17. Seismic zoning Factor: Z 1.0

    18. Importance factor: I 1.5 (for School)

    19. Structural performance Factor: K 1 (for SMRF structures)

    20. Design horizontal seismic coefficient: Cd=CZIK 0.12

    21. Design horizontal Base shear: Vh 336.185 KN

    22. Eccentricity due to mass and stiffness considered 0.05

    22. Concrete grade used M20

    23. Rebar grade used HSYD 415

    24. Size of the column used 300X300

    25. Size of the beam used 230X350

    26. Thickness of the Slab 125mm

    27. Maximum inter-storey drift 0.0018 m

  • 7/24/2019 Final Report Pating School

    3/56

    Table of Contents

    1. Background ................................................................................................................................. 1

    2. Description of the Building ......................................................................................................... 2

    General features: ......................................................................................................................... 2

    Architectural features: ................................................................................................................. 2

    Structural features: ...................................................................................................................... 3

    Salient Features: .......................................................................................................................... 3

    3. Material ....................................................................................................................................... 3

    4. Modeling ..................................................................................................................................... 4

    5. Dead Loads ................................................................................................................................. 4

    6. Live loads ................................................................................................................................... 5

    7. Seismic Load calculation As per NBC 105:1994 ...................................................................... 5

    7.1 Design Base Shear ................................................................................................................. 6

    8. Load Cases ................................................................................................................................. 7

    9. Load Combination ..................................................................................................................... 7

    10. Analysis and Design ................................................................................................................ 8

    a. Analysis ................................................................................................................................... 8

    b. Design...................................................................................................................................... 8

    11. Results ....................................................................................................................................... 9

    12. Concluding Remarks ................................................................................................................. 9

    13. References .............................................................................................................................. 10

    14. General Requirements:............................................................................................................ 11

  • 7/24/2019 Final Report Pating School

    4/56

    1 | P a g e

    1. Background

    The owner of the school building is Shree Pating Lower Secondary School. The school building

    is located at Ichok-8, Sindhupalchwok. Floor area of the proposed building is 1820.00 sqft. This

    is the two storey frame structure building. Isolated footing are provided in foundations. Footing

    ties are provide in both axis. This project comprise planning architectural design, structural

    design, electrical and sanitary design components.

    The basic aim of the structural design is to build a structure, which is safe, fulfilling the intended

    purpose during its estimated life, economical in terms of initial construction and maintenance

    cost, durable and also maintaining a good aesthetic appearance. The construction of any building

    consists of three phases; a) design, b) drawing with proper detailing and c) construction as per

    drawing and detailing. The design of structure consists of two parts. i) analysis and ii) design. At

    first the preliminary size of various members for specific structure are fixed and the analysis is

    carried out. With the result obtained from analysis, necessary design are carried out.

    After the completion of the design, drawings are prepared with all necessary details. The

    presentation of the design calculation and drawings should be clear. After the completion of the

    office works which include design and drawings, the construction of the building is carried out.

    The effort with which the design has been carried out becomes worthwhile only if the design is

    translated to a corresponding high quality structure.

    Nepal is seismically active zone. It is located in the boundary of the two colliding tectonic plates

    the Indian plates and the Tibetan plates. Records of the earthquake are available since 1255

    AD. Those records reveal that Nepal is hit by 19 major earthquakes, the 1833, 1934 and 2015

    earthquakes were the most destructive ones.

    An earthquake is vibration of earth produced by the rapid release of accumulated energy in

    elastically strained rocks. Energy released radiates in all directions from its source, the focus.

    Energy propagates in the form of seismic waves. The cause of vibration may be volcanic

    eruption, tectonic activity, landslides, rock falls or even men made explosions. Tectonic activity

    is the major source of the earthquake for our country. Although they last for few seconds only,

    they may be the most destructive ones.

    Earthquakes have varied effects, including changes in geologic features, damage to structures

    and impact on human life.

  • 7/24/2019 Final Report Pating School

    5/56

    2 | P a g e

    However, it would be economically infeasible to design the building so as to ensure that they

    remain elastic and damage free because the occurrence of maximum earthquakes low say one in

    75 years. Thus it is reliable to design of ductile structure and not to design damage free structure

    but non-collapsible structure for minimum destruction in lives and properties. The design should

    ensure the structure against stability, strength and serviceability levels of seismic safety.

    Thus the seismic design of the building is done and the brief detailing report has been prepared.

    All the design data are considered in the detail architectural and structural drawings.

    2. Description of the Building

    General features:

    Project: Seismic resistant design of school building

    Location: Ichok-8, Sindhupalchwok

    Plinth Area: 1820.00 sq.ft

    Architectural features:

    Type of Building: School building

    Number of Floors: 2

    Height of Storey: 3m

    Total Height of the Building: 6 m

    Least lateral base dimension 8.81 m

    Height to least lateral base dimension 0.68

    External walls 7HCB

    Some internal walls 7HCB

    Plaster thickness 12mm

    Wall and Partition: HCB Wall

  • 7/24/2019 Final Report Pating School

    6/56

    3 | P a g e

    Structural features:

    Structural System: RCC Frame Structure

    Foundation Type: Isolated sloped footing and Strap Foundation

    Columns: Rectangular (12x12)

    Beams: Rectangular (9x14)

    Slab: Two-way slab

    Thickness of the slab 125mm

    Salient Features:

    Soil Type: Subsoil type III

    Seismic Zone: V (as per IS 1893:2002, part-1)

    Allowable bearing capacity: 110 KN/m2

    3. Material

    Reinforced Concrete for column grade M20

    Reinforced concrete for beam grade M20

    Reinforced concrete for slab grade M20

    Reinforcement bars grade Fe415

    Unit weight of concrete 25 KN/m3

    Unit mass 2.55 tones/m3

    Youngs Modulus of Elasticity 5000 fck

    Poissons Ratiofor concrete 0.20

    Poissons Ratio for rebar 0.3

  • 7/24/2019 Final Report Pating School

    7/56

    4 | P a g e

    4. Modeling

    Since this is normal moment resisting frame structure, main components to be modeled are:

    Beams, Columns & Slabs. For the purpose of analysis, following material properties are

    assumed for concrete:

    Grade of Concrete M20

    Grade of Steel Fe415

    Unit weight 25 KN/m3

    Unit mass 2.55 tones/m3

    Typical Grid plan

    5. Dead Loads

    Dead loads are assumed to be produced by slab, beams, columns, walls, parapet walls, and

    staircase, .The weight of building materials are taken as per IS 875(Part 1)-1987).

    Specific weight of materials [Ref: IS: 875(Part 1)-1987)]

    Materials Unit weight()

    Reinforced Concrete 25.00 KN/m3

    Brick masonry 19 KN/m3

    Floor Finishing 1 KN/m2

  • 7/24/2019 Final Report Pating School

    8/56

    5 | P a g e

    Cement Sand Plaster 0.5 KN/m2

    Floor finishing (Marble) 26.00 KN/m3

    6. Live loads

    Room 3.0 KN/m2

    Corridors 3.00 KN/m2

    Stairs 3.00 KN/m2

    Balcony 3.00 KN/m2

    Roof (accessible) 1.5 KN/m2

    Roof (non accessible) 0.75 KN/m2

    7. Seismic Load calculation As per NBC 105:1994

    a. Class of the Structure

    The building is classified as a school building.

    b. Importance Factor

    On the lines described in NBC code, an importance factor of 1.5 has been chosen for this

    building.

    c. Zoning Factor

    Seismic Zoning Factor is chosen as per NBC code.

    d. Soil Profile Type

    The site is classified as sub soil category of Type III.

  • 7/24/2019 Final Report Pating School

    9/56

    6 | P a g e

    7.1 Design Base Shear

    Design Base Shear VB= Cd*Wi [7.5.3, IS: 1893 (part 1)-2002]

    Where,

    Cd= Design horizontal seismic coefficient

    =C*Z*I*K

    Z= Seismic Zoning Factor = 1 for this Town

    I= Importance Factor =1.5 for school building

    K= Structural Performance Factor =1 for SMRF.

    C= Basic Seismic coefficient for Fundamental Translational period (T)

    T = 0.06 h(3/4) , For moment resisting frame with brick infill panel

    h= total height of the structures considered in analysis

    Wi= Seismic Weight of Building, that includes total Dead load plus appropriate

    amount of live load. [7.4, IS: 1893 (part1)-2002].

    Percentage of live load to be taken for calculating seismic weight

    =25% for live load intensity upto and including 3.0 KN/m2 and

    50% for live load intensity above 3.0 KN/m2.[Table 8, IS: 1893

    (part1)-2002].

    the live load on roof need not be considered for calculating the

    seismic weight of the building. [7.3.2 IS: 1893 (part1)-2002].

    The seismic forces are applied to the model of building in SAP 2000 automatically for the

    purpose of seismic analysis; hence the manual calculation of seismic load and the seismic forces

    have not been shown.

    The seismic weight of the building and the distribution of the base shear to the horizontal

    diaphragm are generated from the analysis in sap2000.

  • 7/24/2019 Final Report Pating School

    10/56

    7 | P a g e

    8. Load Cases

    (Following loads have been considered in the analysis of the building as per IS

    456-2000 and IS1893-2002.

    1. Dead Load (DL)

    2. Live load (LL)

    3. Earthquake load in +ve X-direction (EQPX)

    4. Earthquake load inve X-direction (EQNX)

    5. Earthquake load in +ve Y-direction (EQPY)

    6. Earthquake load inve Y-direction (EQNY)

    9. Load Combination

    Following load combinations have been adopted as per NBC

    a. COMB1 1.5(DL+LL)

    b. COMB2 DL+1.30LL+1.25EQPX

    c. COMB3 DL+1.3LL+1.25EQNX

    d. COMB4 DL+1.3LL+1.25EQPY

    e. COMB5 DL+1.3LL+1.25EQNY

    f. COMB6 0.9DL+1.25EQPX

    g. COMB7 0.9DL+1.25EQNX

    h. COMB8 0.9DL+1.25EQPY

    i. COMB9 0.9DL+1.25EQNY

    Where, DL= Dead load

    LL= Imposed (Live load)

    EL= Earthquake load (Along X and Y- direction)

  • 7/24/2019 Final Report Pating School

    11/56

    8 | P a g e

    10. Analysis and Design

    a. Analysis

    A Three dimensional linear analysis has been carried out using the standard software SAP2000

    V17.0.

    The Structure is assumed to be fixed at the foundation level. The brick wall is considered as the

    filler wall only. The beams are modeled as rectangular beams. The flange effect of the beams has

    been neglected. Center to center dimension of the structure has been considered in the analysis.

    The rigid end effect has also been considered in the analysis.

    b. Design

    The design of the members has been done as per philosophy of limit state method. For the design

    of the members IS 456:2000 and design aid SP 16 has been used extensively.

    Footings have been designed for vertical loads and moments developed at the base due to dead

    load and live load only. Square footings have been adopted from seismic point of view that

    reversal stress may occur. And footing beams are provided for column at foundation for more

    rigidity of building and also need for the column located at boundary. Longitudinal

    reinforcement in columns has been calculated based on critical load combination among the nine

    load combinations. A symmetric arrangement of the reinforcement has been adopted from

    seismic point of view that reversal stress may occur. Longitudinal reinforcement in beams is also

    based on critical load combination. It is calculated from the envelope of bending moment

    diagram. Spacing of the shear reinforcement has been calculated as per the ductility principle. IS

    13920 -1993 have been used for this purpose.

    Calculation of the reinforcement for the typical members has been included in the Sample

    Calculation Section of this report.

  • 7/24/2019 Final Report Pating School

    12/56

    9 | P a g e

    11. Results

    A linear elastic three dimensional analysis has been carried out. The static analysis procedure

    permitted by the code has been used for the seismic analysis. Inter storey drift is found to be

    within the limits. It is seen that, generally, the amount of longitudinal reinforcement in beams

    and columns are governed by design internal forces and not by minimum requirements. The

    minimum amount of transverse reinforcements as per ductility requirements always govern in

    case of columns. The minimum amount of transverse reinforcement as per ductility requirements

    almost always govern except for few cases in beams. The depth of slab is governed by the

    deflection requirements rather than by strength requirements. The area of footing is governed by

    vertical loads and not by earthquake loads. The depth of footing slab is governed by one way

    shear.

    12. Concluding Remarks

    Reinforced concrete construction is common all over the world. It is used extensively for

    construction of variety of structures such as buildings, bridges, dams, water tanks, stadiums,

    towers, chimneys, tunnels and so on.

    Experiences from past earthquakes and extensive laboratory works have shown that a well-

    designed and detailed reinforced concrete structure is suitable for earthquake resistant structure.

    Ductility and strength required to resist major earthquake can be achieved by following the

    recommendations made in the standard codes of practice for earthquake resistant design.

    Detailing of steel reinforcement is an important aspect of structural design. Poor reinforcement

    detailing can lead to structural failures. Detailing plays an important role in seismic resistant

    design. In seismic resistant design, actual forces experienced by the structure are reduced and

    reliance is placed on the ductility of the structure. And, ductility can be achieved by proper

    detailing only. Thus, in addition to design, attention should be paid on amount, location and

    arrangement of reinforcement to achieve ductility as well as strength.

    Design and construction of the structure are inter-related jobs. A building behaves in a mannerhow it has been built rather than what the intensions is during designing. A large percentage of

    structural failures are attributed due to poor quality of construction. Therefore, quality assurance

    is needed in both design and construction.

    In earthquake resistant construction quality of materials and workmanship plays a very important

    role. It has been observed that damages during earthquakes are largely dependent on the quality

  • 7/24/2019 Final Report Pating School

    13/56

    10 | P a g e

    and workmanship. Hence, quality assurance is the most important factor in the good seismic

    behavior of the structure.

    13. References

    IS: 4562000 Code of Practice for Plain and Reinforced Concrete

    IS: 875 (Parts 1-5) Code of practice for design loads (other than earthquake) for buildings and

    structures (second revision)

    Part 1Dead loads

    Part 2Imposed loads

    NBC 105: 1994 Seismic Design of Buildings in Nepal

    IS: 18932002 Criteria for Earthquake Resistant Design of Structures

    IS: 13920 - 1993 Ductile Detailing of Reinforced Concrete Structures subjected to Seismic forces -

    Code of Practice

    SP: 161980 Design Aids for Reinforced Concrete to IS: 4561978

    SP: 341987

    Jain, A.K.

    Handbook on Concrete Reinforcement Detailing

    Reinforced Concrete, Limit State Design, fifth edition, Nem Chand and Bros,

    Rookie, 1999

    Sinha, S. N. Reinforced Concrete Design, Second edition, Tata McGraw Hill Publishing

    Company Ltd, New Delhi, 1996

    Pillai,U.C. and

    Menon,D.

    Reinforced Concrete Design, Second edition, Tata McGraw Hill Publishing

    Company Ltd, New Delhi, 2003

  • 7/24/2019 Final Report Pating School

    14/56

    11 | P a g e

    14. General Requirements:

    Shear Reinforcement:

    Shear reinforcement in columns is calculated on the basis of ductility considerations.

    As per ductility principle closed stirrups are provided near the column ends. The closed stirrups

    are also continued through the joint region.

    Lap Splices:

    Lap Splices are provided in columns in the mid height of the floor where stress is minimum.

    Where lap splices are provided spacing of stirrups is placed at not more than 150 mm c/c.

    General checks for beam

    Check for axial force 200mm, (OK) (Cl 6.1.1;IS 13920:1993)

    B/Depth of the beam >0.3, (OK) (Cl 6.1.1;IS 13920:1993)

    Span/Depth ratio >4 , (OK) (Cl 6.1.1;IS 13920:1993).

    Check for anchorage length at as external joint:

    Anchorage length should be greater or equal to development length in tension +10-allowance

    for 90

    Check for lap length

    The lap length should be greater or equal to development length in tension.

    Hoops should be provided over the entire lap length with spacing of 150mm.

    Not more than 50 % of bars shall be spliced at one section.

    Lap shall not be provided within the joint, within 2d distance from joint face and within a quarter

    length of the member where flexural yielding may generally occur the effect of earthquake

    forces.

  • 7/24/2019 Final Report Pating School

    15/56

    Annexes

  • 7/24/2019 Final Report Pating School

    16/56

    Footing plan

    Typical Grid Plan

  • 7/24/2019 Final Report Pating School

    17/56

    Sectional View

    Slab plan

  • 7/24/2019 Final Report Pating School

    18/56

    Deformations Due to earthquake load X -direction

    Deformations Due to earthquake load Y-direction

  • 7/24/2019 Final Report Pating School

    19/56

    Bending Moment Diagram

    Shear Force Diagram

  • 7/24/2019 Final Report Pating School

    20/56

    Rebar Sectional area

    Rebar Sectional area

  • 7/24/2019 Final Report Pating School

    21/56

    TABLE: Joint Reactions

    Joint OutputCase CaseType F1 F2 F3 M1 M2 M3

    Text Text Text KN KN KN KN-m KN-m KN-m

    1 1.5(DL+LL) Combination 7.64 7.942 196.244 26.1784 -9.7625 -1.08E-15

    2 1.5(DL+LL) Combination -1.079 12.129 320.649 39.2367 -0.5135 -1.08E-15

    3 1.5(DL+LL) Combination -5.68E-15 11.892 310.452 37.237 1.126E-14 -1.08E-15

    4 1.5(DL+LL) Combination 1.079 12.129 320.649 39.2367 0.5135 -1.08E-155 1.5(DL+LL) Combination -7.64 7.942 196.244 26.1784 9.7625 -1.08E-15

    6 1.5(DL+LL) Combination 12.56 -0.001679 312.518 -8.7 4.4307 -1.08E-15

    7 1.5(DL+LL) Combination -1.646 0.028 484.662 -20.5902 -1.254 -1.08E-15

    8 1.5(DL+LL) Combination 1.042E-14 0.019 470.428 -19.153 2.005E-14 -1.08E-15

    9 1.5(DL+LL) Combination 1.646 0.028 484.662 -20.5902 1.254 -1.08E-15

    10 1.5(DL+LL) Combination -12.56 -0.001679 312.518 -8.7 -4.4307 -1.08E-15

    11 1.5(DL+LL) Combination 8.49 -7.937 196.742 -13.8741 -9.4744 -1.08E-15

    12 1.5(DL+LL) Combination -1.174 -12.159 317.468 -9.6444 -1.1763 -1.08E-15

    13 1.5(DL+LL) Combination 1.327E-14 -11.913 309.188 -9.8914 2.039E-14 -1.08E-15

    14 1.5(DL+LL) Combination 1.174 -12.159 317.468 -9.6444 1.1763 -1.08E-15

    15 1.5(DL+LL) Combination -8.49 -7.937 196.742 -13.8741 9.4744 -1.08E-15

  • 7/24/2019 Final Report Pating School

    22/56

    Fck Fy Df palw yt d' t

    20 415 1.5 110 19.2 75 250

    FOT Pu Mux Muy Bc Dc Req. A LF BF LF BF BM/M dM D Bar dia Spacing

    GRID (kN) (kN-M) (kN-M) (m) (m) (M2) (Ft) (Ft) (M) (M) (kN/M

    2) (kN-M) (mm) (mm) (mm) cm c/c Shear

    F1 196.244 26.1784 -9.7625 0.30 0.30 1.50 5.00 5.00 1.52 1.52 128.8 37 94 500 12 18.8 OK OK

    F2 320.649 39.2367 -0.5135 0.30 0.30 2.45 5.00 5.00 1.52 1.52 204.4 59 119 500 12 18.8 OK OK

    F3 310.452 37.237 1.1E-14 0.30 0.30 2.37 5.00 5.00 1.52 1.52 196.7 57 117 500 12 18.8 OK OK

    F4 320.649 39.2367 0 .5135 0.30 0.30 2.45 5.00 5.00 1.52 1.52 204.4 59 119 500 12 18.8 OK OK

    F5 196.244 26.1784 9 .7625 0.30 0.30 1.50 5.00 5.00 1.52 1.52 128.8 37 94 500 12 18.8 OK OK

    F6 312.518 -8.7 4.4307 0.30 0.30 2.39 5.00 5.00 1.52 1.52 142.0 41 99 500 12 18.8 OK OK

    F7 484.662 -20.5902 -1.254 0.30 0.30 3.71 5.00 5.00 1.52 1.52 206.4 60 119 500 12 18.8 OK OK

    F8 470.428 -19.153 2E-14 0.30 0.30 3.60 5.00 5.00 1.52 1.52 202.4 59 118 500 12 18.8 OK OK

    F9 484.662 -20.5902 1.254 0.30 0.30 3.71 5.00 5.00 1.52 1.52 210.7 61 121 500 12 18.8 OK OK

    F10 312.518 -8.7 -4.4307 0.30 0.30 2.39 5.00 5.00 1.52 1.52 127.0 37 94 500 12 18.8 OK OK

    F11 196.742 -13 .8741 - 9.4744 0.30 0.30 1.50 5.00 5.00 1.52 1.52 68.6 20 69 500 12 18.8 OK OK

    F12 317.468 -9.6444 -1.1763 0.30 0.30 2.43 5.00 5.00 1.52 1.52 134.6 39 96 500 12 18.8 OK OK

    F13 309.188 -9.8914 2E-14 0.30 0.30 2.36 5.00 5.00 1.52 1.52 133.1 39 96 500 12 18.8 OK OK

    F14 317.468 -9.6444 1.1763 0.30 0.30 2.43 5.00 5.00 1.52 1.52 138.6 40 98 500 12 18.8 OK OK

    F15 196.742 -13 .8741 9.4744 0.30 0.30 1.50 5.00 5.00 1.52 1.52 100.7 29 83 500 12 18.8 OK OK

    ISOLATED FOOTING

    Check for

  • 7/24/2019 Final Report Pating School

    23/56

    SAP2000

    ProjectJob NumberEngineer

    Indian IS 456-2000 COLUMN SECTION DESIGN Type: Ductile Frame Units: KN, mm, C(Summary)

    L=3048.000Element : 91 B=300.000 D=300.000 dc=58.000

    Station Loc : 0.000 E=22.361 fc=0.020 Lt.Wt. Fac.=1.000Section ID : COL300 fy=0.415 fys=0.415Combo ID : DL+1.3LL+1.25EQY RLLF=1.000

    Gamma(Concrete): 1.500Gamma(Steel) : 1.150

    AXIAL FORCE & BIAXIAL MOMENT DESIGN FOR Pu, Mu2, Mu3Rebar Design Design Design Factored FactoredArea Pu Mu2 Mu3 Mu2 Mu3

    1509.452 187.363 55699.536 -3747.269 55699.536 -1801.700

    AXIAL FORCE & BIAXIAL MOMENT FACTORSK L Initial Additional Minimum

    Factor Length Moment Moment Moment Major Bending(M3) 1.000 3048.000 -720.680 0.000 3747.269 Minor Bending(M2) 1.000 3048.000 22279.814 0.000 3747.269

    SHEAR DESIGN FOR Vu2,Vu3Rebar Shear Shear Shear ShearAsv/s Vu Vc Vs Vp

    Major Shear(V2) 0.333 40.516 59.822 29.040 40.516 Minor Shear(V3) 0.333 35.403 59.822 29.040 25.665

    JOINT SHEAR DESIGN (INFORMATIVE ONLY)Joint Shear Shear Shear Shear Joint

    Ratio VTop VuTot Vc Area Major Shear(V2) N/A N/A N/A N/A N/A Minor Shear(V3) N/A N/A N/A N/A N/A

    (1.1) BEAM/COLUMN CAPACITY RATIOS (INFORMATIVE ONLY)Major MinorRatio RatioN/A N/A

    Notes:N/A: Not Applicable

    N/C: Not Calculated N/N: Not Needed

  • 7/24/2019 Final Report Pating School

    24/56

    Column Details

    Grid

    no dia no dia

    A1 300 X 300 1,457.00 4 16 4 16 1,607.68 1.79

    B1 300 X 300 1,460.00 4 16 4 16 1,607.68 1.79

    C1 300 X 300 1,513.00 4 16 4 16 1,607.68 1.79

    D1 300 X 300 1,565.00 4 16 4 16 1,607.68 1.79E1 300 X 300 1,562.00 4 16 4 16 1,607.68 1.79

    -

    A2 300 X 300 1,502.00 4 16 4 16 1,607.68 1.79

    B2 300 X 300 1,373.00 4 16 4 16 1,607.68 1.79

    C2 300 X 300 1,414.00 4 16 4 16 1,607.68 1.79

    D2 300 X 300 1,477.00 4 16 4 16 1,607.68 1.79

    E2 300 X 300 1,584.00 4 16 4 16 1,607.68 1.79

    -

    A3 300 X 300 1,475.00 4 16 4 16 1,607.68 1.79

    B3 300 X 300 1,479.00 4 16 4 16 1,607.68 1.79

    C3 300 X 300 1,509.00 4 16 4 16 1,607.68 1.79D3 300 X 300 1,563.00 4 16 4 16 1,607.68 1.79

    E3 300 X 300 1,560.00 4 16 4 16 1,607.68 1.79

    % of Steel

    Providedcolumn size Ast Required Area providedType

    Rebar

    C1

  • 7/24/2019 Final Report Pating School

    25/56

    SAP2000

    ProjectJob NumberEngineer

    Indian IS 456-2000 BEAM SECTION DESIGN Type: Ductile Frame Units: KN, mm, C (Summary)

    L=4724.400Element : 33 D=350.000 B=230.000 bf=230.000Station Loc : 4724.400 ds=0.000 dct=25.000 dcb=25.000

    Section ID : MBEAM230X350 E=22.361 fc=0.020 Lt.Wt. Fac.=1.000Combo ID : DL+1.3LL+1.25EQfy=0.415 fys=0.415

    Gamma(Concrete): 1.500Gamma(Steel) : 1.150

    Factored Forces and MomentsFactored Factored Factored Factored

    Mu3 Tu Vu2 Pu-50684.790 3408.048 41.260 3.900

    Design Moments, Mu3Factored Torsion Positive NegativeMoment Mt Moment Moment

    -50684.790 5055.417 0.000 -55740.207

    Longitudinal Reinforcement for Moment and Torsion (Mu3, Tu)Required +Moment -Moment Minimum

    Rebar Rebar Rebar Rebar Top (+2 Axis) 565.239 0.000 565.239 208.197 Bottom (-2 Axis) 282.619 0.000 0.000 282.619

    Shear Reinforcement for Shear and Torsion (Vu2, Tu)Rebar Shear Shear Shear ShearAsv/s Ve Vc Vs Vp0.324 56.550 42.276 37.982 26.600

    Torsion Reinforcement for Torsion and Shear (Tu, Vu2)Rebar Torsion Shear Core CoreAsvt/s Tu Vu b1 d1

    0.290 3408.048 41.260 200.000 320.000

  • 7/24/2019 Final Report Pating School

    26/56

    Beam Details

    no dia no dia

    Main Beam

    Grid 1-1 230 X 350 208.00 2 16 401.92 0.50 top thr

    293.00 2 16 401.92 0.50 btm thr

    184.08 2 12 226.08 0.28 top xtra

    -

    Grid 2-2 230 X 350 208.00 2 16 401.92 0.50 top thr

    356.00 2 16 401.92 0.50 btm thr

    309.08 2 16 401.92 0.50 top xtra

    29.08 1 12 113.04 0.14 btm xtra

    -

    Grid 3-3 230 X 350 208.00 2 16 401.92 0.50 top thr

    322.00 2 16 401.92 0.50 btm thr

    242.08 2 16 401.92 0.50 top xtra

    Grid A-A 230 X 350 208.00 2 16 401.92 0.50 top thr

    308.00 2 16 401.92 0.50 btm thr

    215.08 2 12 226.08 0.28 top xtra

    -

    Grid B-B 230 X 350 208.00 2 16 401.92 0.50 top thr

    365.00 2 16 401.92 0.50 btm thr

    327.08 2 16 401.92 0.50 top xtra

    7.08 1 12 113.04 0.14 btm xtra

    -

    Grid C-C 230 X 350 208.00 2 16 401.92 0.50 top thr364.00 2 16 401.92 0.50 btm thr

    326.08 2 16 401.92 0.50 top xtra

    Grid D-D 230 X 350 208.00 2 16 401.92 0.50 top thr

    376.00 2 16 401.92 0.50 btm thr

    350.08 2 16 401.92 0.50 top xtra

    7.08 1 12 113.04 0.14 btm xtra

    Grid E-E 230 X 350 208.00 2 16 401.92 0.50 top thr

    344.00 2 16 401.92 0.50 btm thr

    286.08 2 16 401.92 0.50 top xtra

    T Beam 230 X 300 208.00 2 16 401.92 0.58 top thr

    326.00 2 16 401.92 0.58 btm thr

    249.08 2 16 401.92 0.58 top xtra

    7.08 1 12 113.04 0.16 btm xtra

    Remarks

    % of Steel

    ProvidedNotation Beam size Ast Required

    Rebar Area

    provided

  • 7/24/2019 Final Report Pating School

    27/56

    Storey

    floor level U1(mm) U2(mm) D1(mm) D2(mm) Height(mm) DR1 DR2

    second 8.2 9.13first 5.02 5.39 3.18 3.74 3000 0.0011 0.0012

    ground 0 0 5.02 5.39 3000 0.0017 0.0018

    neither the ratio of inter-storey deflection to storey height exceeds 0.010

    Drift calculation

    combination:- EQX FOR U1 AND EQY FOR U2 DIRECTIONstorey drift Drift ratio

    Note:-In non of the above cases inter-storey deflection exceeds 60mm

  • 7/24/2019 Final Report Pating School

    28/56

    Fe 415 Fck 15 Tf 50.0 d' 15.0

    Type ofLy Lx D LL wu Ly Span At ax BM pt Ast l/d D(req) CK Ast of

    Pannel (M) (M) (mm) (kN/M2)(kN/M2) Lx ay (kN-M) (%) (cm2/M) (chart) (mm) a bar (f) ( " ) (f) ( " )

    11.06 Short S 0.053 10.68 0.26 2.90 30.0 109 Ok 0.79 10 10.7 10 5

    M 0.04 8.06 0.20 2.15 35.0 109Ok 0.79 10 13.0

    L on g S 0.047 9.47 0.23 2.55 31.5 104 Ok 0.50 8 7.8 8 5

    M 0 .035 7.05 0.17 1.86 36.0 15Ok 0.50 8 10.6

    11.06 Short S 0.044 8.86 0.22 2.37 33.0 99 Ok 0.79 10 13.0 10 5

    M 0 .033 6.65 0.16 1.75 36.0 106Ok 0.79 10 13.0

    L on g S 0.037 7.45 0.18 1.98 35.0 94 Ok 0.50 8 10.0 8 5

    M 0 .028 5.64 0.13 1.48 40.0 15Ok 0.50 8 13.0

    11.06 Short S 0.044 8.86 0.22 2.37 33.0 99 Ok 0.79 10 13.0 10 5

    M 0 .033 6.65 0.16 1.75 36.0 106Ok 0.79 10 13.0

    L on g S 0.037 7.45 0.18 1.98 35.0 94 Ok 0.50 8 10.0 8 5

    M 0 .028 5.64 0.13 1.48 40.0 15Ok 0.50 8 13.0

    11.06 Short S 0.053 10.68 0.26 2.90 30.0 109 Ok 0.79 10 10.7 10 5

    M 0.04 8.06 0.20 2.15 35.0 109Ok 0.79 10 13.0

    L on g S 0.047 9.47 0.23 2.55 31.5 104 Ok 0.50 8 7.8 8 5

    M 0 .035 7.05 0.17 1.86 36.0 15Ok 0.50 8 10.6

    125 3.00 1.11

    Bar spacing (C/C)

    4.267

    4.267

    1.107

    125 3.00

    125 3.00

    4.267 125 3.00 1.107

    Required Provide

    A/B/2/3 4 4.724

    D/E/2/3 4 4.724

    C/D/2/3 4.724

    Slab at all floor (Design)

    B/C/2/3 3

    3

    4.724

    DESIGN OF TWO WAY SLAB

    4.267

    MISCELLANEOUS

    Slab

    between

    grid

    1.107

  • 7/24/2019 Final Report Pating School

    29/56

    Fe 415 Fck 15 Tf 50.0 d' 15.0

    Type ofLy Lx D LL wu Ly Span At ax BM pt Ast l/d D(req) CK Ast of

    Pannel (M) (M) (mm) (kN/M2)(kN/M2) Lx ay (kN-M) (%) (cm2/M) (chart) (mm) a bar (f) ( " ) (f) ( " )

    Bar spacing (C/C)

    Required Provide

    Slab at all floor (Design)

    DESIGN OF TWO WAY SLAB

    MISCELLANEOUS

    Slab

    between

    grid

    11.06 Short S 0.053 10.68 0.26 2.90 30.0 109 Ok 0.79 10 10.7 10 5

    M 0.04 8.06 0.20 2.15 35.0 109Ok 0.79 10 13.0

    L on g S 0.047 9.47 0.23 2.55 31.5 104 Ok 0.50 8 7.8 8 5

    M 0 .035 7.05 0.17 1.86 36.0 15Ok 0.50 8 10.6

    11.06 Short S 0.044 8.86 0.22 2.37 33.0 99 Ok 0.79 10 13.0 10 5

    M 0 .033 6.65 0.16 1.75 36.0 106Ok 0.79 10 13.0

    L on g S 0.037 7.45 0.18 1.98 35.0 94 Ok 0.50 8 10.0 8 5

    M 0 .028 5.64 0.13 1.48 40.0 15Ok 0.50 8 13.0

    11.06 Short S 0.044 8.86 0.22 2.37 33.0 99 Ok 0.79 10 13.0 10 5

    M 0 .033 6.65 0.16 1.75 36.0 106Ok 0.79 10 13.0

    L on g S 0.037 7.45 0.18 1.98 35.0 94 Ok 0.50 8 10.0 8 5

    M 0 .028 5.64 0.13 1.48 40.0 15Ok 0.50 8 13.0

    11.06 Short S 0.053 10.68 0.26 2.90 30.0 109 Ok 0.79 10 10.7 10 5

    M 0.04 8.06 0.20 2.15 35.0 109Ok 0.79 10 13.0

    L on g S 0.047 9.47 0.23 2.55 31.5 104 Ok 0.50 8 7.8 8 5M 0 .035 7.05 0.17 1.86 36.0 15Ok 0.50 8 10.6

    C/D/1/2 3

    4 4.724 4.267 125

    4.724 4.267

    3.00 1.107

    125 3.00 1.107

    D/E/1/2

    A/B/1/2 4

    B/C/1/2 3 4.724 4.267

    4.724 1.1074.267

    1.107125 3.00

    125 3.00

  • 7/24/2019 Final Report Pating School

    30/56

    Pating School.sdb SAP2000 v17.0.0 - License #08 December 2015

    Computers and Structures, Inc. Page 1 of 11

    Table: Area Section Properties, Part 1 of 4

    Table: Area Section Properties, Part 1 of 4

    Section Material MatAngle AreaType Type DrillDOF Thickness BendThick Arc

    Degrees mm mm DegreesSLAB M20 0.000 Shell Shell-Thin Yes 125.000 125.000

    Table: Area Section Properties, Part 2 of 4

    Table: Area Section Properties, Part 2 of 4

    Section InComp CoordSys Color TotalWt TotalMass F11Mod F22Mod

    KN KN-s2/mm

    SLAB Green 503.850 0.051378 1.000000 1.000000

    Table: Area Section Properties, Part 3 of 4

    Table: Area Section Properties, Part 3 of 4Section F12Mod M11Mod M22Mod M12Mod V13Mod V23Mod MMod WMod

    SLAB 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

    Table: Area Section Properties, Part 4 of 4

    Table: Area Section Properties, Part 4 of 4

    Section GUID Notes

    SLAB Added 10/14/2015 1:20:05 PM

    Table: Area Section Property - Time Dependent

    Table: Area Section Property - Time Dependent

    Section TypeSize AutoSFSize UserValSize

    mm

    SLAB Auto 1.000000

    Table: Area Section Property Design Parameters

    Table: Area Section Property DesignParameters

    Section RebarMat RebarOpt

    SLAB HYSD415 Default

    Table: Auto Combination Option Data 01 - General

    Table: Auto CombinationOption Data 01 - General

    DesignType AutoGen

    Concrete No

  • 7/24/2019 Final Report Pating School

    31/56

    Pating School.sdb SAP2000 v17.0.0 - License #08 December 2015

    Computers and Structures, Inc. Page 2 of 11

    Table: Auto Seismic - User Coefficient, Part 1 of 2

    Table: Auto Seismic - User Coefficient, Part 1 of 2

    LoadPat Dir PercentEcc EccOverride UserZ C K WeightUsed

    KN

    EQX X 0.050000 No No 0.120000 1.000000 2801.545EQY Y 0.050000 No No 0.120000 1.000000 2801.545

    Table: Auto Seismic - User Coefficient, Part 2 of 2

    Table: Auto Seismic - UserCoefficient, Part 2 of 2

    LoadPat BaseShear

    KN

    EQX 336.185

    EQY 336.185

    Table: Auto Seismic Loads To Horizontal Diaphragms, Part 1 of 2

    Table: Auto Seismic Loads To Horizontal Diaphragms, Part 1 of 2

    LoadPat AutoLdType Diaphragm DiaphragmZ FX FY FZ MX

    mm KN KN KN KN-mm

    EQX USERCOEFF

    DIAPH2 6096.00 115.918 0.000 0.000 0.00

    EQX USERCOEFF

    DIAPH1 3048.00 48.894 0.000 0.000 0.00

    EQY USERCOEFF

    DIAPH2 6096.00 0.000 115.918 0.000 2.059E-10

    EQY USERCOEFF

    DIAPH1 3048.00 0.000 48.894 0.000 4.343E-11

    Table: Auto Seismic Loads To Horizontal Diaphragms, Part 2 of 2

    Table: Auto Seismic Loads To Horizontal Diaphragms, Part 2 of 2

    LoadPat Diaphragm DiaphragmZ MY MZ X Y Z

    mm KN-mm KN-mm mm mm mm

    EQX DIAPH2 6096.00 -2.059E-10 -49464.49 9448.80 4267.20 6096.00

    EQX DIAPH1 3048.00 -4.343E-11 -47726.12 9448.80 3638.55 3048.00

    EQY DIAPH2 6096.00 0.00 109528.52 9448.80 4267.20 6096.00

    EQY DIAPH1 3048.00 0.00 46199.10 9448.80 3638.55 3048.00

    Table: Auto Wave 3 - Wave Characteristics - General

    Table: Auto Wave 3 - Wave Characteristics - GeneralWaveChar WaveType KinFactor SWaterDept

    hWaveHeight WavePeriod WaveTheory

    mm mm Sec

    Default From Theory 1.000000 45000.00 18000.00 12.0000 Linear

  • 7/24/2019 Final Report Pating School

    32/56

    Pating School.sdb SAP2000 v17.0.0 - License #08 December 2015

    Computers and Structures, Inc. Page 3 of 11

    Table: Combination Definitions, Part 1 of 3

    Table: Combination Definitions, Part 1 of 3

    ComboName ComboType AutoDesign CaseType CaseName ScaleFactor SteelDesign

    1.5(DL+LL) Linear Add No Linear Static DEAD 1.500000 None

    1.5(DL+LL) Linear Static LIVE 1.500000

    1.5(DL+LL) Linear Static WALL 1.5000001.5(DL+LL) Linear Static PWALL 1.500000

    1.5(DL+LL) Linear Static FF 1.500000

    DL+1.3LL+1.25EQX Linear Add No Linear Static DEAD 1.000000 None

    DL+1.3LL+1.25EQX Linear Static LIVE 1.300000

    DL+1.3LL+1.25EQX Linear Static WALL 1.000000

    DL+1.3LL+1.25EQX Linear Static PWALL 1.000000

    DL+1.3LL+1.25EQX Linear Static FF 1.000000

    DL+1.3LL+1.25EQX Linear Static EQX 1.250000

    DL+1.3LL-1.25EQX Linear Add No Linear Static DEAD 1.000000 None

    DL+1.3LL-1.25EQX Linear Static LIVE 1.300000

    DL+1.3LL-1.25EQX Linear Static WALL 1.000000

    DL+1.3LL-1.25EQX Linear Static PWALL 1.000000

    DL+1.3LL-1.25EQX Linear Static FF 1.000000

    DL+1.3LL-1.25EQX Linear Static EQX -1.250000

    DL+1.3LL+1.25EQY Linear Add No Linear Static DEAD 1.000000 None

    DL+1.3LL+1.25EQY Linear Static LIVE 1.300000

    DL+1.3LL+1.25EQY Linear Static WALL 1.000000

    DL+1.3LL+1.25EQY Linear Static PWALL 1.000000

    DL+1.3LL+1.25EQY Linear Static FF 1.000000

    DL+1.3LL+1.25EQY Linear Static EQY 1.250000

    DL+1.3LL-1.25EQY Linear Add No Linear Static DEAD 1.000000 None

    DL+1.3LL-1.25EQY Linear Static LIVE 1.300000

    DL+1.3LL-1.25EQY Linear Static WALL 1.000000

    DL+1.3LL-1.25EQY Linear Static PWALL 1.000000

    DL+1.3LL-1.25EQY Linear Static FF 1.000000

    DL+1.3LL-1.25EQY Linear Static EQY -1.250000

    0.9DL+1.25EQX Linear Add No Linear Static DEAD 0.900000 None0.9DL+1.25EQX Linear Static WALL 0.900000

    0.9DL+1.25EQX Linear Static PWALL 0.900000

    0.9DL+1.25EQX Linear Static FF 0.900000

    0.9DL+1.25EQX Linear Static EQX 1.250000

    0.9DL-1.25EQX Linear Add No Linear Static DEAD 0.900000 None

    0.9DL-1.25EQX Linear Static WALL 0.900000

    0.9DL-1.25EQX Linear Static PWALL 0.900000

    0.9DL-1.25EQX Linear Static FF 0.900000

    0.9DL-1.25EQX Linear Static EQX -1.250000

    0.9DL+1.25EQY Linear Add No Linear Static DEAD 0.900000 None

    0.9DL+1.25EQY Linear Static WALL 0.900000

    0.9DL+1.25EQY Linear Static PWALL 0.900000

    0.9DL+1.25EQY Linear Static FF 0.900000

    0.9DL+1.25EQY Linear Static EQY 1.2500000.9DL-1.25EQY Linear Add No Linear Static DEAD 0.900000 None

    0.9DL-1.25EQY Linear Static WALL 0.900000

    0.9DL-1.25EQY Linear Static PWALL 0.900000

    0.9DL-1.25EQY Linear Static FF 0.900000

    0.9DL-1.25EQY Linear Static EQY -1.250000

  • 7/24/2019 Final Report Pating School

    33/56

    Pating School.sdb SAP2000 v17.0.0 - License #08 December 2015

    Computers and Structures, Inc. Page 4 of 11

    Table: Combination Definitions, Part 2 of 3

    Table: Combination Definitions, Part 2 of 3

    ComboName CaseName ConcDesign AlumDesign ColdDesign

    1.5(DL+LL) DEAD Strength None None

    1.5(DL+LL) LIVE

    1.5(DL+LL) WALL1.5(DL+LL) PWALL

    1.5(DL+LL) FF

    DL+1.3LL+1.25EQX DEAD Strength None None

    DL+1.3LL+1.25EQX LIVE

    DL+1.3LL+1.25EQX WALL

    DL+1.3LL+1.25EQX PWALL

    DL+1.3LL+1.25EQX FF

    DL+1.3LL+1.25EQX EQX

    DL+1.3LL-1.25EQX DEAD Strength None None

    DL+1.3LL-1.25EQX LIVE

    DL+1.3LL-1.25EQX WALL

    DL+1.3LL-1.25EQX PWALL

    DL+1.3LL-1.25EQX FF

    DL+1.3LL-1.25EQX EQX

    DL+1.3LL+1.25EQY DEAD Strength None None

    DL+1.3LL+1.25EQY LIVE

    DL+1.3LL+1.25EQY WALL

    DL+1.3LL+1.25EQY PWALL

    DL+1.3LL+1.25EQY FF

    DL+1.3LL+1.25EQY EQY

    DL+1.3LL-1.25EQY DEAD Strength None None

    DL+1.3LL-1.25EQY LIVE

    DL+1.3LL-1.25EQY WALL

    DL+1.3LL-1.25EQY PWALL

    DL+1.3LL-1.25EQY FF

    DL+1.3LL-1.25EQY EQY

    0.9DL+1.25EQX DEAD Strength None None0.9DL+1.25EQX WALL

    0.9DL+1.25EQX PWALL

    0.9DL+1.25EQX FF

    0.9DL+1.25EQX EQX

    0.9DL-1.25EQX DEAD Strength None None

    0.9DL-1.25EQX WALL

    0.9DL-1.25EQX PWALL

    0.9DL-1.25EQX FF

    0.9DL-1.25EQX EQX

    0.9DL+1.25EQY DEAD Strength None None

    0.9DL+1.25EQY WALL

    0.9DL+1.25EQY PWALL

    0.9DL+1.25EQY FF

    0.9DL+1.25EQY EQY0.9DL-1.25EQY DEAD Strength None None

    0.9DL-1.25EQY WALL

    0.9DL-1.25EQY PWALL

    0.9DL-1.25EQY FF

    0.9DL-1.25EQY EQY

  • 7/24/2019 Final Report Pating School

    34/56

    Pating School.sdb SAP2000 v17.0.0 - License #08 December 2015

    Computers and Structures, Inc. Page 5 of 11

    Table: Combination Definitions, Part 3 of 3

    Table: Combination Definitions, Part 3 of 3

    ComboName CaseName GUID Notes

    1.5(DL+LL) DEAD Dead + Live; Strength

    1.5(DL+LL) LIVE

    1.5(DL+LL) WALL1.5(DL+LL) PWALL

    1.5(DL+LL) FF

    DL+1.3LL+1.25EQX DEAD Dead + Live + Static Earthquake;Strength

    DL+1.3LL+1.25EQX LIVE

    DL+1.3LL+1.25EQX WALL

    DL+1.3LL+1.25EQX PWALL

    DL+1.3LL+1.25EQX FF

    DL+1.3LL+1.25EQX EQX

    DL+1.3LL-1.25EQX DEAD Dead + Live + Static Earthquake;Strength

    DL+1.3LL-1.25EQX LIVE

    DL+1.3LL-1.25EQX WALL

    DL+1.3LL-1.25EQX PWALLDL+1.3LL-1.25EQX FF

    DL+1.3LL-1.25EQX EQX

    DL+1.3LL+1.25EQY DEAD Dead + Live + Static Earthquake;Strength

    DL+1.3LL+1.25EQY LIVE

    DL+1.3LL+1.25EQY WALL

    DL+1.3LL+1.25EQY PWALL

    DL+1.3LL+1.25EQY FF

    DL+1.3LL+1.25EQY EQY

    DL+1.3LL-1.25EQY DEAD Dead + Live + Static Earthquake;Strength

    DL+1.3LL-1.25EQY LIVE

    DL+1.3LL-1.25EQY WALL

    DL+1.3LL-1.25EQY PWALLDL+1.3LL-1.25EQY FF

    DL+1.3LL-1.25EQY EQY

    0.9DL+1.25EQX DEAD Dead + Live + Static Earthquake;Strength

    0.9DL+1.25EQX WALL

    0.9DL+1.25EQX PWALL

    0.9DL+1.25EQX FF

    0.9DL+1.25EQX EQX

    0.9DL-1.25EQX DEAD Dead + Live + Static Earthquake;Strength

    0.9DL-1.25EQX WALL

    0.9DL-1.25EQX PWALL

    0.9DL-1.25EQX FF

    0.9DL-1.25EQX EQX0.9DL+1.25EQY DEAD Dead + Live + Static Earthquake;

    Strength

    0.9DL+1.25EQY WALL

    0.9DL+1.25EQY PWALL

    0.9DL+1.25EQY FF

    0.9DL+1.25EQY EQY

    0.9DL-1.25EQY DEAD Dead + Live + Static Earthquake;Strength

    0.9DL-1.25EQY WALL

  • 7/24/2019 Final Report Pating School

    35/56

    Pating School.sdb SAP2000 v17.0.0 - License #08 December 2015

    Computers and Structures, Inc. Page 6 of 11

    Table: Combination Definitions, Part 3 of 3

    ComboName CaseName GUID Notes

    0.9DL-1.25EQY PWALL

    0.9DL-1.25EQY FF

    0.9DL-1.25EQY EQY

    Table: Frame Section Properties 01 - General, Part 1 of 6

    Table: Frame Section Properties 01 - General, Part 1 of 6

    SectionName Material Shape t3 t2 Area TorsConst

    mm mm mm2 mm4

    COL300 M20 Rectangular 300.000 300.000 90000.00 1140750000

    COL350 M20 Rectangular 350.000 350.000 122500.00 2113380208

    MBEAM230X350 M20 Rectangular 350.000 230.000 80500.00 840949710.

    SBM M20 Rectangular 300.000 230.000 69000.00 645952940.

    TBEAM M20 Rectangular 300.000 230.000 69000.00 645952940.

    Table: Frame Section Properties 01 - General, Part 2 of 6Table: Frame Section Properties 01 - General, Part 2 of 6

    SectionName I33 I22 I23 AS2 AS3 S33 S22

    mm4 mm4 mm4 mm2 mm2 mm3 mm3

    COL300 675000000. 675000000. 0.00 75000.00 75000.00 4500000.00 4500000.00

    COL350 1250520833 1250520833 0.00 102083.33 102083.33 7145833.33 7145833.33

    MBEAM230X350 821770833. 354870833. 0.00 67083.33 67083.33 4695833.33 3085833.33

    SBM 517500000. 304175000.0 0.00 57500.00 57500.00 3450000.00 2645000.00

    TBEAM 517500000. 304175000.0 0.00 57500.00 57500.00 3450000.00 2645000.00

    Table: Frame Section Properties 01 - General, Part 3 of 6

    Table: Frame Section Properties 01 - General, Part 3 of 6SectionName Z33 Z22 R33 R22 ConcCol ConcBeam Color

    mm3 mm3 mm mm

    COL300 6750000.00 6750000.00 86.603 86.603 Yes No Blue

    COL350 10718750.00 10718750.00 101.036 101.036 Yes No Cyan

    MBEAM230X350 7043750.00 4628750.00 101.036 66.395 No Yes Blue

    SBM 5175000.00 3967500.00 86.603 66.395 No Yes Blue

    TBEAM 5175000.00 3967500.00 86.603 66.395 No Yes 8388863

    Table: Frame Section Properties 01 - General, Part 4 of 6

    Table: Frame Section Properties 01 - General, Part 4 of 6

    SectionName TotalWt TotalMass FromFile AMod A2Mod A3Mod JMod

    KN KN-s2/mmCOL300 205.679 0.020973 No 1.000000 1.000000 1.000000 1.000000

    COL350 0.000 0.000000 No 1.000000 1.000000 1.000000 1.000000

    MBEAM230X350 399.825 0.040771 No 1.000000 1.000000 1.000000 1.000000

    SBM 0.000 0.000000 No 1.000000 1.000000 1.000000 1.000000

    TBEAM 203.942 0.020796 No 1.000000 1.000000 1.000000 1.000000

  • 7/24/2019 Final Report Pating School

    36/56

    Pating School.sdb SAP2000 v17.0.0 - License #08 December 2015

    Computers and Structures, Inc. Page 7 of 11

    Table: Frame Section Properties 01 - General, Part 5 of 6

    Table: Frame Section Properties 01 - General, Part 5 of 6

    SectionName I2Mod I3Mod MMod WMod GUID

    COL300 1.000000 1.000000 1.000000 1.000000

    COL350 1.000000 1.000000 1.000000 1.000000

    MBEAM230X350 1.000000 1.000000 1.000000 1.000000SBM 1.000000 1.000000 1.000000 1.000000

    TBEAM 1.000000 1.000000 1.000000 1.000000

    Table: Frame Section Properties 01 - General, Part 6 of 6

    Table: Frame Section Properties 01 - General, Part 6 of 6

    SectionName Notes

    COL300 Added 10/18/2015 11:49:39 AM

    COL350 Added 10/14/2015 1:16:17 PM

    MBEAM230X350 Added 10/14/2015 1:17:54 PM

    SBM Added 11/5/2015 12:59:13 PM

    TBEAM Added 10/14/2015 1:19:23 PM

    Table: Frame Section Properties 02 - Concrete Column, Part 1 of 2

    Table: Frame Section Properties 02 - Concrete Column, Part 1 of 2

    SectionName

    RebarMatL RebarMatC ReinfConfig LatReinf Cover NumBars3Dir

    NumBars2Dir

    BarSizeL

    mm

    COL300 HYSD415 HYSD415 Rectangular Ties 40.000 3 3 20d

    COL350 HYSD415 HYSD415 Rectangular Ties 40.000 3 3 20d

    Table: Frame Section Properties 02 - Concrete Column, Part 2 of 2Table: Frame Section Properties 02 - Concrete Column, Part 2 of 2

    SectionName

    BarSizeC SpacingC NumCBars2 NumCBars3 ReinfType

    mm

    COL300 8d 150.000 3 3 Design

    COL350 8d 150.000 3 3 Design

    Table: Frame Section Properties 03 - Concrete Beam

    Table: Frame Section Properties 03 - Concrete Beam

    SectionName

    RebarMatL RebarMatC TopCover BotCover TopLeftArea TopRghtArea

    BotLeftArea BotRghtArea

    mm mm mm2 mm2 mm2 mm2

    MBEAM230X350

    HYSD415 HYSD415 25.000 25.000 0.000 0.000 0.000 0.000

    SBM HYSD415 HYSD415 25.000 25.000 0.000 0.000 0.000 0.000

    TBEAM HYSD415 HYSD415 25.000 25.000 0.000 0.000 0.000 0.000

  • 7/24/2019 Final Report Pating School

    37/56

    Pating School.sdb SAP2000 v17.0.0 - License #08 December 2015

    Computers and Structures, Inc. Page 8 of 11

    Table: Frame Section Properties 13 - Time Dependent

    Table: Frame Section Properties 13 - Time Dependent

    SectionName TypeSize AutoValSize AutoSFSize UserValSize

    mm mm

    COL300 Auto 150.00 1.000000

    COL350 Auto 175.00 1.000000

    MBEAM230X350 Auto 138.79 1.000000SBM Auto 130.19 1.000000

    TBEAM Auto 130.19 1.000000

    Table: Function - Power Spectral Density - User

    Table: Function - Power Spectral Density - User

    Name Frequency Value

    Cyc/sec

    UNIFPSD 0.0000E+00 1.000000

    UNIFPSD 1.0000E+00 1.000000

    Table: Function - Response Spectrum - User

    Table: Function - Response Spectrum - User

    Name Period Accel FuncDamp

    Sec

    UNIFRS 0.000000 1.000000 0.050000

    UNIFRS 1.000000 1.000000

    Table: Function - Steady State - User

    Table: Function - Steady State - User

    Name Frequency Value

    Cyc/sec

    UNIFSS 0.0000E+00 1.000000

    UNIFSS 1.0000E+00 1.000000

    Table: Function - Time History - User

    Table: Function - Time History - User

    Name Time Value

    Sec

    RAMPTH 0.0000 0.000000

    RAMPTH 1.0000 1.000000

    RAMPTH 4.0000 1.000000

    UNIFTH 0.0000 1.000000

    UNIFTH 1.0000 1.000000

    Table: Load Case Definitions, Part 1 of 3

    Table: Load Case Definitions, Part 1 of 3

    Case Type InitialCond ModalCase BaseCase DesTypeOpt DesignType DesActOpt

    DEAD LinStatic Zero Prog Det DEAD Prog Det

    MODAL LinModal Zero Prog Det OTHER Prog Det

  • 7/24/2019 Final Report Pating School

    38/56

    Pating School.sdb SAP2000 v17.0.0 - License #08 December 2015

    Computers and Structures, Inc. Page 9 of 11

    Table: Load Case Definitions, Part 1 of 3

    Case Type InitialCond ModalCase BaseCase DesTypeOpt DesignType DesActOpt

    LIVE LinStatic Zero Prog Det LIVE Prog Det

    WALL LinStatic Zero Prog Det DEAD Prog Det

    PWALL LinStatic Zero Prog Det DEAD Prog Det

    FF LinStatic Zero Prog Det DEAD Prog Det

    EQX LinStatic Zero Prog Det QUAKE Prog Det

    EQY LinStatic Zero Prog Det QUAKE Prog Det

    Table: Load Case Definitions, Part 2 of 3

    Table: Load Case Definitions, Part 2 of 3

    Case DesignAct AutoType RunCase CaseStatus GUID

    DEAD Non-Composite

    None Yes Finished

    MODAL Other None No Not Run

    LIVE Short-TermComposite

    None Yes Finished

    WALL Non-Composite

    None Yes Finished

    PWALL Non-Composite

    None Yes Finished

    FF Non-Composite

    None Yes Finished

    EQX Short-TermComposite

    None Yes Finished

    EQY Short-TermComposite

    None Yes Finished

    Table: Load Case Definitions, Part 3 of 3

    Table: Load Case Definitions, Part 3 of 3

    Case Notes

    DEAD

    MODAL

    LIVE

    WALL

    PWALL

    FF

    EQX

    EQY

    Table: Load Pattern Definitions

    Table: Load Pattern Definitions

    LoadPat DesignType SelfWtMult AutoLoad GUID Notes

    DEAD DEAD 1.000000

    LIVE LIVE 0.000000

    WALL DEAD 0.000000

    PWALL DEAD 0.000000

    FF DEAD 0.000000

  • 7/24/2019 Final Report Pating School

    39/56

    Pating School.sdb SAP2000 v17.0.0 - License #08 December 2015

    Computers and Structures, Inc. Page 10 of 11

    Table: Load Pattern Definitions

    LoadPat DesignType SelfWtMult AutoLoad GUID Notes

    EQX QUAKE 0.000000 USERCOEFF

    EQY QUAKE 0.000000 USERCOEFF

    Table: Mass Source

    Table: Mass Source

    MassSource Elements Masses Loads IsDefault LoadPat Multiplier

    MSSSRC1 No No Yes Yes DEAD 1.000000

    MSSSRC1 LIVE 0.250000

    MSSSRC1 WALL 1.000000

    MSSSRC1 PWALL 1.000000

    MSSSRC1 FF 1.000000

    Table: Material Properties 01 - General, Part 1 of 2

    Table: Material Properties 01 - General, Part 1 of 2

    Material Type SymType TempDepend

    Color GUID

    HYSD415 Rebar Uniaxial No Green

    M20 Concrete Isotropic No Green

    Table: Material Properties 01 - General, Part 2 of 2

    Table: Material Properties 01 - General, Part 2 of2

    Material Notes

    HYSD415 India Indian HYSD Grade 415 added10/14/2015 1:15:52 PM

    M20 India Indian M20 added 10/14/20151:15:40 PM

    Table: Material Properties 02 - Basic Mechanical Properties

    Table: Material Properties 02 - Basic Mechanical Properties

    Material UnitWeight UnitMass E1 G12 U12 A1

    KN/mm3 KN-s2/mm4 KN/mm2 KN/mm2 1/C

    HYSD415 7.6973E-08 7.8490E-12 200.00000 1.1700E-05

    M20 2.4993E-08 2.5485E-12 22.36068 9.31695 0.200000 5.5000E-06

    Table: Material Properties 03b - Concrete Data, Part 1 of 2

    Table: Material Properties 03b - Concrete Data, Part 1 of 2

    Material Fc LtWtConc SSCurveOpt SSHysType SFc SCap FinalSlope FAngle

    KN/mm2 Degrees

    M20 0.02000 No Mander Takeda 0.001789 0.005000 -0.100000 0.000

  • 7/24/2019 Final Report Pating School

    40/56

    Pating School.sdb SAP2000 v17.0.0 - License #08 December 2015

    Computers and Structures, Inc. Page 11 of 11

    Table: Material Properties 03b - Concrete Data, Part 2 of 2

    Table: Material Properties03b - Concrete Data, Part 2

    of 2

    Material DAngle

    Degrees

    M20 0.000

    Table: Material Properties 03e - Rebar Data, Part 1 of 2

    Table: Material Properties 03e - Rebar Data, Part 1 of 2

    Material Fy Fu EffFy EffFu SSCurveOpt SSHysType SHard SCap

    KN/mm2 KN/mm2 KN/mm2 KN/mm2

    HYSD415 0.41500 0.48500 0.45650 0.53350 Simple Kinematic 0.020000 0.120000

    Table: Material Properties 03e - Rebar Data, Part 2 of 2

    Table: Material Properties 03e - RebarData, Part 2 of 2

    Material FinalSlope UseCTDef

    HYSD415 -0.100000 No

    Table: Material Properties 06 - Damping Parameters

    Table: Material Properties 06 - Damping Parameters

    Material ModalRatio VisMass VisStiff HysMass HysStiff

    1/Sec Sec 1/Sec2

    HYSD415 0.0000 0.0000 0.0000 0.0000 0.000000

    M20 0.0000 0.0000 0.0000 0.0000 0.000000

  • 7/24/2019 Final Report Pating School

    41/56

  • 7/24/2019 Final Report Pating School

    42/56

  • 7/24/2019 Final Report Pating School

    43/56

  • 7/24/2019 Final Report Pating School

    44/56

  • 7/24/2019 Final Report Pating School

    45/56

  • 7/24/2019 Final Report Pating School

    46/56

  • 7/24/2019 Final Report Pating School

    47/56

  • 7/24/2019 Final Report Pating School

    48/56

  • 7/24/2019 Final Report Pating School

    49/56

  • 7/24/2019 Final Report Pating School

    50/56

  • 7/24/2019 Final Report Pating School

    51/56

  • 7/24/2019 Final Report Pating School

    52/56

  • 7/24/2019 Final Report Pating School

    53/56

  • 7/24/2019 Final Report Pating School

    54/56

  • 7/24/2019 Final Report Pating School

    55/56

  • 7/24/2019 Final Report Pating School

    56/56